Simulation Framework in CEPCSW

Tao Lin (IHEP) representing CEPC software team

2024 CEPC Mechanics Workshop, Luoyang, Henan 22-24 August 2024

Outline

- Introduction to CEPCSW
- The simulation framework in CEPCSW
 - Physics generator interface
 - Detector description
 - Geant4 based simulation
 - Background mixing
 - Fast simulation
- R&D in the simulation framework
- Summary

Introduction

- The development of CEPC software started with the iLCSoft
 - Developed CEPC components for simulation and reconstruction
 - Generated M.C. data for detector design and physics potential studies
 - Particularly, CEPC CDR studies done with the iLCSoft
- The consensus among CEPC, CLIC, FCC, ILC and other future experiments was reached at the Bologna workshop in June, 2019.
 - Develop a Common Turnkey Software Stack (Key4hep) for future collider experiments
 - Maximize the sharing of software components among different experiments

Key4hep

DD4hep

EDM4hep

Gaudi

CEPCSW

FCCSW

(HEP) SW Tools

numpy

uproot

Geant4

ACTS

podio

CLUE

root

T.Madlener | Key4hep & EDM4hep CEPC workshop, Edinburgh

Marlir

LCSoft

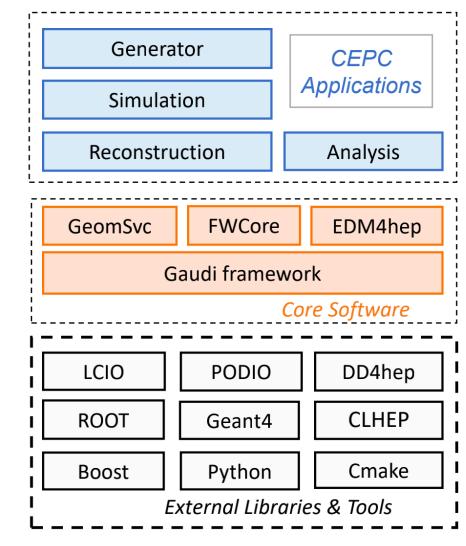
LCFIPlus

Generators

Pythia8

Whizard ...

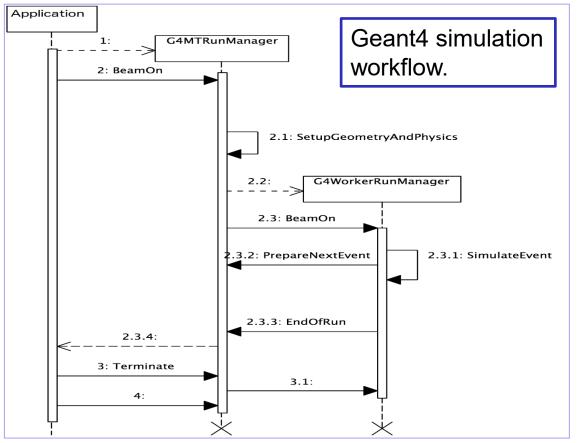
LCIO


Pandora

*Some testbeam related

SW not yet included

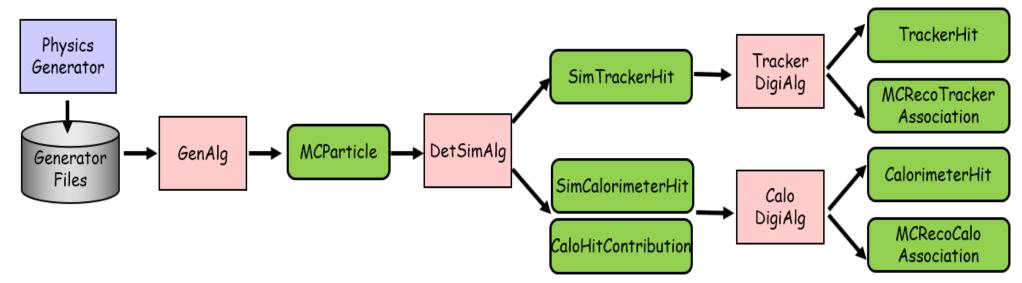
Architecture of CEPCSW


- CEPCSW is organized as a multi-layer structure
 - Applications: simulation, reconstruction and analysis
 - Core software
 - External libraries
- The key components of core software include:
 - Gaudi: defines interfaces to all software components and controls their execution
 - EDM4hep: generic event data model
 - K4FWCore: manages the event data
 - DD4hep: geometry description
 - CEPC-specific framework software: generator, Geant4 simulation, beam background mixing, fast simulation, machine learning interface, etc.

