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Ballistics test in the dark knight
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Ballistics test in the dark knight
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reco is cool
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reco is challenging

CSI@JUNO objectives:
Identify particle type: e+, 𝛼, 𝛽, 𝛾, neutron/proton, 𝜇…

Determine particle properties: position, energy, track, direction…
Know yourself, Liquid Scintillator detector

pros: low energy threshold, high energy resolution and ? …
cons: unsegmented, neither track info, nor Cherenkov rings…
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reco is challenging

CSI@JUNO objectives:
Identify particle type: e+, 𝛼, 𝛽, 𝛾, neutron/proton, 𝜇…

Determine particle properties: position, energy, track, direction…
Know your suspect, particle behavior in JUNO:

charged particles deposit energy and emit scintillation photons, 
together with negligible Cherenkov light
particle topology: point/ball-like source(MeV region); track or 
shower(GeV region)
multiple crime scenes <—> coincident signals
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the quantum world

For the Macro world: distinctive/unique evidence(fingerprint/DNA…)
For the Micro world: One to Many due to the quantum nature

“identical particle”  —> different detector signal
fixed detector signal —> could originate from different particles

Strategies: matching, likelihood method…
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reco is important
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reco is important

Recocalibration

online event 
classification
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FPGA  
data stream
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Principle From Xuantong Zhang
JUNO-doc-5247
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Deconvolution Workflow
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Raw waveform - raw baseline 
0~50ns average

real part

imaginary part

Fourier
transform multiplied by 

filter

divided by 
SPE's frequency

reconstructed waveform
inverse
Fourier
transform 
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Extract SPE waveforms

• Not all waveforms from calibration sources are of SPE, but for each 
PMT, its 1PE charge distribution is certain.

4
find 1PE cut with rangedGaussian fit

ranged cut
1.5σ

Fill integral charge into histogram 
using simple integral method

SPE spectum
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SPE Spectra
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PMTs of the same type get similar SPE spectrum
So I generate different filter for hmmt and nnvt PMT.
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Construct filter

3

noise after Fourier transform

2

22

)(
wave

noisewavefF -
=

Wiener filter definition:

Waves of frequency over 450 are considered to be noise frequency, 
and noise is assumed to be flat in frequcey domain.

From Xiaojie Luo
JUNO-doc-6558

extract waveforms and 
do Fourier transform to 
get modulus distribution
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Threshold, width and Gibbs effect
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Hit amplitude 
threshold

width

Gibbs

reconstructed waveform

integral width ( IW )
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Filter relative parameters

10

reconstructed waveform

Width distribution

hit amplitude threshold
nnvt: 0.030
hmmt: 0.025

hit width threshold(ns)
nnvt: 12
hmmt: 12

Integral width(ns)
nnvt: 7
hmmt: 8Threshold, width and Gibbs effect
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Time Rec (Miao Yu)
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fixed threshold

linear fit

peak position time as hit time, use 
curve to reduce bias(need to know Q)
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First Hit Time given by TimeRec

9

Linear Fit

TimeRec’s FHT will overWrite the FHT of Deconvolution
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reactor neutrinos

Challenging：un-precedented energy resolution

Important：better resolution —> larger sensitivity

M. Grassi Neptune 2018

JUNO Challenge (Quantitative) 

5

KamLAND 1000 t
D. Chooz 8+22 t
RENO 16 t
Daya Bay 20 t
Borexino 300 t
JUNO 20000 t

6%/√E

8%/√E

5%/√E

DETECTOR
TARGET MASS

ENERGY
RESOLUTION

3%/√E

MUST BE LARGER

MUST BE MORE PRECISE

Need to collect large statistics  
being 50km away from source

Unprecedented light level
1200 pe/MeV

Both features 
• are highly expensive (civil engineering + photocathode density)
• result in extreme detector dynamic range

23
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Energy Reco.

Simple total PE method: E ~ total PE
Maximum likelihood method* 

optical model independent
calibration data driven
taking into account differences among PMTs

Main factors for energy resolution:
photon statistics
energy non-uniformity*
PMT dark noise

24
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method principle

Step1: use calibration data to construct 
the expected number of PhotoElectron                                        
per unit E                    for PMTs
Step2: maximize the likelihood 
function 

25
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Fig. 1. Schematic view of the CD and the calibration system. Z-axis is the vertical
central axis of the CD. An example of total reflection is also shown at the bottom.
Upper-Right: definition of the three parameters of Ç� in Section 4. ír is the calibration
source position, íRi is the ith PMT position and ✓PMT is the angle between ír and íRi.

LS and water, refraction and total reflection could occur during photon
propagation. JUNO also has a complex calibration system [12] which
consists of four sub-systems, namely the Automated Calibration Unit
(ACU) , the Cable Loop System (CLS), the Guide Tube (GT) and the
remotely operated vehicle (ROV). Only the former three are used for
energy reconstruction in this paper. It should be emphasized that each
sub-system could cover a different detector region: ACU can move along
the Z-axis of the CD, CLS is able to reach those points permitted by the
mechanics of the loop system within X–Z plane. GT is mounted on the
outer surface of the acrylic sphere, designed to calibrate the detector
in the edge region complementary to ACU and CLS.

3. Monte Carlo samples

Various calibration data samples with different sources taken from
Ref. [12] are produced. For the prompt signal of IBD events, a set of
positron samples are also prepared. The information of the calibration
samples and the positron samples used in this paper are summarized
in Tables 1 and 2, respectively. For all these samples, the detector
simulation is done based on Geant4 [15]. LS properties [16] and op-
tical processes of photons propagating in LS are implemented [17,18].
Realistic detector geometry such as the arrangement of the PMTs and
the supporting structures is also deployed. For simplicity the electronics
simulation which includes various PMT characteristics is disabled.

The calibration samples are used to construct the maps of expected
PEs per unit energy for PMTs, referred to as Ç� hereafter and described in
detail in Section 4. Calibration sources with different types and energies
are compared in order to select the most suitable one. Nine sets of
positron samples with kinetic energy Ek = (0, 1, 2, . . . , 8) MeV are
used to evaluate the performance of energy reconstruction. The events
in each positron sample are uniformly distributed in the CD.

4. Energy reconstruction and Ç�

As described in Ref. [13], an optical model independent method
was developed to reconstruct the energy of positrons in the JUNO CD.
The observables for each positron are {ki}, where ki represents the
number of detected PEs for the ith PMT and is expected to follow a
Poisson distribution. The mean value of the Poisson distribution �i is

Table 1
Information of the calibration samples.68Ge is a positron emitter, the kinetic energy
of the positrons will be absorbed by the source enclosure, so only the annihilation
gammas are released. For the Laser source, ‘‘op" stands for optical photon and 1 MeV
corresponds to 11522 optical photons. The event statistics per position is 10k.
Source Type Energy [MeV] Nposition Stats./pos.
68Ge � 2 ù 0.511 2000 10 k
60Co � 1.173 + 1.333 275 10 k
AmC (n,H)� 2.22 275 10 k
Laser op 1 2000 10 k

Table 2
List of the positron samples.
Source Kinetic energy Statistics/MeV Position

e+ (0,1,2, . . . , 8) MeV 450 k uniform in CD

the product of the positron visible energy Evis and Ç�i from Section 3.
So the probability of observing {ki} for all PMTs can be constructed as
Eq. (1) when an event deposits energy at position (r, ✓,�).

L({ki}r, ✓,�,Evis) =
«
i
L(kir, ✓,�,Evis) =

«
i

e*�i � �ki
i

ki
�i = Evis � Ç�i

(1)

where the index i runs over all PMTs. After obtaining Ç�i, the event
energy can be fitted by maximizing this likelihood function. In order
to decouple the influence of the vertex uncertainty on the energy
reconstruction, the event vertex is assumed to be known in this study.

The key component of the energy reconstruction method discussed
above is Ç�. In Ref. [13], it is derived from the ACU calibration data,
under the assumption that the JUNO CD has good spherical symmetry.
If the calibration source position is defined as ír = (r, ✓,� = 0) and the
ith PMT position as íRi, as shown in Fig. 1, then Ç� can be calculated as:

Ç�(r, ✓PMT ) =
�(r, ✓PMT )

Evis
= ( 1

M

M…
i=1

Ñni
DEi

) � 1
Evis

Evis = PEtotal_Y0

(2)

where Evis is the visible energy of the calibration source, PEtotal is the
total number of PEs, Y0 is the constant light yield defined in Ref. [12],
the index i runs over the PMTs with the same ✓PMT , Ñni is the average
number of detected PEs and DEi is the relative detection efficiency.
Given there are only finite ACU calibration positions, Ç�(r = z, ✓PMT )
from these positions are extrapolated through linear interpolation to
the entire (r, ✓PMT ) phase space.

Fig. 2 compares the Ç�(r, ✓PMT ) maps for calibration positions with
the same radius but different ✓ angle, as could be collected by the
CLS calibration sub-system. The apparent differences, which are mainly
caused by the shadowing effect of the acrylic nodes and connecting bars
when ✓ varies, indicate that the detector is not symmetric along the
✓ direction, and this ✓ dependence for Ç�(r, ✓PMT ) must be taken into
account. Since the CLS system can move in the X–Z plane, we could
combine the CLS and ACU calibration data to construct Ç�(r, ✓, ✓PMT ) in
the same way as before.

A few examples of the Ç�(r, ✓, ✓PMT ) maps at fixed ✓PMT values are
shown in Fig. 3. And they are also affected by the same shadowing
effect. The Delaunay triangles based cubic spline interpolation has been
applied to Ç�(r, ✓, ✓PMT ), so that it could be extrapolated to the whole
(r, ✓) phase space from finite calibration positions. At this point, it is
quite natural to ask whether there is any � dependence for Ç�, which
could be caused by any detector asymmetry along the � direction. We
will leave this discussion to Section 7.

5. Comparison of calibration sources

Our energy reconstruction method heavily relies on the usage of
calibration data. Given all the available calibration sources, which
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Fig. 1. Schematic view of the CD and the calibration system. Z-axis is the vertical
central axis of the CD. An example of total reflection is also shown at the bottom.
Upper-Right: definition of the three parameters of Ç� in Section 4. ír is the calibration
source position, íRi is the ith PMT position and ✓PMT is the angle between ír and íRi.

LS and water, refraction and total reflection could occur during photon
propagation. JUNO also has a complex calibration system [12] which
consists of four sub-systems, namely the Automated Calibration Unit
(ACU) , the Cable Loop System (CLS), the Guide Tube (GT) and the
remotely operated vehicle (ROV). Only the former three are used for
energy reconstruction in this paper. It should be emphasized that each
sub-system could cover a different detector region: ACU can move along
the Z-axis of the CD, CLS is able to reach those points permitted by the
mechanics of the loop system within X–Z plane. GT is mounted on the
outer surface of the acrylic sphere, designed to calibrate the detector
in the edge region complementary to ACU and CLS.

3. Monte Carlo samples

Various calibration data samples with different sources taken from
Ref. [12] are produced. For the prompt signal of IBD events, a set of
positron samples are also prepared. The information of the calibration
samples and the positron samples used in this paper are summarized
in Tables 1 and 2, respectively. For all these samples, the detector
simulation is done based on Geant4 [15]. LS properties [16] and op-
tical processes of photons propagating in LS are implemented [17,18].
Realistic detector geometry such as the arrangement of the PMTs and
the supporting structures is also deployed. For simplicity the electronics
simulation which includes various PMT characteristics is disabled.

