CEPC探测器研发进展

王建春 (代表CEPC探测器研发团队)

CEPC机械设计研讨会 河南洛阳, 2024.08.22-24

- ✤ 环形正负电子对撞机CEPC的重要性
- ✤ CEPC的性能和对探测器系统的要求
- ✤ 为CEPC进行的关键探测技术研发
- ♦ CEPC技术设计报告的准备
- ♦ 小结

环形正负电子对撞机(CEPC)

- □ 2012年希格斯发现后,中国科学家率先提出了环形正负电子对撞机方案(CEPC),在本土建造100公 里周长的希格斯/W/Z 玻色子工厂。
- □ 以前所未有的精度测量希格斯性质、电弱相互作用参数、QCD和味物理,及寻找超出标准模型新物理(譬如暗物质,电弱相变,正反物质不对称,超对称粒子等)。
- □ 在研究尖端物理的同时,也带动技术的发展与进步,造福社会。
- □ 未来可以升级为超级质子质子对撞机(SPPC),质心系能量达100TeV。

正负电子希格斯工厂

The scientific importance and strategical value of e⁺e⁻ Higgs factories is clearly identified.

China

JAHEP Japan

Europe

2013, 2016: China Xiangshan Science Conference concluded that CEPC is the best approach and a major historical opportunity for the national development of accelerator-based high-energy physics program.

2017: Japan Association of High Energy Physicists (JAHEP) proposes to construct A 250 GeV center of mass ILC promptly as a Higgs factory.

2020: European Strategy for Particle Physics, **An electron-positron Higgs factory is the highest priority next collider.** For the longer term, the European particle physics community has the ambition to operate a proton-proton collider at the highest achievable energy.

2022, ICFA "reconfirmed the international consensus on the importance of *a Higgs factory as the highest priority for realizing the scientific goals of particle physics*", and expressed support for the above-mentioned Higgs factory proposals

Pathways to Innovation and Discovery in Particle Physics

Report of the Particle Physics Project Prioritization Panel 2023

Recommendation 6

Convene a targeted panel with broad membership across particle physics later this decade that makes decisions on the US accelerator-based program at the time when major decisions concerning an off-shore Higgs factory are expected, and/or significant adjustments within the accelerator-based R&D portfolio are likely to be needed. A plan for the Fermilab accelerator complex consistent with the long-term vision in this report should also be reviewed.

The panel would consider the following:

1. The level and nature o US contribution in a specific Higgs factory including an evaluation of the associated schedule, budget, and risks once crucial information becomes available.

2.Mid- and large-scale test and demonstrator facilities in the accelerator and collider R&D portfolios.

3.A plan for the evolution of the Fermilab accelerator complex consistent with the longterm vision in this report, which may commence construction in the event of a more favorable budget situation.

国际共识:正负电子希格斯工厂是优先级最高的下一代对撞机项目

国际希格斯工厂性能比较

相比其它希格斯工厂CEPC具有明显的优势

与FCC-ee相比• 运行时间更早(预期2030s vs. 2040s) • 隧道半径更大(兼容CEPC和SPPC) • 建造成本更低,性价比更高

对撞亮度 / IP (CEPC vs FCC-ee)

与直线对撞机相比 o 对撞亮度更高(H/Z/W) o 可升级为质子质子对撞机

CEPC 运行计划

CEPC accelerator TDR (Xiv:2312.14363)

Operation mode		ZH	Z	W+M-	tī
\sqrt{s} [GeV]		~240	~91	~160	~360
Run Time [years]		10	2	1	~5
	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	5.0	115	16	0.5
30 MW	∫ <i>L dt</i> [ab⁻¹, 2 IPs]	13	60	4.2	0.6
	Event yields [2 IPs]	2.6×10 ⁶	2.5×10 ¹²	1.3×10 ⁸	4×10 ⁵
	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	8.3	192	26.7	0.8
50 MW	∫ <i>L dt</i> [ab⁻¹, 2 IPs]	22	100	6.9	1
	Event yields [2 IPs]	4.3×10 ⁶	4.1×10 ¹²	2.1×10 ⁸	6×10 ⁵

- ➢ 产生海量的希格斯、Z、W和顶夸克事例
- ➢ 超高精度测量:希格斯、电弱、味物理和QCD等测量将 达到前所未有的精度
- ➢ 新物理探索: 暗物质、电弱相变、超对称粒子等, 探索 新物理能标~10 TeV