https://code.ihep.ac.cn/cepc/CEPCSW

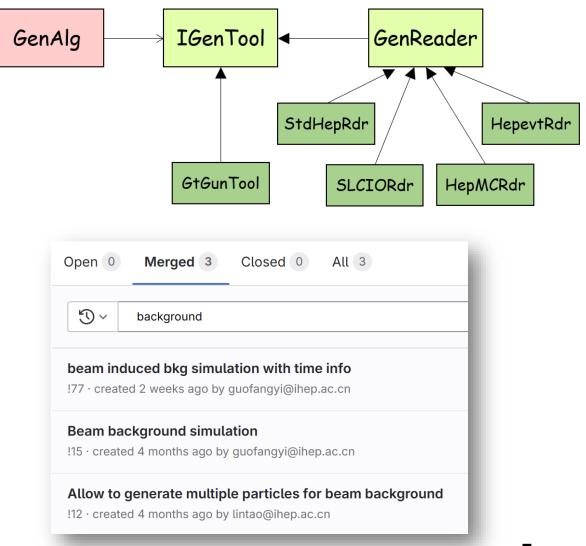
Simulation framework in CEPCSW

- Simulations have become critical for
 - the design of detectors
 - the development of reconstruction algorithms
- Three stages in a simulation chain
 - Physics generator: produce primary particles.
 - Detector simulation: produce hits.
 - Digitization: produce digits.
- The simulation framework provides the abilities to run the simulation chain easily.
 - Case 1: load the events from physics generators into detector simulation.
 - Case 2: control the simulation workflow.
 - Case 3: change the detector designs.
 - Case 4: support the background mixing.



For example, Geant4 implements its own run managers to control the simulation workflow.

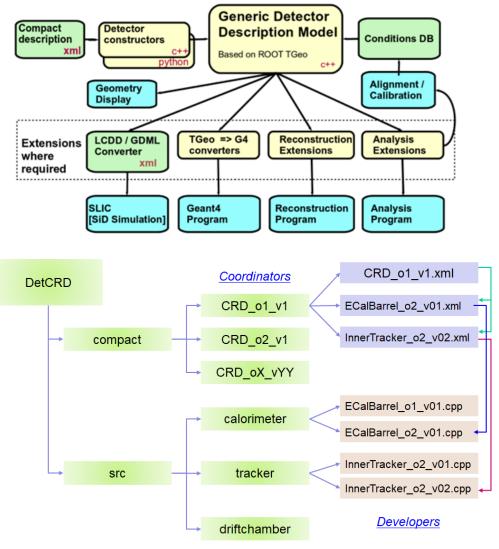
Need to make Geant4 work with the other algorithms.


Complete simulation chain with EDM4hep

- Follow the design of Gaudi framework, several algorithms are implemented for the three stages respectively.
- Event Data Model acts as standards between different algorithms.
- EDM4hep:
 - Physics generator: MCParticle
 - Detector Simulation: MCParticle (with secondaries), SimTrackerHit, SimCalorimeterHits
 - Digitization: TrackerHit, CalorimeterHit

Physics generator interface

- Physics generators with different formats are integrated
 - StdHep, HepEvt, LCIO, HepMC formats.
- Particle gun is supported.
 - Multiple particles
- Beam backgrounds
 - Support to generate multiple tracks according to the rates.
 - Support the uniform time distribution in a time window.
 - MDI group also provides ROOT files, which support random access. So the start index is not always 0.