The calibration samples are used to construct the maps of expected
PEs per unit energy for PMTs, referred to as Ç� hereafter and described in
detail in Section 4. Calibration sources with different types and energies
are compared in order to select the most suitable one. Nine sets of
positron samples with kinetic energy Ek = (0, 1, 2, . . . , 8) MeV are
used to evaluate the performance of energy reconstruction. The events
in each positron sample are uniformly distributed in the CD.

4. Energy reconstruction and Ç�

As described in Ref. [13], an optical model independent method
was developed to reconstruct the energy of positrons in the JUNO CD.
The observables for each positron are {ki}, where ki represents the
number of detected PEs for the ith PMT and is expected to follow a
Poisson distribution. The mean value of the Poisson distribution �i is

Table 1
Information of the calibration samples.68Ge is a positron emitter, the kinetic energy
of the positrons will be absorbed by the source enclosure, so only the annihilation
gammas are released. For the Laser source, ‘‘op" stands for optical photon and 1 MeV
corresponds to 11522 optical photons. The event statistics per position is 10k.
Source Type Energy [MeV] Nposition Stats./pos.
68Ge � 2 ù 0.511 2000 10 k
60Co � 1.173 + 1.333 275 10 k
AmC (n,H)� 2.22 275 10 k
Laser op 1 2000 10 k

Table 2
List of the positron samples.
Source Kinetic energy Statistics/MeV Position

e+ (0,1,2, . . . , 8) MeV 450 k uniform in CD

the product of the positron visible energy Evis and Ç�i from Section 3.
So the probability of observing {ki} for all PMTs can be constructed as
Eq. (1) when an event deposits energy at position (r, ✓,�).

L({ki}r, ✓,�,Evis) =
«
i
L(kir, ✓,�,Evis) =

«
i

e*�i � �ki
i

ki
�i = Evis � Ç�i

(1)

where the index i runs over all PMTs. After obtaining Ç�i, the event
energy can be fitted by maximizing this likelihood function. In order
to decouple the influence of the vertex uncertainty on the energy
reconstruction, the event vertex is assumed to be known in this study.

The key component of the energy reconstruction method discussed
above is Ç�. In Ref. [13], it is derived from the ACU calibration data,
under the assumption that the JUNO CD has good spherical symmetry.
If the calibration source position is defined as ír = (r, ✓,� = 0) and the
ith PMT position as íRi, as shown in Fig. 1, then Ç� can be calculated as:

Ç�(r, ✓PMT ) =
�(r, ✓PMT )

Evis
= ( 1

M

M…
i=1

Ñni
DEi

) � 1
Evis

Evis = PEtotal_Y0

(2)

where Evis is the visible energy of the calibration source, PEtotal is the
total number of PEs, Y0 is the constant light yield defined in Ref. [12],
the index i runs over the PMTs with the same ✓PMT , Ñni is the average
number of detected PEs and DEi is the relative detection efficiency.
Given there are only finite ACU calibration positions, Ç�(r = z, ✓PMT )
from these positions are extrapolated through linear interpolation to
the entire (r, ✓PMT ) phase space.

Fig. 2 compares the Ç�(r, ✓PMT ) maps for calibration positions with
the same radius but different ✓ angle, as could be collected by the
CLS calibration sub-system. The apparent differences, which are mainly
caused by the shadowing effect of the acrylic nodes and connecting bars
when ✓ varies, indicate that the detector is not symmetric along the
✓ direction, and this ✓ dependence for Ç�(r, ✓PMT ) must be taken into
account. Since the CLS system can move in the X–Z plane, we could
combine the CLS and ACU calibration data to construct Ç�(r, ✓, ✓PMT ) in
the same way as before.

A few examples of the Ç�(r, ✓, ✓PMT ) maps at fixed ✓PMT values are
shown in Fig. 3. And they are also affected by the same shadowing
effect. The Delaunay triangles based cubic spline interpolation has been
applied to Ç�(r, ✓, ✓PMT ), so that it could be extrapolated to the whole
(r, ✓) phase space from finite calibration positions. At this point, it is
quite natural to ask whether there is any � dependence for Ç�, which
could be caused by any detector asymmetry along the � direction. We
will leave this discussion to Section 7.

5. Comparison of calibration sources

Our energy reconstruction method heavily relies on the usage of
calibration data. Given all the available calibration sources, which
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source choice

Obvious energy non-uniformity in the total 
reflection region
Laser(68Ge) is better at high(low) energy
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Fig. 1. Schematic view of the CD and the calibration system. Z-axis is the vertical
central axis of the CD. An example of total reflection is also shown at the bottom.
Upper-Right: definition of the three parameters of Ç� in Section 4. ír is the calibration
source position, íRi is the ith PMT position and ✓PMT is the angle between ír and íRi.

LS and water, refraction and total reflection could occur during photon
propagation. JUNO also has a complex calibration system [12] which
consists of four sub-systems, namely the Automated Calibration Unit
(ACU) , the Cable Loop System (CLS), the Guide Tube (GT) and the
remotely operated vehicle (ROV). Only the former three are used for
energy reconstruction in this paper. It should be emphasized that each
sub-system could cover a different detector region: ACU can move along
the Z-axis of the CD, CLS is able to reach those points permitted by the
mechanics of the loop system within X–Z plane. GT is mounted on the
outer surface of the acrylic sphere, designed to calibrate the detector
in the edge region complementary to ACU and CLS.

3. Monte Carlo samples

Various calibration data samples with different sources taken from
Ref. [12] are produced. For the prompt signal of IBD events, a set of
positron samples are also prepared. The information of the calibration
samples and the positron samples used in this paper are summarized
in Tables 1 and 2, respectively. For all these samples, the detector
simulation is done based on Geant4 [15]. LS properties [16] and op-
tical processes of photons propagating in LS are implemented [17,18].
Realistic detector geometry such as the arrangement of the PMTs and
the supporting structures is also deployed. For simplicity the electronics
simulation which includes various PMT characteristics is disabled.

The calibration samples are used to construct the maps of expected
PEs per unit energy for PMTs, referred to as Ç� hereafter and described in
detail in Section 4. Calibration sources with different types and energies
are compared in order to select the most suitable one. Nine sets of
positron samples with kinetic energy Ek = (0, 1, 2, . . . , 8) MeV are
used to evaluate the performance of energy reconstruction. The events
in each positron sample are uniformly distributed in the CD.

4. Energy reconstruction and Ç�

As described in Ref. [13], an optical model independent method
was developed to reconstruct the energy of positrons in the JUNO CD.
The observables for each positron are {ki}, where ki represents the
number of detected PEs for the ith PMT and is expected to follow a
Poisson distribution. The mean value of the Poisson distribution �i is

Table 1
Information of the calibration samples.68Ge is a positron emitter, the kinetic energy
of the positrons will be absorbed by the source enclosure, so only the annihilation
gammas are released. For the Laser source, ‘‘op" stands for optical photon and 1 MeV
corresponds to 11522 optical photons. The event statistics per position is 10k.
Source Type Energy [MeV] Nposition Stats./pos.
68Ge � 2 ù 0.511 2000 10 k
60Co � 1.173 + 1.333 275 10 k
AmC (n,H)� 2.22 275 10 k
Laser op 1 2000 10 k

Table 2
List of the positron samples.
Source Kinetic energy Statistics/MeV Position

e+ (0,1,2, . . . , 8) MeV 450 k uniform in CD

the product of the positron visible energy Evis and Ç�i from Section 3.
So the probability of observing {ki} for all PMTs can be constructed as
Eq. (1) when an event deposits energy at position (r, ✓,�).

L({ki}r, ✓,�,Evis) =
«
i
L(kir, ✓,�,Evis) =

«
i

e*�i � �ki
i

ki
�i = Evis � Ç�i

(1)

where the index i runs over all PMTs. After obtaining Ç�i, the event
energy can be fitted by maximizing this likelihood function. In order
to decouple the influence of the vertex uncertainty on the energy
reconstruction, the event vertex is assumed to be known in this study.

The key component of the energy reconstruction method discussed
above is Ç�. In Ref. [13], it is derived from the ACU calibration data,
under the assumption that the JUNO CD has good spherical symmetry.
If the calibration source position is defined as ír = (r, ✓,� = 0) and the
ith PMT position as íRi, as shown in Fig. 1, then Ç� can be calculated as:

Ç�(r, ✓PMT ) =
�(r, ✓PMT )

Evis
= ( 1

M

M…
i=1

Ñni
DEi

) � 1
Evis

Evis = PEtotal_Y0

(2)

where Evis is the visible energy of the calibration source, PEtotal is the
total number of PEs, Y0 is the constant light yield defined in Ref. [12],
the index i runs over the PMTs with the same ✓PMT , Ñni is the average
number of detected PEs and DEi is the relative detection efficiency.
Given there are only finite ACU calibration positions, Ç�(r = z, ✓PMT )
from these positions are extrapolated through linear interpolation to
the entire (r, ✓PMT ) phase space.

Fig. 2 compares the Ç�(r, ✓PMT ) maps for calibration positions with
the same radius but different ✓ angle, as could be collected by the
CLS calibration sub-system. The apparent differences, which are mainly
caused by the shadowing effect of the acrylic nodes and connecting bars
when ✓ varies, indicate that the detector is not symmetric along the
✓ direction, and this ✓ dependence for Ç�(r, ✓PMT ) must be taken into
account. Since the CLS system can move in the X–Z plane, we could
combine the CLS and ACU calibration data to construct Ç�(r, ✓, ✓PMT ) in
the same way as before.

A few examples of the Ç�(r, ✓, ✓PMT ) maps at fixed ✓PMT values are
shown in Fig. 3. And they are also affected by the same shadowing
effect. The Delaunay triangles based cubic spline interpolation has been
applied to Ç�(r, ✓, ✓PMT ), so that it could be extrapolated to the whole
(r, ✓) phase space from finite calibration positions. At this point, it is
quite natural to ask whether there is any � dependence for Ç�, which
could be caused by any detector asymmetry along the � direction. We
will leave this discussion to Section 7.

5. Comparison of calibration sources

Our energy reconstruction method heavily relies on the usage of
calibration data. Given all the available calibration sources, which
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combined source

Energy deposition of positron in LS
kinetic part: point-like
annihilation part: ball-like

Use combined source Laser+68Ge to 
mimic positron
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Fig. 5. Comparison of Ç� for different sources at a few representative calibration positions. From left to right and top to bottom, r = (10, 15.6, 16.1, 16.2, 17.2, 17.4) m, ✓ = 90˝,
� = 0˝. The shaded region indicates the total reflection zone.

Fig. 6. Uniformity of reconstructed energy Erec with respect to r3 using Ç� maps from
different sources. For each r3 bin, the mean value of Erec is plotted. Top and bottom
plots correspond to Ek = 0, 5 MeV e+ samples respectively.

After obtaining the Ç� maps using different sources and the calibra-
tion points from Case 2 in Section 6, we applied them individually to
the energy reconstruction of positron samples listed in Table 2. The
uniformity of the reconstructed energy Erec with respect to r3 for two
different energies was plotted in Fig. 6. The two vertical lines indicate
the boundaries of the three regions. Each curve is normalized by its
average value within region I. The results of Erec are quite consistent
among the sources in region I for all positron energies, which is not
surprising given that the Ç� maps from different sources are almost

the same. The non-uniformity in region II could be traced back to
the features of the Ç� maps, caused by total reflection as mentioned
before. Take the bump peak in the Ek = 5 MeV case as an example.
The corresponding radius is r = 16.1 m which is the same as the top
right plot in Fig. 5. Comparing to the Laser source, the other sources
will give smaller expected Ç�, resulting in larger Erec . The size of the
non-uniformity for each source is positively correlated to its �R spread.
Another important thing we should note is that using the Ç� maps from
68Ge source yields the best uniformity at Ek = 0 MeV, while at high
energies the Ç� maps from Laser source perform the best.