CEPC 探测器概念设计

CEPC探测器重要设计指标

Sub-detector	Key technology	Key Specifications	
Silicon vertex detector	Spatial resolution and materials	$\sigma_{r\phi}\sim 3~\mu{\rm m}, X/X_0 < 0.15\%$ (per layer)	
Silicon tracker	Large-area silicon detector	$\sigma(\frac{1}{p_T}) \sim 2 \times 10^{-5} \oplus \frac{1 \times 10^{-3}}{p \times \sin^{3/2} \theta} (\text{GeV}^{-1})$	
TPC/Drift Chamber	Precise dE/dx (dN/dx) measurement	Relative uncertainty 3%	
Time of Flight detector	Large-area silicon timing detector	$\sigma(t) \sim 30 \; \mathrm{ps}$	
Electromagnetic	High granularity	EM energy resolution $\sim 3\%/\sqrt{E({\rm GeV})}$	
Calorimeter	4D crystal calorimeter	Granularity $\sim 2 \times 2 \times 2 \text{ cm}^3$	
Hadron calorimeter	Scintillating glass	Support PFA jet reconstruction	
	Hadron calorimeter	Single hadron $\sigma_E^{had} \sim 40\%/\sqrt{E({\rm GeV})}$	
		Jet $\sigma_E^{jet} \sim 30\%/\sqrt{E({\rm GeV})}$	

随着相关探测技术研发的进展 和 对CEPC物理潜力研究的深入,探测器的重要设计指标也在不断调整优化

半导体像素型顶点探测器

 $3 \times$ dual-layer design

Goal: $\sigma(IP) \sim 5 \ \mu m$ for high P

Key specifications:

- Single point resolution ~ $3 \mu m$
- Low material (0.15% X₀ / layer)
- Low power (< 50 mW/cm²)
- Radiation hard (1 Mrad/year)

Γα 20×29 μm² 1024×512 a 100 mW/am²

 $\begin{array}{c} \textbf{TaichuPix3} \\ 1024{\times}512 \text{ array of } 25{\times}25 \ \mu\text{m}^2 \end{array}$

TowerJazz 180nm CIS process

A TaichuPix-based prototype detector was tested at DESY in April 2023

Curved

MAPS

Looking into stitching technology

 $\begin{array}{l} \textbf{JadePix4}\\ 356\times498 \text{ array of } 20{\times}29\ \mu\text{m}^2\\ \sigma_{\text{x/y}} \thicksim 3{\text{-}4}\ \mu\text{m},\ \sigma_t \thicksim 1\ \mu\text{s},\ {\sim}100\ \text{mW/cm}^2 \end{array}$

高压CMOS像素型径迹探测器

- □ Focus on HV-CMOS pixel inner tracker of ~15-20 m².
- □ Ladder design for barrel and disc for endcap
- Given what happened with the TSI 180nm production line, it is better to have backup foundries
- □ Exploring SMIC 55 nm and TPSCo 65 nm processes

and communication

COFFEE2 with SMIC 55nm process

6×9 pixels, 80×40μm² Diodes of different charge collection

Barrel detector design

Dark current and breakdown voltage study

& cell electronics

AC-LGAD 时间径迹探测器

- The outer silicon tracker ~ 85 m², the Z precision is not crucial \Rightarrow cost-effective Si strip detector
- Need a supplemental PID to TPC at low energy \Rightarrow LGAD ToF
- AC-LGAD Time Tracker combines the two needs in one detector, and expect σ_t ~30-50 ps, σ_{RΦ} ~10 μm

Strip AC-LGAD by IHEP / IME

Strip size 5.6 mm \times 100 μ m Pitch: 150, 200, 250 μm

- Initial TPC design has difficulty at high luminosity Z pole due to IBF *
- A pixelated TPC achieves $\sigma(r-\Phi) \sim 100 \mu m$, with (500 μm)² readout pads, IBF×Gain ~1 at G=2000 *
- Full simulation study also shows $3\sigma K/\pi$ separation at 20GeV **
- Preliminary mechanical design \Rightarrow RL = 15% X₀ for endcap and 0.55% X₀ for barrel part *
- Plan to have a test beam this fall to characterize the performance and validate the design *

□ ScW-ECAL: transverse 20×20 cm, 32 sampling layers

~6,700 channels, SPIROC2E (192 chips)

□ AHCAL: transverse 72×72 cm, 40 sampling layers

~13k channels, SPIROC2E (360 chips)

HCAL: scintillator (tile)+SiPM, steel

垂直晶体条4D电磁量能器

Double-end readout, potentially positioning with timing
 Save readout channels, minimize dead area and material
 Challenging in pattern recognitions with multiple particles