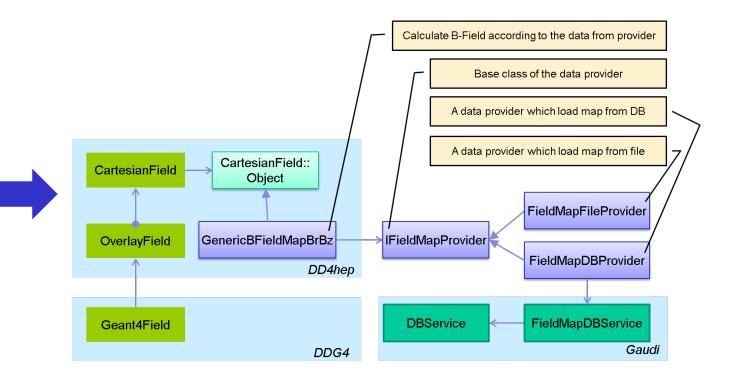


Detector Description (1)

- DD4hep is adopted to provide the full detector description with a single source of information.
 - Consists of C++ constructors and XML based compact files
- Different detector options are managed in a git repository.
 - Easy to setup detectors and compare between different options.
- Available options in CEPCSW
 - CEPCv4: baseline detector in Conceptual Design Report
 - TDR: The TDR Detector

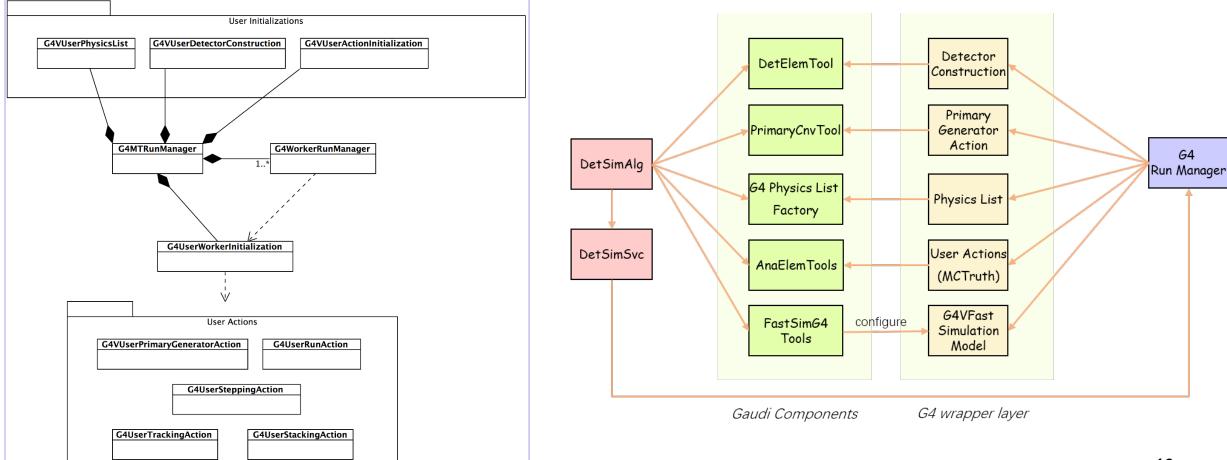
Geometry: Chengdong Fu

Model	Description	MainTracker	Ecal	Hcal	Status	
TDR_01_v01 TDR_01_v02 TDR_02_v01 TDR_02_v02	long barrel vertex, TPC short barrel vertex, TPC long barrel vertex, DC short barrel vertex, DC	SIT+TPC+SET SIT+TPC+SET SIT+DC +SET SIT+DC +SET SIT+DC +SET	crystal crystal	Glass Glass	developing developing	

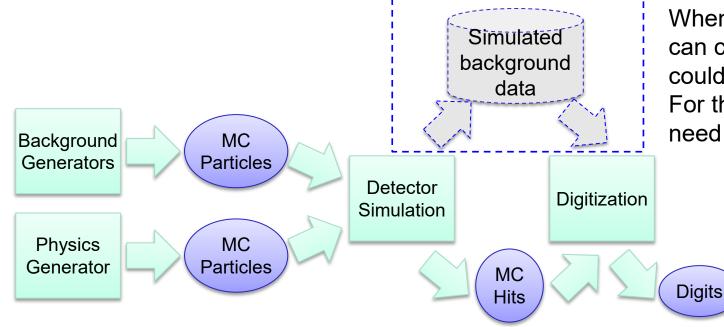

Schematic view of detector management 8

Detector Description (2)

Non-uniform magnetic fields


• The Br/Bz csv files are provided by magnetic group.