By comparing the sources thoroughly, we aimed to pick out one
that gives good energy reconstruction performance across the entire
positron energy range. Based on the studies above, none of the sources
is satisfactory. If one single source will not do, is it possible to use a
combined source? Let us dive back to the energy deposition of positron
in LS again. The whole process can be naturally broken down into
two parts: almost all positrons will fully deposit their kinetic energy
first, this part can be treated as a point-like source. There is a small
probability that positrons will annihilate in flight, but this can be
safely ignored. The second part is the positron–electron annihilation
producing two gammas, which is almost the same as the 68Ge source.
This explains why the 68Ge source performs the best for Ek = 0 MeV
positron events. With increasing kinetic energy, positron becomes more
and more point-like. Consequently point-like source such as Laser is
more suitable at higher energies. Thus for positrons with visible energy
Evis, we propose the following combined Ç�comb(r, ✓, ✓PMT ):

Ç�comb = 1
Evis

� (EGe
vis � Ç�

Ge(r, ✓, ✓PMT ) + Ek � Ç�L(r, ✓, ✓PMT ))

Evis = EGe
vis + Ek

(3)

where Ç�Ge(r, ✓, ✓PMT ) and Ç�L(r, ✓, ✓PMT ) correspond to the annihilation
part and kinetic energy part of positron respectively, Ek is the kinetic
energy of positron and EGe

vis (1.022 MeV) is the visible energy of
68Ge.

To validate the combined maps Ç�comb, they were compared to those
produced with positron samples listed in Table 2. Across the whole
energy range, Ç�comb are able to match the positron Ç� maps. A few
examples are shown in Fig. 7. Note that it is assumed the kinetic energy
part of the combined maps is linearly proportional to the kinetic energy.
Energy non-linearity is not considered and has tiny impact on Ç�comb.
Replacing Laser with other point-like sources such as electron works as

4

*Ek — kinetic energy of e+
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performance

Combined source improves the 
energy-uniformity (consequently 
energy resolution) in the total 
reflection region

28

2 4 6 8 10
 [MeV]recE

1

1.5

2

2.5

3

3.5

En
er

gy
 re

so
lu

tio
n 

[%
]

3 < 3800 m3rGe68

AmC
Co60

Laser
Ge + Laser68

2 4 6 8 10
 [MeV]recE

1

1.5

2

2.5

3

3.5

En
er

gy
 re

so
lu

tio
n 

[%
]

 < FV3 < r33800 m

2 4 6 8 10
 [MeV]recE

1

1.5

2

2.5

3

3.5

En
er

gy
 re

so
lu

tio
n 

[%
]

3 < 5237 m3FV <  r

0 1000 2000 3000 4000 5000
]3 [m3

truer

0.98

0.985

0.99

0.995

1

1.005

1.01

1.015

re
c

N
or

m
al

iz
ed

 E

 = 0 MeVkE
 = 1 MeVkE
 = 2 MeVkE

 = 3 MeVkE
 = 4 MeVkE
 = 5 MeVkE

 = 6 MeVkE
 = 7 MeVkE
 = 8 MeVkE

FV: Fiducial Volume



vertex/energy 
combined reco  



Wuming Luo

Time Likelihood

Define residual time

Construct pdf  p(tres)
Minimize likelihood function
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to the difference in the TTSs of the PMTs. Following the

correction, the times of different PMTs with different

values of Npe are aligned.

As shown in Fig. 7, the time-based algorithm provided a

more accurate reconstructed vertex than the charge-based

algorithm (Fig. 5). In addition, after the time–Npe correc-

tion, the reconstruction shows no obvious bias within the

entire detector, even in the total reflection region. The

reconstructed result was used as the initial value for the
time likelihood algorithm.

5 Time likelihood algorithm

5.1 Principle of the algorithm

The time likelihood algorithm uses the scintillator

response function to reconstruct the event vertex. The
variable residual time tresðr~0; t0Þ for the ith PMT can be

described as

tiresðr~0; t0Þ ¼ ti $ tofi $ t0; ð7Þ

where tires is the residual time of the ith PMT and r~0, t0, ti,
and tofi are defined in Fig. 3.

The scintillator response function mainly consists of the
emission time profile of the scintillation photons and the

TTS and the dark noise of PMTs. In principle, the addi-

tional delays introduced by the absorption, re-emission,
scattering, and total reflection of the photon arriving to the

PMT depend on the distance between the emission position
and the individual PMTs. However, the differences are

only noticeable for the late arrival hits, which are largely

suppressed by the requirement for the earliest arriving
photons in the time likelihood algorithm. Therefore, in the

first-order approximation, the scintillator response function

can be considered to be the same for all positions inside the
scintillator. The scintillator response function can be

described as follows.

As described in Sect. 3, when a charged particle inter-
acts with a scintillator molecule, the molecule is excited,

then de-excites, and emits photons. Typically, the scintil-
lator has more than one component; thus, the emission time

profile of the scintillation photons, f ðtresÞ, can be described
as

f ðtresÞ ¼
X

k

qk
sk

e
$t res
sk ;
X

k

qk ¼ 1; ð8Þ

where each k component is characterized by its decay time
sk and intensity qk. The different components result from

the different excited states of the scintillator molecules.

To consider the spread in the arrival time of photons at
the PMTs, a convolution with a Gaussian function is

applied, given by

gðtresÞ ¼
1ffiffiffiffiffiffi
2p

p
r
e$

ðt res$mÞ2

2r2 % f ðtresÞ: ð9Þ

where r is the TTS of PMTs and m is the average transit

time.
The dark noise, which occurs without incident photons

in the PMTs, is not correlated with any physical event. The

fraction of the dark noise in the total number of photo-
electrons edn can be calculated based on the data acquisi-

tion (DAQ) windows, dark noise rate, and light yield of the
LS. The probability of dark noise eðtresÞ is constant over

time, where
R
DAQ eðtresÞdtres ¼ edn. By adding eðtresÞ to

gðtresÞ and renormalizing its integral to 1, the probability

density function (PDF) of the scintillator response function

can be written as

pðtresÞ ¼ ð1$ ednÞ % gðtresÞ þ eðtresÞ: ð10Þ

The distribution of the residual time tres of an event for a

hypothetical vertex can be compared with pðtresÞ. The
best-fitting vertex and t0 are chosen by minimizing the

negative log-likelihood function

Lðr~0; t0Þ ¼ $ ln
Y

i

pðtiresÞ

 !

: ð11Þ

The parameters in Eq. 10 can be measured experimentally

[26–29]. In this work, the PDF from the MC simulation for
the methodology study was employed.

Fig. 7 (Color online) Heatmap of Rrec (upper panel) and Rrec $
Rtrue (lower panel) as a function of Rtrue for 4-MeV eþ uniformly
distributed in space reconstructed by the time-based algorithm
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3 Optical processes

When a charged particle deposits energy in the scintil-
lator, the solvent enters an excited state and transfers

energy to the fluor in a non-radiative manner. Scintillation

photons are then emitted along the particle track through
the radiative de-excitation of the excited fluor within a

limited time. The emitted scintillation photons can undergo

several different processes while propagating through a
large LS detector. At short wavelengths (\ 410 nm),

photons are mostly absorbed and then re-emitted at longer

wavelengths, which maximizes the detection efficiency of
the PMTs. At long wavelengths ([ 410 nm), photons

mainly undergo Rayleigh scattering. A more detailed study

of the wavelength-dependent absorption and re-emission
can be found in Ref. [16]. Additionally, the refractive

indices at 420 nm are 1.50 and 1.34 for the LS and water,

respectively. The difference in the refractive indices results
in refraction and total reflection at the boundary of the two

media, which affects the time-of-flight of the photons.

When using the time information in the reconstruction, the
time-of-flight is crucial, and it is calculated using the

equation

tof ¼
X

m

dm
vm

; ð1Þ

where tof, dm, and vm are the time-of-flight, optical path
length, and effective light speed, respectively, and m rep-

resents different media, in this case the LS and water, in the

JUNO experiment. The acrylic sphere (thickness of 12 cm)
and acrylic cover (thickness of 1 cm) in front of each PMT

were ignored in this study because their refractive indices

were similar to that of the LS and their thickness was small
compared to that of the LS and water.

3.1 Optical path length

The optical path length can be characterized by the start
and end positions in the detector, which are the vertex of

the event and the position of the PMTs, respectively. The

bold cyan curve in Fig. 2 shows a typical example of the
optical path of photons detected by the PMT in the JUNO

simulation using the event display [17, 18], and further

examples are shown by the thin green curves. There are
multiple physically possible paths between these two

positions, each of which has a different optical path length,

as follows:

$ owing to absorption and re-emission, the re-emitted

photon is not in the same absorption position and the

propagation direction also changes;

$ owing to scattering, the photon changes the original

direction of the propagation; and
$ owing to refraction and total reflection, the photon does

not travel in a straight line.

As shown in Fig. 2, owing to the various aforemen-
tioned optical processes, it is difficult to predict the actual

optical path length for each photon. In this paper, a simple

optical model is proposed, which uses a straight line con-
necting the vertex and the PMTs to calculate the optical

path length (Fig. 3), and combines with the effective light

speed to correct for the time-of-flight. Using this simple
optical model reasonable results can be obtained, as dis-

cussed in Sect. 5.

In Fig. 3, {r~0; t0} represents the event vertex and start
time, {r~i; ti} is the position of the ith PMT and the time of

the earliest arriving photon detected by it. The angle

between the normal direction of the ith PMT and the vector
of the position of the ith PMT pointing to the event vertex

is hi and ai ¼ arccosðr̂~0 % r̂~iÞ. The optical path length of the
photon arriving at the ith PMT is dpathlength;i ¼ jr~i & r~0j ¼
dLS;i þ dwater;i and the corresponding time-of-flight is tofi.

The optical path length in the LS and water can be cal-

culated by simply solving the trigonometric equation.

Fig. 2 (Color online) Event display of the optical path from the event
vertex to the PMT in the JUNO simulation. The red circle ring is the
event vertex and the gray bulbs with blue caps represent the PMTs

Fig. 3 (Color online) Optical path length from the event vertex to the
ith PMT. O denotes the center of the detector
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to the difference in the TTSs of the PMTs. Following the

correction, the times of different PMTs with different

values of Npe are aligned.

As shown in Fig. 7, the time-based algorithm provided a

more accurate reconstructed vertex than the charge-based

algorithm (Fig. 5). In addition, after the time–Npe correc-

tion, the reconstruction shows no obvious bias within the

entire detector, even in the total reflection region. The

reconstructed result was used as the initial value for the
time likelihood algorithm.

5 Time likelihood algorithm

5.1 Principle of the algorithm

The time likelihood algorithm uses the scintillator

response function to reconstruct the event vertex. The
variable residual time tresðr~0; t0Þ for the ith PMT can be

described as

tiresðr~0; t0Þ ¼ ti $ tofi $ t0; ð7Þ

where tires is the residual time of the ith PMT and r~0, t0, ti,
and tofi are defined in Fig. 3.