2024 CERN beam test at PS-T9: finished in July 10th

- To replace plastic scintillator with high density, low cost glass scintillator, for better hadronic energy resolution and BMR
- Key specifications:
 - Light yield: 1000~2000 ph / MeV
 - Density: 5~7 g/cm³
 - Scintillation time: ~100 ns
- The Scintillation Glass collaboration continues to progress on the quest for better GS
- The GS1 / GS5 measurements are from (5mm)³ small size samples. Tiles of 40×40×10 mm³ are needed for GS-HCAL

探测器超导磁铁

Aluminum stabilized NbTi Rutherford cable

SC coil schematic diagram

Coil parameters:

Central magnetic field	3 T	
Inner diameter	7300 mm	
Operating current	16702 A	
Cable length	33 km	
Inductance	11 H	
Stored Energy	1.54 GJ	

MDI与对撞亮度测量

✤ Beam pipe

- Inner Diameter 20mm
- Inner Layer with thickness of 0.20mm
- Gap for coolant with thickness of 0.35mm
- Water chosen as coolant instead of paraffin
- Outer Layer with thickness of 0.15mm

LumiCal

- 2 parts, first Si wafer + LYSO, second LYSO only
- First Silicon Wafer locates at 560mm, than 640mm
- First LYSO has a length of 23mm(starts from 647mm)
- Second LYSO has a length of 200mm(starts from 900mm)
- Half Moon-cake like design
- Height ~ 39mm, radius ~ 56 mm

Generator		CEPC
Simulation		Applications
Reconstruction		Analysis
Gaudi framowork		
Core Software		
LCIO	PODIO	DD4hep
ROOT	Geant4	CLHEP
Boost	Python	Cmake
External Libraries & Tools		

- CEPCSW has been developed based on components of Key4hep: Gaudi, EDM4hep, K4FWCore DD4hep
- Single source of detector information, but support multiple designs
- A web-based tool **Phoenix** for event and detector visualization

https://cepcvis.ihep.ac.cn/#/

- * 积极参加国际探测器研发合作组
 - Some detector R&D efforts were within the international detector R&D collaborations, e.g. CALICE, LCTPC, & RD*
 - Much broader participation now in the ECFA DRD program
- ✤ 国际合作团队参加CEPC的探测器研发工作: MAPS detector, TPC, PID DC, …
- ◆ 非常强的国内团队 (~300人):

成功建造过在中国的国际合作大科学装置: BES, DYBay, LHAASO, JUNO, ...

在国际大科学装置也起到越来越重要的地位: ATLAS, CMS, LHCb, ALICE, AMS, …

Name	Brief introduction	Role in the CEPC team
Yifang Wang	Academician of the CAS, direc-	The leader of CEPC, chair of the SC
	tor of IHEP	
Xinchou Lou	Professor of IHEP	Project manager, member of the SC
Yuanning Gao	Academician of the CAS, head	Chair of the IB, member of the SC
	of physics school of PKU	
Jie Gao	Professor of IHEP	Convener of accelerator group, vic
		chair of the IB, member of the SC
Haijun Yang	Professor of SJTU	Deputy project manager, member of
		the SC
Jianbei Liu	Professor of USTC	Convener of detector group, men
		ber of the SC
Hongjian He	Professor of USTC	Convener of theory group, member
		of the SC
Shan Jin	Professor of NJU	Member of the SC
Nu Xu	Professor of IMP	Member of the SC
Meng Wang	Professor of SDU	Member of the SC
Qinghong Cao	Professor of PKU	Member of the SC
Wei Lu	Professor of THU	Member of the SC
Joao Guimaraes da Costa	Professor of IHEP	Convener of detector group
Jianchun Wang	Professor of IHEP	Convener of detector group
Yuhui Li	Professor of IHEP	Convener of accelerator group
Chenghui Yu	Professor of IHEP	Convener of accelerator group
Jingyu Tang	Professor of IHEP	Convener of accelerator group
Xiaogang He	Professor of SJTU	Convener of theory group
Jianping Ma	Professor of ITP	Convener of theory group

- Institution Board: 32 top domestic universities/institutes
- The International Advisory Committee (IAC) started in 2015, and held meeting yearly.
- Two international review committees for R&D: (IARC, IDRC) started in 2019.
- Currently the CEPC study group consists of ~1/4 international members. We hope to boost up international participation.