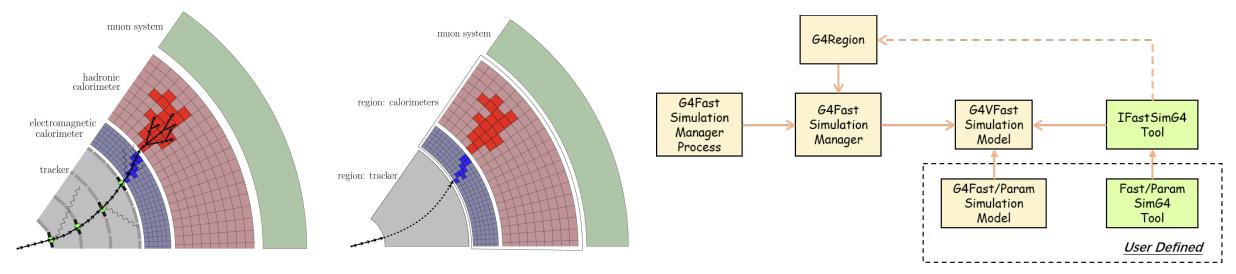
0,0,0.	,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8 00072238,0.00141836,0.00207148,0.00267135,0.00321527,0.00370693,0.004 0.00146197,0.00286741,0.00418194,0.00538432,0.00647049,0.00744939,0.0
0.3,0, 0.4,-0 0.5,-0 0.6,-0 6 0.7,-0 0.8,0. 0.9,0. 1,0.01 1.1,-0 1.2,-0	0.1, 2.98109899, 2.98175883, 2.9840892, 2.98767855, 2.99250257, 2.99845884, 3.00 0.2, 2.97669588, 2.97740238, 2.97988968, 2.98369431, 2.98876474, 2.99496905, 3.0 0.3, 2.96910905, 2.96990752, 2.97270436, 2.97692716, 2.98246308, 2.98912314, 2.9 0.4, 2.95790006, 2.95886479, 2.96221313, 2.96717546, 2.97349577, 2.98087865, 2.9 0.5, 2.94243158, 2.94347691, 2.94786359, 2.95411488, 2.96176669, 2.97015463, 2.9 0.6, 2.92094761, 2.92246038, 2.92872698, 2.9372441, 2.94699778, 2.95714022, 2.96 0.7, 2.89064164, 2.89309777, 2.9030216, 2.91587173, 2.92916445, 2.94201055, 2.95
1.3,-0 1.4,0. 1.5,0. 1.6,-0 8 1.7,-0 1.8,0. 02	0.9,2.79377195,2.79484734,2.81169347,2.8555578,2.88918856,2.90960141,2.92 1,2.0535586,2.54472074,2.74173407,2.84947422,2.876516,2.89449246,2.908610 1.1,-0.03347429,2.28387737,2.78580819,2.85570683,2.87165377,2.8817725,2.8 1.2,-2.83937519,2.87734798,3.02485748,2.86942174,2.86874145,2.87052332,2. 2 1.3,-3.69765888,2.58057627,3.02821863,2.88738109,2.86932003,2.86205042,2. 75
1.9,0. 3256 2,-0.0 931 2.1,-0 54539 2.2,0.	1.4,-3.79899166,-0.47892673,3.13566838,2.91113876,2.88664502,2.84969876,2 5 1.5,-3.81052656,-0.60812881,2.98139683,2.91195237,2.87195812,2.82828197,2 71 1.6,-3.96050739,-0.7731603,3.12235101,2.8808503,2.84101603,2.80294502,2.7 1 1.7,-4.02599445,-0.93592331,2.89647078,2.82089094,2.76282035,2.75353776,2
	84 1.8,-3.87968428,-0.83325284,2.86203808,2.75420373,2.70226483,2.70221165,2 1.93.149713350.35968446.2.82790469.2.67604145.2.64888583.2.6528447.2.