The scintillator response function mainly consists of the
emission time profile of the scintillation photons and the

TTS and the dark noise of PMTs. In principle, the addi-

tional delays introduced by the absorption, re-emission,
scattering, and total reflection of the photon arriving to the

PMT depend on the distance between the emission position
and the individual PMTs. However, the differences are

only noticeable for the late arrival hits, which are largely

suppressed by the requirement for the earliest arriving
photons in the time likelihood algorithm. Therefore, in the

first-order approximation, the scintillator response function

can be considered to be the same for all positions inside the
scintillator. The scintillator response function can be

described as follows.

As described in Sect. 3, when a charged particle inter-
acts with a scintillator molecule, the molecule is excited,

then de-excites, and emits photons. Typically, the scintil-
lator has more than one component; thus, the emission time

profile of the scintillation photons, f ðtresÞ, can be described
as

f ðtresÞ ¼
X

k

qk
sk

e
$t res
sk ;
X

k

qk ¼ 1; ð8Þ

where each k component is characterized by its decay time
sk and intensity qk. The different components result from

the different excited states of the scintillator molecules.

To consider the spread in the arrival time of photons at
the PMTs, a convolution with a Gaussian function is

applied, given by

gðtresÞ ¼
1ffiffiffiffiffiffi
2p

p
r
e$

ðt res$mÞ2

2r2 % f ðtresÞ: ð9Þ

where r is the TTS of PMTs and m is the average transit

time.
The dark noise, which occurs without incident photons

in the PMTs, is not correlated with any physical event. The

fraction of the dark noise in the total number of photo-
electrons edn can be calculated based on the data acquisi-

tion (DAQ) windows, dark noise rate, and light yield of the
LS. The probability of dark noise eðtresÞ is constant over

time, where
R
DAQ eðtresÞdtres ¼ edn. By adding eðtresÞ to

gðtresÞ and renormalizing its integral to 1, the probability

density function (PDF) of the scintillator response function

can be written as

pðtresÞ ¼ ð1$ ednÞ % gðtresÞ þ eðtresÞ: ð10Þ

The distribution of the residual time tres of an event for a

hypothetical vertex can be compared with pðtresÞ. The
best-fitting vertex and t0 are chosen by minimizing the

negative log-likelihood function

Lðr~0; t0Þ ¼ $ ln
Y

i

pðtiresÞ

 !

: ð11Þ

The parameters in Eq. 10 can be measured experimentally

[26–29]. In this work, the PDF from the MC simulation for
the methodology study was employed.

Fig. 7 (Color online) Heatmap of Rrec (upper panel) and Rrec $
Rtrue (lower panel) as a function of Rtrue for 4-MeV eþ uniformly
distributed in space reconstructed by the time-based algorithm
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5.2 Probability density function

The PDF of the scintillator response function for PMTs

detecting a single photoelectron was obtained from the MC

simulation, using a 4.4-MeV c source located at the center
of the detector, such that the distance to all PMTs is the

same. For PMTs detecting multiple photoelectrons, the

time of the earliest arriving photon is biased toward an
earlier time. Therefore, the PDF need to be modified

according to the first-order statistic of pðtresÞ or the so-

called first photoelectron timing technique [23–25] as

pNpeðtresÞ ¼ NpepðtresÞ
Z 1

tres
pðxÞdx

! "Npe$1

; ð12Þ

where pNpeðtresÞ is the PDF of the scintillator response

function when the PMTs detect Npe hits.

The PDF of two kinds of PMTs is shown in Fig. 8: the
upper panel is for Hamamatsu while the lower panel is for

NNVT PMTs. As the PDF is affected by the time resolu-
tion of the PMTs, the PDF of the NNVT is wider because

of its inferior TTS. The inset in the lower panel shows the

PDF on a logarithmic scale, and the time constant contri-
bution of the dark noise eðtresÞ is clearly visible.

5.3 Reconstruction performance

The reconstructed vertex was compared with the true

vertex in spherical coordinates (R; h;/) for the MC eþ

samples and fitted with a Gaussian function to analyze the

bias and resolution. The bias of the reconstruction is shown

in Fig. 9, where different colors represent events with
different energies. As can be seen in the left panel of

Fig. 9, the reconstructed R is consistent with the true value

in the central region, while an energy-dependent bias
behavior is noticeable near the detector boundary. Given its

regular bias behavior, the bias can be corrected with an

energy-dependent correction. Moreover, although the
reconstructed R is biased, there is no bias in h and /, as
shown in the middle and right panels of Fig. 9,
respectively.

The spatial resolution of the vertex reconstruction as a

function of energy is shown in Fig. 10. The R bias was
corrected before the analysis of the resolution. To study the

individual effect of the TTS and dark noise on the vertex

reconstruction, different MC samples were produced with
and without these effects. The vertex reconstruction results

are shown in Fig. 10. The magenta circles represent the

default PMT configuration, as described in Sect. 2. The red
triangles represent an ideal configuration, which assumes

perfect PMTs without the effects of the TTS and dark

noise. The black squares represent the configuration of
PMTs including only the dark noise effect, while the blue

inverted triangles represent the PMT configuration

including only the TTS effect. The exact values of the
vertex resolution at 1.022 MeV and 10.022 MeV are

summarized in Tables 2 and 3, respectively. The energy

Etrue includes the energy of the annihilation gamma rays.
The light yield was approximately 1300 detected Npe per

1 MeV of deposited energy in JUNO, and the energy
nonlinearities on the light yield were ignored in the

approximation. As can be seen in Tables 2 and 3, the dark

noise has no effect at high energy and its effect at low
energy is also highly limited. The largest effect results

from the TTS in the time likelihood algorithm. The energy-

dependent vertex resolution is approximately proportional

to 1=
ffiffiffiffiffiffiffiffi
Npe

p
[24].

Owing to the low time resolution of the NNVT PMTs, in

Fig. 10 reconstruction using only Hamamatsu PMTs is
shown (green circles). In this study, we found that the

vertex resolution with Hamamatsu PMTs was similar to

that of using all PMTs. The reconstruction speed was 3.5
times faster, because the fraction of the Hamamatsu PMTs

was approximately 28% of all PMTs in the CD.

The reconstructed event time t0 is shown in Fig. 11. The
effect of t0 is essentially a global shift of an event to match

the scintillator response function PDF; in reality, t0 is also
affected by the trigger time and the time delay from the
cable. The absolute value of t0 can be neglected; only the

relative difference of different events is important for the

alignment of events. The small bump near -1.6 ns is
correlated with the R bias, and the long tail on the right side

Fig. 8 (Color online) PDF of the scintillator response function for
PMTs detecting different numbers of photoelectrons. The upper panel
shows the response function for Hamamatsu, the lower panel for the
NNVT PMTs
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performance

Bias near the detector edge
PMT Transit Time Spread(TTS) is the dominant factor

31

results from positronium formation. The variation in the

reconstructed t0 is within a few nanoseconds.

6 Total reflection region reconstructed
by the charge likelihood algorithm

The time likelihood method described in Sec. 5 intro-

duces a bias in the R direction when the reconstructing
events are close to the acrylic sphere. As mentioned in Ref.

[30], using a charge signal with the maximum likelihood

method can provide better spatial resolution than the time

likelihood algorithm when an event occurs near the
detector boundary. In this section, we discuss the charge

likelihood algorithm to reconstruct the event vertex in the

total reflection region only, while the reconstruction result
in the central region is omitted.

The charge likelihood algorithm is based on the distri-

bution of the number of photoelectrons in each PMT. With
the mean expected number of photoelectrons lðr0~;EÞ

Fig. 9 (Color online) Bias of the reconstructed R (left panel), h (middle panel), and / (right panel) for different energies calculated by the time
likelihood algorithm

Fig. 10 (Color online) Resolution of the reconstructed R (left panel), h (middle panel), and / (right panel) as a function of energy reconstructed
by the time likelihood algorithm. Different colors represent different PMT configurations

Table 2 Vertex resolution for
different PMT configurations at
1.022 MeV (detection of
# 1328 Npe in total,

corresponding to # 370 Npe
detected by Hamamatsu PMTs)

PMT configuration R (mm) h (degrees) / (degrees)

Ideal 60 0.25 0.31

With dark noise only 62 0.27 0.34

With TTS only 89 0.37 0.44

With TTS and dark noise 103 0.40 0.47

With TTS and dark noise (Hamamatsu PMTs only) 105 0.42 0.49

Table 3 Vertex resolution for
different PMT configurations at
10.022 MeV (detection of
# 13280 Npe in total,

corresponding to # 3700 Npe
detected by Hamamatsu PMTs)

PMT configuration R (mm) h (degrees) / (degrees)

Ideal 19 0.08 0.11

With dark noise only 19 0.08 0.11

With TTS only 31 0.13 0.16

With TTS and dark noise 31 0.13 0.16

With TTS and dark noise (Hamamatsu PMTs only) 32 0.14 0.17
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results from positronium formation. The variation in the

reconstructed t0 is within a few nanoseconds.

6 Total reflection region reconstructed
by the charge likelihood algorithm

The time likelihood method described in Sec. 5 intro-

duces a bias in the R direction when the reconstructing
events are close to the acrylic sphere. As mentioned in Ref.

[30], using a charge signal with the maximum likelihood

method can provide better spatial resolution than the time

likelihood algorithm when an event occurs near the
detector boundary. In this section, we discuss the charge

likelihood algorithm to reconstruct the event vertex in the

total reflection region only, while the reconstruction result
in the central region is omitted.

The charge likelihood algorithm is based on the distri-

bution of the number of photoelectrons in each PMT. With
the mean expected number of photoelectrons lðr0~;EÞ

Fig. 9 (Color online) Bias of the reconstructed R (left panel), h (middle panel), and / (right panel) for different energies calculated by the time
likelihood algorithm

Fig. 10 (Color online) Resolution of the reconstructed R (left panel), h (middle panel), and / (right panel) as a function of energy reconstructed
by the time likelihood algorithm. Different colors represent different PMT configurations

Table 2 Vertex resolution for
different PMT configurations at
1.022 MeV (detection of
# 1328 Npe in total,

corresponding to # 370 Npe
detected by Hamamatsu PMTs)

PMT configuration R (mm) h (degrees) / (degrees)

Ideal 60 0.25 0.31

With dark noise only 62 0.27 0.34

With TTS only 89 0.37 0.44

With TTS and dark noise 103 0.40 0.47

With TTS and dark noise (Hamamatsu PMTs only) 105 0.42 0.49

Table 3 Vertex resolution for
different PMT configurations at
10.022 MeV (detection of
# 13280 Npe in total,

corresponding to # 3700 Npe
detected by Hamamatsu PMTs)

PMT configuration R (mm) h (degrees) / (degrees)

Ideal 19 0.08 0.11

With dark noise only 19 0.08 0.11

With TTS only 31 0.13 0.16

With TTS and dark noise 31 0.13 0.16

With TTS and dark noise (Hamamatsu PMTs only) 32 0.14 0.17
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likelihood method

32

Method PMT input info reco target

QMLE charge only r, E

TMLE time only r

QTMLE charge & time r, E

Nucl.Sci.Tech. 34 (2023) 6, 83
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performance comparison

Rres depends mainly on PMT time info, charge info also helps
Impact of Rres on Eres is ≤ 0.6% for QTMLE

33

Vertex

Energy

Nucl.Sci.Tech. 34 (2023) 6, 83
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reactor neutrinos