CEPC国际国内研讨会议

- ▶ 偏重于CEPC的大型国际研讨会议:
 - 在中国: 北京 (2017.11, 2018.11, 2019.11), 上海 (2020.10 / hybrid), 南京 (2021.11 / online, 2022.11 / online, 2023.10), <u>杭州 (2024.10)</u>
 - 在欧洲: Rome (2018.05), Oxford (2019.04), Edinburgh (2023.07), Marseille (2024.04), Barcelona (2025.05)
 - 在美国: Chicago (2019.09), DC (2020.04 / online)
 - 香港科技大学自2015年起每年主办"IAS program on HEP",明年在(2025.01)
- ◆ 在国内各地不定期举办各种专题研讨会议

◆ 希望在2025年6月完成探测器的设计报告 Ref-TDR

CEPC规划与时间表

Ref-TDR的探测技术选择

R

Sustam	Technologies		
System	Baseline	For comparison	
Beam pipe	Φ 20 mm		
LumiCal	SiTrk+Crystal		
Vertex	CMOS+Stitching	CMOS Pixel	
Tracker	CMOS SiDet ITrk		
	Pixelated TPC	PID Drift Chamber	
	AC-LGAD OTrk	SSD / SPD OTrk	
		LGAD ToF	
ECAL	4D Crystal Bar	PS+SiPM+W, GS+SiPM, etc	
HCAL	GS+SiPM+Fe	PS+SiPM+Fe, etc	
Magnet	LTS	HTS	
Muon	PS bar+SiPM	RPC	
TDAQ	Conventional	Software Trigger	
BE electr.	Common	Independent	

- □ 自2024年初开始,CEPC团队对不同 的探测器技术进行比较;
- 经过近半年的密集研究和讨论,团队
 选择了基准方案和后备技术
- 主要考量的因素包括:性能表现、造 价、研发进展、技术成熟度等等

探测器几何设计与机械支撑

Ø8470

Subsystem	Supported By
Barrel Yoke	Base
Magnet	Barrel Yoke
Barrel HCAL	Barrel Yoke
Barrel ECAL	Barrel HCAL
TPC+ Barrel OTK	Barrel ECAL
ІТК	TPC
Beampipe+VTX+LumiCal	ІТК
Endcap Yoke	Base
Endcap HCAL	Barrel HCAL
Endcap ECAL+OTK	Barrel HCAL

实验大厅总体布局和探测器安装

技术设计报告的构架

- 已完成了技术设计报告的构架,初步规划 共16章
- 各章的撰写团队相对独立,由国内外参与
 相关探测器研发的成员组成
- 赵天池老师担任主编,带领一个小而精的 编辑团队

- 1) Physics goal and requirements
- 2) Concept introduction
- 3) MDI and beam measurement
- 4) Vertex detector
- 5) Silicon trackers
- 6) Gaseous trackers
- 7) Electron magnetic calorimeter
- 8) Hadron calorimeter
- 9) Muon detector
- 10) Magnet
- 11) General electronics
- 12) TDAQ and online
- 13) Software and computing
- 14) Mechanics, integration and installation
- 15) Global performance
- 16) Overall cost and timeline

Date	Actions and/or Expectations	
Jan 1, 2024	Start the ref-TDR process by comparing different technologies	
Jul 1, 2024	Baseline technologies are chosen; start to write TDR and address key issues	
Aug 7, 2024	Report to the IDRC chair Prof Daniela Bortoletto	
Oct 21-23, 2024	Review of ref-TDR progress by the IDRC	
Oct 23-30, 2024	Discuss the ref-TDR at the CEPC workshop, report progresses to the CEPC IAC	
Dec 31, 2024	The first draft of the ref-TDR is ready for internal reviews	
April 30, 2025	Finish international reviews	
Jun 30, 2025	The ref-TDR is ready 完成技术设计报告!	

- CEPC是粒子物理领域的前沿大科学装置,旨在解决本领域最重大的科学问题,有望取得革命性的突破,使得我国在该领域取得国际领先地位。
- > CEPC团队经过近10年的努力,在加速器和探测器的关键技术取得了多项重要突破,达到国际先进水平。
- 团队已经完成包括加速器、物理和探测器的概念设计报告,加速器的技术 设计报告,正在积极准备探测器技术设计报告。
- 借助于本次研讨会,我们对包括机械结构与支撑、探测器集成与安装、加速器与探测器界面等进行一次系统性的梳理和讨论,使得Ref-TDR自洽完善,为成功建造打下坚实基础。

感谢中信重工提供这样难得的机会! 感谢诸位参加讨论!