Geant4 based simulation

- Additional layers are implemented between Gaudi and Geant4.
 - Take controls of initialization and event loop.

Background mixing

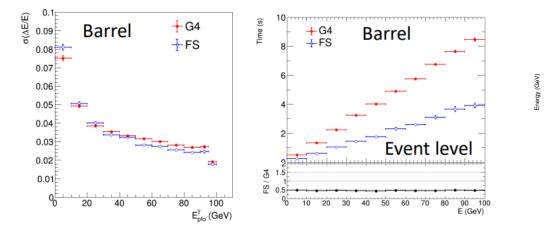
- There are several different ways to mix the backgrounds.
 - Primary particle level (mixing before detector simulation)
 - Hit level (mixing after detector simulation)
 - Digit level (mixing after digitization)

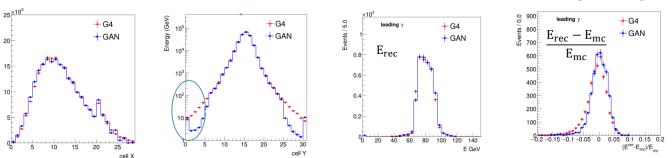

Need balances in CPU, memory and I/O.

- Currently, the MDI group uses the first way.
 - It is close to reality, but time consuming.
 - The events need to be simulated again every time.

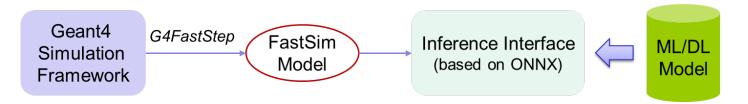
When the detector design is fixed, we can consider to the second option. It could reduce a lot of CPU time. For the hit level mixing, the data files need to be created before digitization.

Fast simulation (1)


- Geant4 simulation could be time consuming. The idea of fast simulation is to replace the consuming part with a fast algorithm, such as parameterization method.
- Region based fast simulation is adopted
 - When a particle enter a region, fast simulation will be triggered by Geant4.


A Zaborowska 2017 J. Phys.: Conf. Ser. 898 042053

Fast simulation (2)


 Traditional method: shower parameterization, frozen shower, ...

- ML-based method: GAN, VAE, NF, Diffusion, ...
 - In general the agreement between GAN and Geant4 is good, while some distributions still need further improvement
 Wenxing Fang

- Support ML methods via ONNX inference interface.
 - Fast pulse simulation in the drift chamber provided as an example (MLP)

R&D in simulation framework

- Challenges in the current simulation framework
 - Due to the more precise geometries and physics, more memory will be used.
 - An efficient solution is using the multi-threaded techniques, which requires the multi-threading design.

5.6			#1	ŧ							
. !			:::#	:::	::::	:::@::	::::	:::	:::	:::	:::
. !		<u>@@</u> :	::#	:::	: ::	:@::	::		:::		:::
. !		ğ :	::#	:::		:@::					
ļ	0		::#	:::	: ::	:@::	::		:::		:::
ļ	(0)		::#	:::		:@::					
	0		::#	:::		:@::					
ļ	0000		::#	:::		:@::					
ļ	00000	ğ :	::#	:::		:@::					
	000 000	ğ :	::#	:::		:@::					
ļ	000 000		::#	:::		:@::					
	0000 0000	ğ :	::#	:::		:@::					
	000:::::0:0000	ğ :	::#	:::		:@::					
	000 : : 00000 0000	ĝ :	::#	:::		:@::					
	@:::::@:::::@@@ : : @:@@@@@@@@@	ğ :	::#	:::		:@::					
	::@:::::@::::@@@ : : @@@@@@@@@@@	ĝ :	::#	:::		:@::					
	::@:::::@::::@@@ : : @:@@@@@@@@@	ĝ :	::#	:::		:@::					
	:::@:::::@::::@@@@:::@:@@@@@@@@@@@@@@@@	ĝ :	::#	:::		:@::					
	:::@:::::@:::: @@@ : : @:@@@@@@@@@	ĝ :	::#	:::		:@::					
	:::@:::::@::::@@@ : : @:@@@@@@@@@	<u>ĝ</u> :	::#	:::		:@::					
0 +			 								>Gi