Latest predicted Eres 2.95%@1MeV
Decomposition of the Energy Resolution

PMT dark noise, charge smearing
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pmt waveform photon counting

Input: pre-processed PMT waveform within 
420ns signal window
Model: Customized RawNet
Output: {pk} the probability for predicting 
(k=0,1, … ≥9) PEs 
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photon counting performance

Le#:	Confusion	matrix	of	RawNet
99%	(95%,	87%)	accuracy	for	1PE	(2PEs,	3PEs)
Accuracy	decreases	rapidly	as	nPEs	increases
Right:	Confusion	matrix	based	on	charge	classificaLon
The	accuracy	is	markedly	inferior	to	that	of	RawNet
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energy reconstruction
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Algo. Name Observable Likelihood: ! ≤ KT Likelihood: ! > KT

QTMLE
(reference)

q (charge)

PETMLE
(ideal)

k (true PEs)

QPTMLE
(realistic)

{pk}, q

QPETMLE
(100% accuracy)

k(pk=1), q

QCTMLE ! (p!:max), q
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energy resolution

Using the photon counting info for PMTs with (𝜅≤KT) PEs can improve the energy resolution

The improvement becomes smaller as KT increases due to the dropping accuracy for high PEs
Additional checks were done to validate the results
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principles
Large number of PMTs O(105)  installed on a sphere

each PMT as a pixel —> JUNO as a Camera
ensemble of PMTs charge/time form an image

Image is highly vertex and energy dependent
Vertex/energy reconstruction  <—>  Image recognition

41
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inputs

Large number of PMTs O(105)  installed on a sphere
Method 1: projection to 2D plane —>Plane CNN
Method 2: HEALPix —> plane/spherical CNN
Method 3: 3D models such as pointNet++/Transformer 

42

Z. Qian, V. Belavin, V. Bokov et al. Nuclear Inst. and Methods in Physics Research, A 1010 (2021) 165527

Fig. 9. The HEALPix algorithm starts by dividing the spherical surface into 12 regions: 4 around each pole, and 4 at the equator. Then, resolution can be increased by iteratively
dividing each spherical pixel into 4 sub-pixels of equal area, so that any edge of the original 12 regions is split into N

side
parts. Pixels are labeled in a nested scheme, so that subpixels

belonging to the same region have consecutive indices. In this way, a pooling operation on the discretized sphere is as efficient as the usual 1D pooling. As an example, consider
the bottom picture. Pixels belonging to the same region have similar colors, with their brightness representing different values. The pooling operation consists of aggregating all
pixels in the same region into a single value, which in this example is given by the darkest color.

For simplicity, we adopted the same convention used by the Deep-
Sphere model [47], for which Wij > 0 only if i and j are neighboring
pixels in the HEALPix discretization. The actual values for Wij are then
given by a Gaussian function:

Wij = exp

H

*

Òvi * vjÒ22
2d2

I

, d2 =
1

E

…

(vi ,vj )ÀE
Òvi * vjÒ22, (6)

where ÒxÒ
2
í

t

x
2

1
+5 + x2

n
denotes the Euclidean norm, and E is the

number of elements in the set E , i.e. the number of links in G. Note that,
since we are only connecting neighboring nodes, their distance on the
spherical surface can be locally approximated by the Euclidean norm.
Then, the average d2 of the squared distances is used to normalize the
argument of the exponential.

With this choice, the nodes are only locally connected, meaning that
W is sparse, i.e. contains mostly zeros, and so computations may be
optimized. To construct a GNN, the only strict requirement for the Wij

is to encode a connected graph, i.e. such that there is a set of edges
with non-zero Wij linking any two nodes i and j. However, we did not
investigate different choices for (6).

(3) An input sample x À RNpixùF is a signal on G, i.e. a function
mapping each node to a vector of F features.

In this work F = 2, and we consider, for each PMT, its charge
(i.e. the number of PE hits) and its first hit time, relative to the
event’s origin. If a PMT receives no hits, we assign a first hit time of
1024 ns, denoting that it is hit ‘‘at infinity’’. This value is chosen to be
significantly higher than any of the recorded first hit times in the whole
dataset, and any sufficiently large value would perform the same.

Since spherical pixels contain more than one PMT, we need to
aggregate data from several PMTs to form the feature vector xi À RF of
the ith spherical pixel. So, for every spherical pixel, we sum the charges
of all the PMTs inside it, and take the minimum of their first hit times.

(4) Before the training, we normalize each channel (charge and first
hit) in the training dataset to 0 mean and unit standard deviation. In
this way, all the features have the same order of magnitude, which is
necessary for the model to converge.

(5) Convolutions on G can be defined in many ways. In this work
we use Chebyshev Convolutional Layers [49], which use the spectral
domain of the graph to define filters.

(6) The model is implemented using the Spektral library [50] and
Tensorflow 2.2 [51] with tf.Keras.

The architecture, further referred to as GNN-J (see Fig. 10), is
inspired by that of VGG, with some minor changes in the number

Table 6
Hyperparameters for GNN-J.
Parameter Value

Loss Mean Absolute Percentage Error
Optimizer Adam (�

1
= 0.8, �

2
= 0.9)

Learning rate
<

Fixed at 0.001 for N
epoch

< 3,
then exponential decay at rate *0.1.

Batch size 64
Number of epochs 10

of filters/layers which resulted in a small (Ì 5%) improvement in
validation accuracy. All the model’s hyperparameters are summarized
in Table 6. They were found by a manual trial and error over a small
set of alternatives. In fact, since training takes Ì 22 h on a single V100
GPU, it was not feasible to perform a more comprehensive automated
search.

As a final detail, we note that using a relative loss, such as the Mean
Absolute Percentage Error (MAPE), works best for the task of energy re-
construction, improving resolution and bias at low energies. However,
it also makes training more unstable: sometimes a bad initialization
results in an initial loss of 100%, which does not improve over time. In
these cases, weights need to be re-initialized, and the training restarted.

4. Results

In the following sections we will present the performance of the
studied methods (BDT, DNN, ResNet-J, VGG-J and GNN-J) for the
reconstruction of primary vertex and energy. Only one of the models,
GNN-J is used exclusively for the energy reconstruction. The task of the
vertex reconstruction requires the time information of each PMT taken
into account. Since the current implementation of GNN-J aggregates
data to a some degree even at the input level, it is not suitable for the
task. Ways to overcome this limitation will be discussed in Section 5.

Before comparing the results, we also present an overview of per-
formance parameters and outline their expected behavior.

4.1. Definition of the performance parameters

In order to evaluate the performance of the trained models, both the
neural networks and the decision trees, we study two characteristics:
resolution and bias. They are defined by a Gaussian fit, as shown in
Fig. 11. The mean value of the best fit Gaussian corresponds to the

9
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Fig. 5. The planar projection method first generates a mapping of the ID of the PMTs and the position of the pixel in the image (a). The charge (b) and first hit time (c)
information can be filled in the image according to the mapping.

Fig. 6. VGG-J network architecture for CNN reconstruction with 17 weight layers: 13 convolutional and 4 dense layers. It is composed of two main blocks: a sequence of 3 ù 3
convolutional layers (with max pooling used for coarsening) and a few dense layers at the end. The last dense layer is used to output the prediction result, which is 1 node for
reconstructing energy and 3 nodes for reconstructing vertex coordinates.

yield the prediction of energy or vertex. Compared with the VGG [40]
network that has two layers with 4096 nodes, the amount of parameters
in VGG-J network is 26 million, which has been reduced by 65%, while
the reconstruction accuracy has remained at the same level.

3.3.3. ResNet-J
In order to maximize the reconstruction performance, we would

like to train a network that has more layers, which may bring better
learning ability. However, a deeper network is not similarly easy to
optimize. This is caused by the problem of vanishing/exploding gra-
dients [43,44]. Not thoroughly optimized network may have only a
lower accuracy. In order to solve this problem, we use ResNet network
architecture [42]. The main feature of ResNet is the usage of residual
blocks, shown in Fig. 7, where x denotes the input of the block. In a
regular NN the block yields the feature mapping H(x), while the ResNet
lets the block fit another feature mapping F (x) := H(x) * x which is
called residual mapping. Therefore, the original mapping is converted
into F (x) + x. It has been discussed that it is easier to optimize the
residual mapping than to optimize the original one due to the effect of
identity skip connections [45].

Compared with the original ResNet network architecture [42], we
optimized convolutional layers and the dense layers for the reconstruc-
tion in JUNO. The final network structure is shown in Fig. 8 and
contains a total of 53 layers with approximately 35 million trainable

Fig. 7. Residual block structure in ResNet network. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Table 4
Comparison of VGG-J and ResNet-J architectures.

VGG-J ResNet-J

Weight layers 17 53
Number of weights 26 310 035 38 352 403

parameters. In comparison with VGG-J it has more layers to enhance

the learning ability, see Table 4.
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Fig. 8. ResNet-J network architecture for CNN reconstruction with 53 weight layers: 49 convolutional and 4 dense layers. It is composed of a number of residual blocks (see a
typical example below) and a couple of dense layers at the end. A residual block is make up of a stack of convolutions. They are 1 ù 1, 3 ù 3, and 1 ù 1 convolutions, where the
1 ù 1 layers are responsible for reducing and then increasing (restoring) dimensions and the 3 ù 3 layers are responsible for coarsening when it has a stride of 2 in conv block
(red). Next to the main convolutions (Full path), there is a 3 ù 3 convolutional layer (Skip path), which has same dimensions and stride so that it can be added to the outputs
of stacked layers used for the residual function. Between the convolutions and dense layers, an average pooling layer summarizes all feature got by convolutions, then the dense
layers at the end will output the prediction result.

Table 5
Hyperparameters for VGG-J and ResNet-J.
Parameter Value

Loss Mean Squared Error
Optimizer Adam (�

1
= 0.9, �

2
= 0.999)

Learning rate
<

Linearly increasing from 0 to 10
*3 during the first epoch,

then exponential decay to 10
*8.

Batch size 64
Number of epochs 15

We used same hyperparameters and training schedule for ResNet-J
and VGG-J, see Table 5. It takes about 4 days to train one model on a
single V100 GPU.

3.4. Spherical model (GNN-J)

As it was already mentioned in Section 3.3, the spherical arrange-
ment of PMTs in JUNO does not allow to directly use the signal as input
for CNNs. One possible workaround is to define an arbitrary projection
to a Euclidean domain, and then use CNNs as usual, as it was done in
the previous Section 3.3.1.

However, this comes with a few problems:

• Deformation. Any projection inevitably stretches or shrinks cer-
tain areas. So, during convolution, the same filter will capture
features coming from spherical regions with different areas and
shape, breaking translational invariance and making learning
more difficult.

• Topology. Distances on the projection are not, in general, pro-
portional to distances on the spherical surface. So, features that
are close on the sphere can be far in the 2D projection, meaning
that they may not be captured by a local filter.

These issues can be avoided by using Graph Neural Networks
(GNNs) [46], which generalize CNNs to generic manifolds and remove
the need for a projection.

The main idea is to encode the topology of the input domain in
a graph structure, and then properly define convolutions and pooling
operations on it. In this work, we adapt the DeepSphere model [47],
previously used in cosmology, to the JUNO experiment. The procedure
is as follows:

(1) First, we need to define the graph’s nodes which will hold the
input samples. A natural choice would be to directly use the PMTs as
vertices in 3D space. However, we need also a way to iteratively group
neighboring nodes so that their data can be aggregated by the pooling
operation. The simplest possibility is to consider a hierarchical partition
of the spherical surface, and define nodes in the graph as the regions’
centers. In this work, we use the Hierarchical Equal Area isoLatitude
Pixelisation (HEALPix) algorithm [48], which divides the surface into
N

pix
= 12N

2

side
spherical pixels, all with the same area and centered

along rings of equal latitude (see Fig. 9, top). The parameter N
side

í 2
k

controls the discretization resolution. For the input data, it is set at
N

side
= 16, dividing the detector’s surface in N

pix
= 3072 regions, each

containing on average 5.77 PMTs. Higher values of N
side

have been
tried (up to N

side
= 64, at which each pixel contains at most 1 PMT),

but they significantly increase storage and computational requirements,
while not improving the reconstruction accuracy.

A hierarchical discretization means that vertices can be labeled in
a nested scheme (see Fig. 9, bottom), which makes pooling operations
very efficient.

(2) We construct a simple, undirected graph G = (V , E ,W) encoding
the discretization structure. In this notation, V = {vi}i=1,…,Npix

is the set
of N

pix
vertices, with vi À R3 being the center in 3D space of the ith

spherical pixel. Then, E œ V ù V is the set of active links between ver-
tices, and W À RNpixùNpix is the positive symmetric weighted adjacency
matrix, such that Wij is the weight of the connection from node i to j,
representing their ‘‘closeness’’, with Wij > 0 if and only if (vi, vj) À E .

Thus, the connection weights encode all the information about the
topology of the network. The minimum number of links between two
nodes, i.e. their graph distance, determines which pixels can appear
simultaneously in a convolutional filter. So, to capture only local
features in the filters, each node should be connected only to its nearest
neighbors on the sphere.

In particular, the value a node i has after filtering will depend only
on its previous value, and that of all nodes that are less than K hops
away. However, in this procedure, further node values are propagated
towards i on the graph. Each traversed link incurs in a decay factor
inversely proportional to that link’s weight. Thus, the higherW

ij
is, the

higher will be j’s impact on the filtered value of i.
In summary, any choice of Wij must be such that Wij ë 0 only if i

and j are closer than some threshold, with Wij inversely proportional
to the distance between i and j.
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Fig. 10. Architecture for the GNN-J model. It is composed of two main blocks: a sequence of Chebyshev convolutional layers (with maxpooling used for coarsening) and a
couple of dense layers at the end. Between the two, a global average pooling layer computes averages for each filter, leading to a certain degree of rotational invariance. Graph
convolutions happen at the spectral domain, and involve filters that are localized, i.e. with a finite (graph) radius K = 5. Their topology is parametrized by the coefficients of a
K-order Chebyshev polynomial, which are part of the model’s learnable parameters.

Fig. 11. An example of Gaussian fit for a spatial variable in each direction for Evis = 4.022 MeV, used to extract the bias and the resolution. The predictions are produced with
ResNet-J.

reconstruction bias and represents the systematic shift introduced by
the reconstruction, which potentially may be compensated. The value
of the � of the Gaussian corresponds to the reconstruction resolution.
This approach is used for both the vertex and the energy reconstruction.
The uncertainties of the fit values are shown on the plots with vertex
and energy resolution by error bars.

Bias and resolution are studied as a function of two variables. The
first one is visible energy. It is a combination Evis = Ee + me = E

kin
+

1.022 MeV of the total positron energy and the electron mass, which
appears due to positron–electron annihilation. The light collection and
the number of triggered PMTs grow with the energy, which makes the
reconstruction more precise.

The detector is symmetric versus rotation; therefore, the main dif-
ference in reconstruction arises from a distance between the detector
center and the vertex — its radial position, which is used as a second
variable. Events in the center of the detector produce a more symmetric
response. The events on the edges of the detector are affected by the
light attenuation in the LS, effects of the light scattering and re-emission
and, near the edge, by the total internal reflection in the acrylic sphere.
The results are sampled versus r3, since cubic sampling produces equal
volume spherical layers and provides equal statistics samples.

The performance of the vertex reconstruction is studied as a func-
tion of both visible energy and radial position. It is reported in absolute
values in mm.

It is worth noting that while the angular resolution is high, the bias
and resolution of the radial component do not directly correspond to
the Cartesian distance between the true and reconstructed vertex.

The performance of the energy reconstruction is studied as a func-
tion of visible energy and is reported as a ratio to the visible energy in
percents. It could in principle be interesting to study energy resolution
as a function of number of photo-electrons, because to the first order
the resolution is defined as 1_

˘

n
p.e.. However, for the large JUNO

detector n
p.e. depends on the event position in the detector. By this

reason we do not present the results as function of n
p.e..

It has to be noted here that the ML models learn that the event
energy belongs to the range of the training dataset (0*10 MeV) and
never happens outside, therefore the distribution of the reconstructed
energy at the edges of the dataset becomes asymmetric, as shown in
Fig. 12. In order to simplify the following considerations, we do not
analyze the points on the edges of the dataset. Instead, we only consider
points from 0.1 MeV to 9.0 MeV, for which the prediction distributions
are well fit by Gaussian. Since the edge values are outside the region
of interest of physics, which has a range of 0.5*9.0 MeV, no important
information is lost by the truncation.

4.2. Vertex reconstruction

The current ResNet-J result shows that the absolute value of bias is
less than 15 mm in the whole detector when taking TTS and DN into
account, see Figs. 13 (left) and it is not energy-dependent, see Fig. 13
(right).

From Fig. 13 (left), it is clear that the resolution is much better
in the border region of the detector (r3 > 4000 m

3), than the inner
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Charge vs Time
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MCP vs Dynode

Number: 12612  vs 5000
Time resolution(𝜎tts): 12 ns vs 2.8 ns
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Addition of 2nd Hit
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Later hits are also useful in principle
PMT Time resolution is the key 
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reactor 𝜈 
MeV

juno nmo synergy
NMO @ 6years ∆𝜒2: Reactor(～9),  atm.(～1.96),  |∆m2ee|(4|1.5% or 9|1%) 

1.96 of atm. was estimated with assumptions
Can we do better than Yellow Book?
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Yufeng Li et al.
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atm. neutrinos: challenges

Neither track info, nor Cherenkov rings
Can we still do Direction reco and PID for JUNO?

51
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challenges and opportunities

Neither track information, nor Cherenkov rings for JUNO
Advantages of JUNO: 1. large PMT coverage(78%), large volume;  2. 
excellent neutron tagging;  3. hadronic component visible in LS; 4. can 
measure distinctive isotopes

52

LArTPC Water 
Cherenkov
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atm. neutrinos: importance

Atm. NMO sensitivity largely depends on angular resolution and flavor identification

NMO 3𝜎：reactor alone(6y) —> reactor + atm. (~4.2y)

Major background for lots of analyses
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reco/pid methodology
Step 1: feature extraction from PMT waveforms
Step 2: model building 
Step 3: optimization and validation
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inputs: pmt features

Feature variables extracted from PMT waveforms
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plane model: EfficientNetV2-S
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spherical model: Deepsphere
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3D model: pointNet++
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atm. neutrinos: directionality
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atm. neutrinos: directionality

60

Average angular resolution around 10˚ for 𝜈𝜇 

Consistent performance among three models



Wuming Luo

atm. neutrinos: directionality

61

Average angular resolution around 12˚ for 𝜈e

Consistent performance among three models
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directionality

62

Directly reconstruct the direction of 𝜈 instead of the charged lepton

mitigate the intrinsic large uncertainty between the two
hadronic component in LS also helps, advantageous w.r.t. Water Cerenkov

Energy dependent Zenith Angle resolution, less than 10˚  for E>3GeV

Zhen Liu@WIN2023

Yellow Book
𝜎𝜃𝜇 =1˚ 
𝜎𝜃𝜈 =10˚

Work In Progress

Work In Progress

J. Phys. G: 43 (2016) 030401 

https://indico.ihep.ac.cn/event/18269/contributions/135315/attachments/69817/83955/ZhenLIU_Machine%20learning%20applications%20for%20atmospheric%20neutrinos%20in%20JUNO.pdf
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particle topology
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e µ

n𝜋0

Energy deposition topology in LS for different type of particles
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pid strategy

 Both leptons&hadrons visible, different topology
 step1: CC-e/CC-mu/NC classification
 step2:  vs  ν̄ ν
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pid ml input & model

PMT features —> PointNet++  (x, y, z, feature_i…)
Neutron candidates —> DGCNN  (x, y, z)
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pid performance evaluation
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atm. neutrinos: PID(1)

3-label classification: 𝜈𝜇/𝜈𝜇 vs 𝜈e/𝜈e vs NC
same inputs and models as Directionality Reco

67
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atm. neutrinos: PID(2)

68

5-label classification: 𝜈𝜇 vs 𝜈𝜇 vs 𝜈e vs 𝜈e vs NC
PMT features + event level variables(neutron/micheal electron…)

— —
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more interesting topics

PMT de-noising, waveform reco
14C pileUp identification
Muon classification/combined reco
Seperation of Scintillation and Cherenkov photons?
Multi-target reco?
And more…
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pmt waveform reco ii
Regression: 

easy: total charge or first hit time 😀

difficult: charge and time for the first 5 or 10 pulses 😵💫

super difficult: charge and time for each pulse 😱

Method: 1D waveform + CNN

71



Wuming Luo

particle identification

Goal: Pulse Shape Discrimination (𝛾/e/e+, vs  proton/neutron)

Principle: different scintillation timing profile
Method: BDT or NN

72
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Method !(NN)

Multi-layer Perceptron Classifier
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summary

Reco@JUNO is cool
Reco@JUNO is crucial
Lots of interesting/challenging problems
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Vertex Reco. 
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Methods PMT info. pros&cons Usage

Charge Center  charge simple and fast
less accurate initial value

Peak Time Fitter time simple 
more accurate

more accurate
initial value

Time
Likelihood time complex and most 

accurate final value
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Charge Center

Charge weighted average position of fired PMTs

Large bias near the edge due to photon leakage

76

3.2 Effective light speed

According to Ref. [16], the emission spectrum of scin-
tillation photons is in the range of approximately 300–600

nm. Typically, the group velocity of the wave packet is

used to describe the photon propagation in the medium,
which is given by the equation

vgðkÞ ¼
c

nðkÞ $ k onðkÞ
ok

; ð2Þ

where vg is the group velocity, c is the speed of light in
vacuum, n is the refractive index, and k is the wavelength.

By fitting the Sellmeier equation [19], which describes

the dispersion of the measurement in Refs. [20] and [21],
the refractive index of the LS and water at different

wavelengths is shown in the upper panel of Fig. 4. The

group velocity of the LS and water can be calculated using
Eq. 2 at different wavelengths, as shown in the lower panel

of Fig. 4.

The propagation speed of photons in water (vwater) was
determined as the average speed weighted by the proba-

bility density function of the photon wavelength, which

was obtained from a Monte Carlo (MC) simulation. As the
absorption and re-emission change the initial wavelength,

determining the propagation speed of photons in the LS

(vLS) is more complicated. To consider all wavelength-

dependent effects that affect the propagation speed of
photons, the effective light speed veff is introduced. In

addition, veff also mitigates the effects by the simplified

optical model, which, for example, ignores the refraction at
the interface between the LS and water, as well as the

change in the optical path length due to Rayleigh scatter-

ing. The exact value for veff can be determined using a

data-driven method based on the calibration data as fol-
lows: place c sources along the Z-axis, use vLS at 420 nm

as the initial value of veff in the reconstruction algorithm

and then, calibrate veff such that the source positions can

be appropriately reconstructed. As no calibration data was

available for JUNO, in this study, simulated calibration
data were used, and the optimized values for the effective

refractive index (c=veff ) were 1.546 in the LS and 1.373 in

water. In the future, the same method can be applied to the

experimental calibration data.