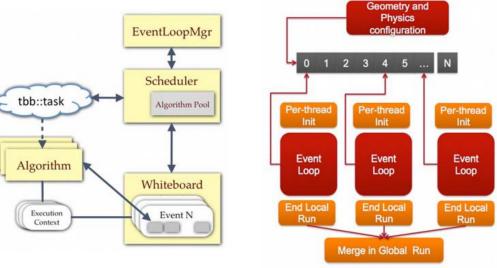
Memory usage (serial version)

Simulation setup:

- Detector: TDR_o1_v01
- Physics list: QGSP_BERT
- Generation: single muons
- N events: 100

The RSS memory is about 950MB at initialization stage. The figure shows the heap memory usage.

Two different approaches for Gaudi and Geant4.



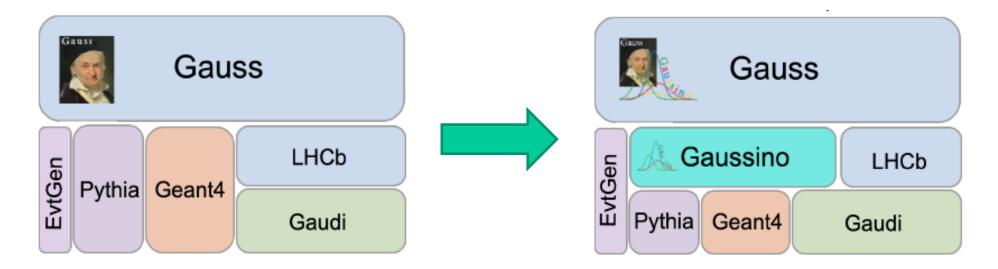
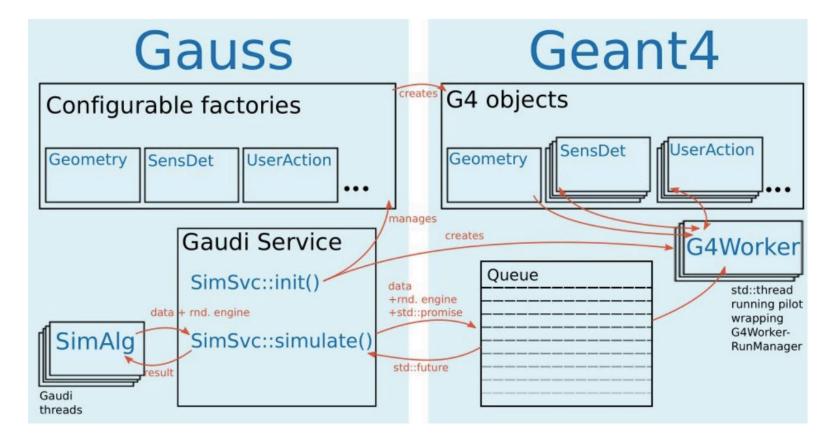

Figure 1. General structure of the GaudiHive framework

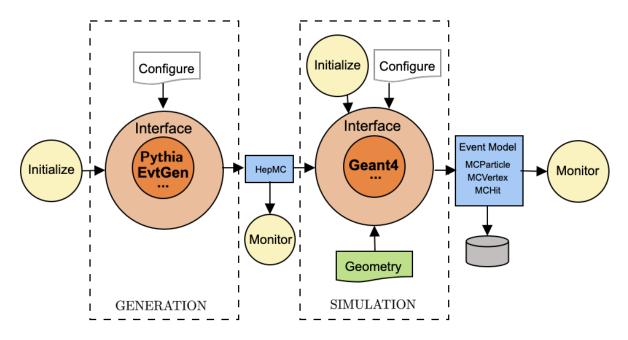
Figure 2. A sketch of the structure of a Geant4-MT simulation