4 Initial value for vertex and time

The TMinuit package [22] was used for the minimiza-

tion procedure in the time likelihood and in the charge
likelihood algorithm introduced in Sects. 5 and 6. When

there are multiple local minima in the parameter space, an

inaccurate initial value results in local instead of global
minima, resulting in a lower reconstruction efficiency. For

detectors such as JUNO, the initial value needs to be

treated carefully because of the total reflection, as dis-
cussed in the following subsections.

4.1 Charge-based algorithm

The charge-based algorithm is essentially based on the

charge-weighted average of the positions of the PMTs in an
event, and the event vertex can be determined using the

equation

r~0 ¼ a %
P

i qi % r~iP
i qi

; ð3Þ

where qi is the charge of the pulses detected by the ith PMT
and r~0 and r~i are defined in Fig. 3. A scale factor a is

introduced because the charge-based algorithm is inher-

ently biased and an ideal point-like event in a spherical
detector is covered by a uniform photocathode. Even if all

propagation-related effects, such as absorption and scat-

tering are ignored, the result of a simple integral of the
intersections of all photons with the sphere surface shows

that the reconstructed position of the event is 2/3 of the true

position. The value of a can be tuned based on the cali-
bration data along the Z-axis. In this study, a ¼ 1:3 was

used, which was sufficient to provide an initial estimate for

the event vertex.
As can be seen in Fig. 5, even with the scale factor,

owing to total reflection, the reconstructed vertex deviates

up to 3 m near the detector boundary. According to Ref.
[19], total reflection occurs only when the event vertex is

located at an R larger than RLS % nwater=nLS & 15:9 m,

where RLS is the radius of the acrylic sphere, nLS and

nwater are the refractive indices in the LS and water,

respectively. The total reflection region is defined as
R[ 15:9 m while R\15:9 m is the central region. If the

Fig. 4 (Color online) Dependence of the refractive index (upper
panel) and group velocity (lower panel) on the wavelength in the LS
and water
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3 Optical processes

When a charged particle deposits energy in the scintil-
lator, the solvent enters an excited state and transfers

energy to the fluor in a non-radiative manner. Scintillation

photons are then emitted along the particle track through
the radiative de-excitation of the excited fluor within a

limited time. The emitted scintillation photons can undergo

several different processes while propagating through a
large LS detector. At short wavelengths (\ 410 nm),

photons are mostly absorbed and then re-emitted at longer

wavelengths, which maximizes the detection efficiency of
the PMTs. At long wavelengths ([ 410 nm), photons

mainly undergo Rayleigh scattering. A more detailed study

of the wavelength-dependent absorption and re-emission
can be found in Ref. [16]. Additionally, the refractive

indices at 420 nm are 1.50 and 1.34 for the LS and water,

respectively. The difference in the refractive indices results
in refraction and total reflection at the boundary of the two

media, which affects the time-of-flight of the photons.

When using the time information in the reconstruction, the
time-of-flight is crucial, and it is calculated using the

equation

tof ¼
X

m

dm
vm

; ð1Þ

where tof, dm, and vm are the time-of-flight, optical path
length, and effective light speed, respectively, and m rep-

resents different media, in this case the LS and water, in the

JUNO experiment. The acrylic sphere (thickness of 12 cm)
and acrylic cover (thickness of 1 cm) in front of each PMT

were ignored in this study because their refractive indices

were similar to that of the LS and their thickness was small
compared to that of the LS and water.

3.1 Optical path length

The optical path length can be characterized by the start
and end positions in the detector, which are the vertex of

the event and the position of the PMTs, respectively. The

bold cyan curve in Fig. 2 shows a typical example of the
optical path of photons detected by the PMT in the JUNO

simulation using the event display [17, 18], and further

examples are shown by the thin green curves. There are
multiple physically possible paths between these two

positions, each of which has a different optical path length,

as follows:

$ owing to absorption and re-emission, the re-emitted

photon is not in the same absorption position and the

propagation direction also changes;

$ owing to scattering, the photon changes the original

direction of the propagation; and
$ owing to refraction and total reflection, the photon does

not travel in a straight line.

As shown in Fig. 2, owing to the various aforemen-
tioned optical processes, it is difficult to predict the actual

optical path length for each photon. In this paper, a simple

optical model is proposed, which uses a straight line con-
necting the vertex and the PMTs to calculate the optical

path length (Fig. 3), and combines with the effective light

speed to correct for the time-of-flight. Using this simple
optical model reasonable results can be obtained, as dis-

cussed in Sect. 5.

In Fig. 3, {r~0; t0} represents the event vertex and start
time, {r~i; ti} is the position of the ith PMT and the time of

the earliest arriving photon detected by it. The angle

between the normal direction of the ith PMT and the vector
of the position of the ith PMT pointing to the event vertex

is hi and ai ¼ arccosðr̂~0 % r̂~iÞ. The optical path length of the
photon arriving at the ith PMT is dpathlength;i ¼ jr~i & r~0j ¼
dLS;i þ dwater;i and the corresponding time-of-flight is tofi.

The optical path length in the LS and water can be cal-

culated by simply solving the trigonometric equation.

Fig. 2 (Color online) Event display of the optical path from the event
vertex to the PMT in the JUNO simulation. The red circle ring is the
event vertex and the gray bulbs with blue caps represent the PMTs

Fig. 3 (Color online) Optical path length from the event vertex to the
ith PMT. O denotes the center of the detector

123

Event vertex and time reconstruction in large-volume liquid scintillator detectors Page 3 of 12 49

result from the charge-based algorithm is used as the initial
value for the time likelihood algorithm, approximately

18% of events is reconstructed at a local minimum posi-

tion. In addition, it should be noted that the charge-based
algorithm is not able to provide an initial value for the

event generation time t0. Therefore, a fast time-based

algorithm needs to be introduced, which can provide more
accurate initial values.

4.2 Time-based algorithm

The time-based algorithm uses the distribution of the
time-of-flight correction time Dt (defined in Eq. 4) of an

event to reconstruct its vertex and t0. In practice, the

algorithm finds the reconstructed vertex and t0 using the
following iterations:

1. Apply the charge-based algorithm to obtain the initial
vertex.

2. Calculate time-of-flight correction time Dt for the ith
PMT as

DtiðjÞ ¼ ti $ tofiðjÞ; ð4Þ

where j is the iteration step and ti, tofi are defined in
Fig. 3. Plot the Dt distribution for all triggered PMTs,

and label the peak position as Dtpeak.

3. Calculate the correction vector d~½r~ðjÞ& as

d~½r~ðjÞ& ¼

P
i

DtiðjÞ$DtpeakðjÞ
tofiðjÞ

! "
' ðr~0ðjÞ $ r~iÞ

NpeakðjÞ
; ð5Þ

where r~0, and r~i are defined in Fig. 3. To minimize the

effect of scattering, reflection, and dark noise on the
bias of the reconstructed vertex, only the pulses

appearing in the ð$10ns;þ5nsÞ window around

Dtpeak are included. The time cut also suppresses the
effect of the late scintillation photons. The number of

triggered PMTs in the window is Npeak.

4. If d~½r~ðjÞ&\1mm or j ¼ 100, stop the iteration; other-

wise, update the vertex with r~0ðjþ 1Þ ¼ r~0ðjÞ þ d~½r~ðjÞ&
and go to step 2 to start a new round of iteration.

The distribution of Dt at different iteration steps is shown

in Fig. 6. At the beginning of the iteration, the Dt distri-
bution is wide because the initial vertex is far from the true
vertex. As the number of iterations increases, the Dt dis-
tribution becomes more concentrated. Finally, when the

requirement in step 4 is satisfied, the iteration stops. In the

final step, r~0 is the reconstructed vertex and Dtpeak is the

reconstructed time t0.
After the time-of-flight correction, the Dt distribution is

independent of the event vertex. However, because the

earliest arrival time is used, according to the first-order

statistic, as discussed in Refs. [23–25], ti is related to the

number of photoelectrons Ni
pe detected by ith PMT. To

reduce the bias of the vertex reconstruction, the following

form of the time–Npe correction is applied, and in Eq. 4 ti
is replaced by t0i:

t0i ¼ ti $ p0
. ffiffiffiffiffiffiffiffi

Ni
pe

q
$ p1$ p2=Ni

pe: ð6Þ

The parameters (p0, p1, p2) with the corresponding values

of (9.42, 0.74, -4.60) for Hamamatsu PMTs and (41.31,
-12.04, -20.02) for NNVT PMTs were found to minimize

the bias and energy dependence of the reconstruction in

this study. The difference in the parameters is mainly due

Fig. 5 (Color online) Heatmap of Rrec (upper panel) and Rrec $
Rtrue (lower panel) as a function of Rtrue for 4-MeV eþ uniformly
distributed in space reconstructed by the charge-based algorithm

Fig. 6 (Color online) Dt distribution at different iteration steps j
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to the difference in the TTSs of the PMTs. Following the

correction, the times of different PMTs with different

values of Npe are aligned.

As shown in Fig. 7, the time-based algorithm provided a

more accurate reconstructed vertex than the charge-based

algorithm (Fig. 5). In addition, after the time–Npe correc-

tion, the reconstruction shows no obvious bias within the

entire detector, even in the total reflection region. The

reconstructed result was used as the initial value for the
time likelihood algorithm.

5 Time likelihood algorithm

5.1 Principle of the algorithm

The time likelihood algorithm uses the scintillator

response function to reconstruct the event vertex. The
variable residual time tresðr~0; t0Þ for the ith PMT can be

described as

tiresðr~0; t0Þ ¼ ti $ tofi $ t0; ð7Þ

where tires is the residual time of the ith PMT and r~0, t0, ti,
and tofi are defined in Fig. 3.

The scintillator response function mainly consists of the
emission time profile of the scintillation photons and the

TTS and the dark noise of PMTs. In principle, the addi-

tional delays introduced by the absorption, re-emission,
scattering, and total reflection of the photon arriving to the

PMT depend on the distance between the emission position
and the individual PMTs. However, the differences are

only noticeable for the late arrival hits, which are largely

suppressed by the requirement for the earliest arriving
photons in the time likelihood algorithm. Therefore, in the

first-order approximation, the scintillator response function

can be considered to be the same for all positions inside the
scintillator. The scintillator response function can be

described as follows.

As described in Sect. 3, when a charged particle inter-
acts with a scintillator molecule, the molecule is excited,

then de-excites, and emits photons. Typically, the scintil-
lator has more than one component; thus, the emission time

profile of the scintillation photons, f ðtresÞ, can be described
as

f ðtresÞ ¼
X

k

qk
sk

e
$t res
sk ;
X

k

qk ¼ 1; ð8Þ

where each k component is characterized by its decay time
sk and intensity qk. The different components result from

the different excited states of the scintillator molecules.

To consider the spread in the arrival time of photons at
the PMTs, a convolution with a Gaussian function is

applied, given by

gðtresÞ ¼
1ffiffiffiffiffiffi
2p

p
r
e$

ðt res$mÞ2

2r2 % f ðtresÞ: ð9Þ

where r is the TTS of PMTs and m is the average transit

time.
The dark noise, which occurs without incident photons

in the PMTs, is not correlated with any physical event. The

fraction of the dark noise in the total number of photo-
electrons edn can be calculated based on the data acquisi-

tion (DAQ) windows, dark noise rate, and light yield of the
LS. The probability of dark noise eðtresÞ is constant over

time, where
R
DAQ eðtresÞdtres ¼ edn. By adding eðtresÞ to

gðtresÞ and renormalizing its integral to 1, the probability

density function (PDF) of the scintillator response function

can be written as

pðtresÞ ¼ ð1$ ednÞ % gðtresÞ þ eðtresÞ: ð10Þ

The distribution of the residual time tres of an event for a

hypothetical vertex can be compared with pðtresÞ. The
best-fitting vertex and t0 are chosen by minimizing the

negative log-likelihood function

Lðr~0; t0Þ ¼ $ ln
Y

i

pðtiresÞ

 !

: ð11Þ

The parameters in Eq. 10 can be measured experimentally

[26–29]. In this work, the PDF from the MC simulation for
the methodology study was employed.

Fig. 7 (Color online) Heatmap of Rrec (upper panel) and Rrec $
Rtrue (lower panel) as a function of Rtrue for 4-MeV eþ uniformly
distributed in space reconstructed by the time-based algorithm
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result from the charge-based algorithm is used as the initial
value for the time likelihood algorithm, approximately

18% of events is reconstructed at a local minimum posi-

tion. In addition, it should be noted that the charge-based
algorithm is not able to provide an initial value for the

event generation time t0. Therefore, a fast time-based

algorithm needs to be introduced, which can provide more
accurate initial values.

4.2 Time-based algorithm

The time-based algorithm uses the distribution of the
time-of-flight correction time Dt (defined in Eq. 4) of an

event to reconstruct its vertex and t0. In practice, the

algorithm finds the reconstructed vertex and t0 using the
following iterations:

1. Apply the charge-based algorithm to obtain the initial
vertex.

2. Calculate time-of-flight correction time Dt for the ith
PMT as

DtiðjÞ ¼ ti $ tofiðjÞ; ð4Þ

where j is the iteration step and ti, tofi are defined in
Fig. 3. Plot the Dt distribution for all triggered PMTs,

and label the peak position as Dtpeak.

3. Calculate the correction vector d~½r~ðjÞ& as

d~½r~ðjÞ& ¼

P
i

DtiðjÞ$DtpeakðjÞ
tofiðjÞ

! "
' ðr~0ðjÞ $ r~iÞ

NpeakðjÞ
; ð5Þ

where r~0, and r~i are defined in Fig. 3. To minimize the

effect of scattering, reflection, and dark noise on the
bias of the reconstructed vertex, only the pulses

appearing in the ð$10ns;þ5nsÞ window around

Dtpeak are included. The time cut also suppresses the
effect of the late scintillation photons. The number of

triggered PMTs in the window is Npeak.

4. If d~½r~ðjÞ&\1mm or j ¼ 100, stop the iteration; other-

wise, update the vertex with r~0ðjþ 1Þ ¼ r~0ðjÞ þ d~½r~ðjÞ&
and go to step 2 to start a new round of iteration.

The distribution of Dt at different iteration steps is shown

in Fig. 6. At the beginning of the iteration, the Dt distri-
bution is wide because the initial vertex is far from the true
vertex. As the number of iterations increases, the Dt dis-
tribution becomes more concentrated. Finally, when the

requirement in step 4 is satisfied, the iteration stops. In the

final step, r~0 is the reconstructed vertex and Dtpeak is the

reconstructed time t0.
After the time-of-flight correction, the Dt distribution is

independent of the event vertex. However, because the

earliest arrival time is used, according to the first-order

statistic, as discussed in Refs. [23–25], ti is related to the

number of photoelectrons Ni
pe detected by ith PMT. To

reduce the bias of the vertex reconstruction, the following

form of the time–Npe correction is applied, and in Eq. 4 ti
is replaced by t0i:

t0i ¼ ti $ p0
. ffiffiffiffiffiffiffiffi

Ni
pe

q
$ p1$ p2=Ni

pe: ð6Þ

The parameters (p0, p1, p2) with the corresponding values

of (9.42, 0.74, -4.60) for Hamamatsu PMTs and (41.31,
-12.04, -20.02) for NNVT PMTs were found to minimize

the bias and energy dependence of the reconstruction in

this study. The difference in the parameters is mainly due

Fig. 5 (Color online) Heatmap of Rrec (upper panel) and Rrec $
Rtrue (lower panel) as a function of Rtrue for 4-MeV eþ uniformly
distributed in space reconstructed by the charge-based algorithm

Fig. 6 (Color online) Dt distribution at different iteration steps j
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result from the charge-based algorithm is used as the initial
value for the time likelihood algorithm, approximately

18% of events is reconstructed at a local minimum posi-

tion. In addition, it should be noted that the charge-based
algorithm is not able to provide an initial value for the

event generation time t0. Therefore, a fast time-based

algorithm needs to be introduced, which can provide more
accurate initial values.

4.2 Time-based algorithm

The time-based algorithm uses the distribution of the
time-of-flight correction time Dt (defined in Eq. 4) of an

event to reconstruct its vertex and t0. In practice, the

algorithm finds the reconstructed vertex and t0 using the
following iterations:

1. Apply the charge-based algorithm to obtain the initial
vertex.

2. Calculate time-of-flight correction time Dt for the ith
PMT as

DtiðjÞ ¼ ti $ tofiðjÞ; ð4Þ

where j is the iteration step and ti, tofi are defined in
Fig. 3. Plot the Dt distribution for all triggered PMTs,

and label the peak position as Dtpeak.

3. Calculate the correction vector d~½r~ðjÞ& as

d~½r~ðjÞ& ¼

P
i

DtiðjÞ$DtpeakðjÞ
tofiðjÞ

! "
' ðr~0ðjÞ $ r~iÞ

NpeakðjÞ
; ð5Þ

where r~0, and r~i are defined in Fig. 3. To minimize the

effect of scattering, reflection, and dark noise on the
bias of the reconstructed vertex, only the pulses

appearing in the ð$10ns;þ5nsÞ window around

Dtpeak are included. The time cut also suppresses the
effect of the late scintillation photons. The number of

triggered PMTs in the window is Npeak.

4. If d~½r~ðjÞ&\1mm or j ¼ 100, stop the iteration; other-

wise, update the vertex with r~0ðjþ 1Þ ¼ r~0ðjÞ þ d~½r~ðjÞ&
and go to step 2 to start a new round of iteration.

The distribution of Dt at different iteration steps is shown

in Fig. 6. At the beginning of the iteration, the Dt distri-
bution is wide because the initial vertex is far from the true
vertex. As the number of iterations increases, the Dt dis-
tribution becomes more concentrated. Finally, when the

requirement in step 4 is satisfied, the iteration stops. In the

final step, r~0 is the reconstructed vertex and Dtpeak is the

reconstructed time t0.
After the time-of-flight correction, the Dt distribution is

independent of the event vertex. However, because the

earliest arrival time is used, according to the first-order

statistic, as discussed in Refs. [23–25], ti is related to the

number of photoelectrons Ni
pe detected by ith PMT. To

reduce the bias of the vertex reconstruction, the following

form of the time–Npe correction is applied, and in Eq. 4 ti
is replaced by t0i:

t0i ¼ ti $ p0
. ffiffiffiffiffiffiffiffi

Ni
pe

q
$ p1$ p2=Ni

pe: ð6Þ

The parameters (p0, p1, p2) with the corresponding values

of (9.42, 0.74, -4.60) for Hamamatsu PMTs and (41.31,
-12.04, -20.02) for NNVT PMTs were found to minimize

the bias and energy dependence of the reconstruction in

this study. The difference in the parameters is mainly due

Fig. 5 (Color online) Heatmap of Rrec (upper panel) and Rrec $
Rtrue (lower panel) as a function of Rtrue for 4-MeV eþ uniformly
distributed in space reconstructed by the charge-based algorithm

Fig. 6 (Color online) Dt distribution at different iteration steps j
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result from the charge-based algorithm is used as the initial
value for the time likelihood algorithm, approximately

18% of events is reconstructed at a local minimum posi-

tion. In addition, it should be noted that the charge-based
algorithm is not able to provide an initial value for the

event generation time t0. Therefore, a fast time-based

algorithm needs to be introduced, which can provide more
accurate initial values.

4.2 Time-based algorithm

The time-based algorithm uses the distribution of the
time-of-flight correction time Dt (defined in Eq. 4) of an

event to reconstruct its vertex and t0. In practice, the

algorithm finds the reconstructed vertex and t0 using the
following iterations:

1. Apply the charge-based algorithm to obtain the initial
vertex.

2. Calculate time-of-flight correction time Dt for the ith
PMT as

DtiðjÞ ¼ ti $ tofiðjÞ; ð4Þ

where j is the iteration step and ti, tofi are defined in
Fig. 3. Plot the Dt distribution for all triggered PMTs,

and label the peak position as Dtpeak.

3. Calculate the correction vector d~½r~ðjÞ& as

d~½r~ðjÞ& ¼

P
i

DtiðjÞ$DtpeakðjÞ
tofiðjÞ

! "
' ðr~0ðjÞ $ r~iÞ

NpeakðjÞ
; ð5Þ

where r~0, and r~i are defined in Fig. 3. To minimize the

effect of scattering, reflection, and dark noise on the
bias of the reconstructed vertex, only the pulses

appearing in the ð$10ns;þ5nsÞ window around

Dtpeak are included. The time cut also suppresses the
effect of the late scintillation photons. The number of

triggered PMTs in the window is Npeak.

4. If d~½r~ðjÞ&\1mm or j ¼ 100, stop the iteration; other-

wise, update the vertex with r~0ðjþ 1Þ ¼ r~0ðjÞ þ d~½r~ðjÞ&
and go to step 2 to start a new round of iteration.

The distribution of Dt at different iteration steps is shown

in Fig. 6. At the beginning of the iteration, the Dt distri-
bution is wide because the initial vertex is far from the true
vertex. As the number of iterations increases, the Dt dis-
tribution becomes more concentrated. Finally, when the

requirement in step 4 is satisfied, the iteration stops. In the

final step, r~0 is the reconstructed vertex and Dtpeak is the

reconstructed time t0.
After the time-of-flight correction, the Dt distribution is

independent of the event vertex. However, because the

earliest arrival time is used, according to the first-order

statistic, as discussed in Refs. [23–25], ti is related to the

number of photoelectrons Ni
pe detected by ith PMT. To

reduce the bias of the vertex reconstruction, the following

form of the time–Npe correction is applied, and in Eq. 4 ti
is replaced by t0i:

t0i ¼ ti $ p0
. ffiffiffiffiffiffiffiffi

Ni
pe

q
$ p1$ p2=Ni

pe: ð6Þ

The parameters (p0, p1, p2) with the corresponding values

of (9.42, 0.74, -4.60) for Hamamatsu PMTs and (41.31,
-12.04, -20.02) for NNVT PMTs were found to minimize

the bias and energy dependence of the reconstruction in

this study. The difference in the parameters is mainly due

Fig. 5 (Color online) Heatmap of Rrec (upper panel) and Rrec $
Rtrue (lower panel) as a function of Rtrue for 4-MeV eþ uniformly
distributed in space reconstructed by the charge-based algorithm

Fig. 6 (Color online) Dt distribution at different iteration steps j
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j-th iteration