A Di Simone and on behalf of the ATLAS Collaboration 2017 J. Phys.: Conf. Ser. 898 042010 14


Gaussino: simulation framework from LHCb

- Question: Develop a new one or adopt an existing one?
- Evolution of the simulation framework from LHCb
 - The underlying framework is moving to Gaudi Functional and Gaudi Hive
 - Better support for multi-threading, machine learning, fast simulation methods
 - Gauss-on-Gaussino is a new version of LHCb simulation framework
- Gaussino is being added to Key4hep by extracting experiment-independent parts from Gauss.

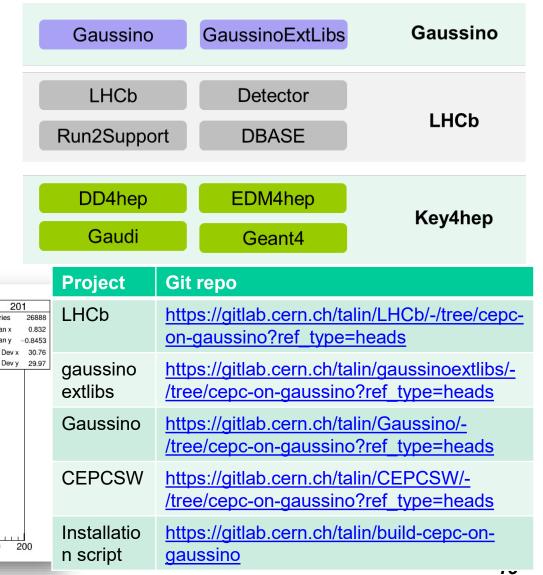
Multithreading in Gaussino


A thread-safe queue is used to communicate between Gaudi and Geant4

Sim/GiGaMTCore/include/GiGaMTCoreRun/GiGaWorkerPilot.h

Core components of Gaussino

- Gaussino is a thread-safe simulation framework based on Gaudi Functional and provides interfaces to Pythia and Geant4.
- Modular design
 - Gaudi Functional Algorithms
 - Gaudi Tools
- Four components
 - Generation of events
 - The detector simulation
 - Geometry service
 - Monitoring & output
- Easy to configure by customizing the algorithms, services and tools



- Generation: Generation and ParticleGun
 - The input is LHCb GenHeader
 - The output is **HepMC GenEvent**
- Detector simulation: GiGaAlg
 - The input is **HepMC GenEvent**
 - The output is **G4Event** and **MC truths**

CEPC-on-Gaussino prototype

- Development of CEPC-on-Gaussino was ٠ planned with the following three steps
 - Using the original version having the dependency on the LHCb software
 - Creating a modified version with less LHCb dependency
 - Directly using the Key4hep version without LHCb dependency (not available at t
- It consists of three parts
 - Adapt the Event Data Model from I HCb.
 - Use DD4hep as the geometry service.
 - Implement the Geant4 sensitive detector and hit objects.

			Cada			
τ	the moment).		Project	Git repo		
	200 150	201 Entries 26888 Mean x 0.832 Mean y -0.8453 Std Dev x 30.76	LHCb	https://gitlab. on-gaussino		
	100 50	Std Dev y 29.97	gaussino extlibs	<u>https://gitlab.</u> /tree/cepc-or		
,			Gaussino	<u>https://gitlab.</u> /tree/cepc-on		
	-100		CEPCSW	<u>https://gitlab.</u> /tree/cepc-on		
		150 200	Installatio n script	<u>https://gitlab.</u> gaussino		

Summary

- The simulation framework in CEPCSW has been developed to support detector design and algorithm development.
 - The background mixing part still needs improvement.
- Regarding the R&D of simulation framework, we focus on the application of new technologies.
 - CEPC-on-Gaussino prototype works for the vertex detector.
 - Simulation of other sub-detectors will be added.

Thank you for your attention!