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Physics in Rare Event Search
Neutrinoless Double-Beta Decay (NLDBD)
ΔL = 2 lepton number violation process

Explain the matter-antimatter asymmetry in our universe

Prove that neutrinos are Majorana particle

Has not been observed at T1
2

> 1026yrs

Dark Matter (DM)
Strong astrophysical evidence, no observation on earth

We don’t know which particle makes up dark matter:

•Heavy, particle-like DM candidate: WIMP

•Light, wave-like DM candidate: Axion

WIMP has not been observed at σ < 10−47cm2



Rare Event Search in 2024

Double Beta Decay (2𝑣ββ)
First proposed by Maria Goeppert Mayer in 1935

First detection by Elliott, Hahn, Moe, in 1987

Decay half-life T1
2

∼ 1014 − 1024yrs

Much longer than the age of universe!

Neutrinoless Double-Beta Decay (0𝑣ββ)

Signal

ΔL = 2 lepton number violation process

Explain the matter-antimatter asymmetry in our universe

Changes our fundamental understanding of particle physics

Has not been observed at T1
2

> 1026yrs



Rare Event Search in 2024
Dark Matter

Galaxy Rotation Curve

Gravitational Lens Cosmic Microwave Background

Large Scale Structure Formation

The evidence for the existence of dark matter has been plenty



Rare Event Search in 2024
Dark Matter

Many DM candidates have been proposed (WIMP, Axion, etc.)

None has been observed.

The evidence for the existence of dark matter has been plenty

CF2: Wave-like Dark Matter 9

10-610-12 106 1012

Axion Dark Matter WIMP Dark Matter

mass [eV]

de Broglie Wavelength - λdB ≈ 2π
mv

Occupancy Number - N ≈ ρDM

m
λ3

dB

•Axion (  eV):   km with   
•WIMP (  GeV):  km with 

m ∼ 10−9 λdB ∼ 104 N ∼ 1044

m ∼ 100 λdB ∼ 10−16 N ∼ 10−36

where   GeV/cm3ρDM = 0.4
Adapted from B. Safdi

Dark Matter can feel like a zoo. 


—Prof. Lindley Winslow



What Makes Rare Event Search Hard?
It is extremely rare! Using 0𝑣ββ as an example …

•We have not seen 0𝑣ββ at half life of  


•Next-generation experiments typically aims at  (⨉100 improvement)


•Correspond to 3-4 event after 10 years of data taking

T1
2

> 1026yrs

T1
2

> 1028yrs

0νββ

T1/2 = 1028 yr

3-4 events

LEGEND-1000 Simulated example spectrum

after cuts, from 10 years of data



What Makes Rare Event Search Hard?

Search for needle in a haystack

•1 event every 2.5-3.3 year, we need ultra-sensitive detector to capture every event

•As our detector gets more sensitive, we also collect lots of events that are not 0νββ/WIMP DM



The Rare Event Search Pipeline

AI/ML
The “forklift” that help 

removing the haystack

Radiation Detector
The “magnifying glass” that 

help finding the needle



Model-Centric AI vs. Data-Centric AI
NeurIPS 2023 Word Cloud

Algorithm Track Dataset & Benchmarking Track



The MIT-BU Analysis Group

From Left to Right:

• Dr. Christopher Grant (BU Co-PI)

• Hasung Song (BU)

• Dr. Lindley Winslow (MIT, Co-PI)

• Dr. Spencer Axani (MIT/UDelaware)

• Dr. Zhenghao Fu (MIT/Jump Trading)

• Dr. Joseph Smolsky (MIT/CSU)

• Dr. Aobo Li (BU/UCSD)

Not on this photo:

• Dr. Sumita Ghosh (MIT)

• Dr. Omer Penek (MIT)

• So Young Jeon (BU)

Model-Centric AI for KamLAND-Zen
Monolithic Liquid Scintillator Detector for 0𝑣ββ Search



KamLAND-Zen

Inner Detector PMTs

1325 17inch + 554 20inch

Liquid Scintillator

Inner Balloon

25-μm-thick transparent nylon film

Xenon Loading

Load 745 kg of double beta decay 
isotope 136Xe (90% enriched) in LS 

inside inner balloon (XeLS)

Background Source

• XeLS Background

• Film Background

Monolithic Liquid Scintillator Detector for 0𝑣ββ Search



KamLAND-Zen Data

10,000 photons 

produced …

Triggered PMT

… 2,200 photons will 
reach PMT …

22% Photocoverage

… 500 photons will produce a signal 
(photoelectron).

23% Quantum Efficiency



KamLAND-Zen Data
Triggered PMT


(R, θ, ϕ, t, q)

18m

Temporal and Spatial InformationDecay Schemes Schematic Diagram of Detector

136Xe Excited-State Decay (Signal)

214Bi Decay (Background)

Xenon LS

Mini-balloon

Scintillation Time Profile

Spatiotemporal Data

A time series of 2D images, projected onto 

sphere (A spherical video)

ϕ

θ

18m

Temporal and Spatial InformationDecay Schemes Schematic Diagram of Detector

136Xe Excited-State Decay (Signal)

214Bi Decay (Background)

Xenon LS

Mini-balloon

θ-ɸ Sphere Map

E = Σq



Simulating Spatiotemporal Data

Computer simulation for neutrinoless double beta decay 

signal and 10C background events


Wrote PMT model that allows us to vary two Information 
Parameters:


23% 23%100% PC, 100% QE 20% PC, 100% QE 100% PC, 23% QE 20% PC, 23% QE

Perfect Detector

better detector, more information in data

Realistic KamLAND-Zen Hardware

• Photocoverage (PC)


• Quantum Efficiency (QE)

Benchmark model performance 
under different input conditions

Project network performance onto future experiments with better PC and QE



Convolutional Neural Network

At KamLAND-Zen hardware status, CNN rejects 61% 
of background while retaining 90% of the signal

A. Li et al., 

DOI: 10.1016/j.nima.2019.162604

Alarm 1:  Background rejection performance 
decrease as we increase information parameter!

Conventional CNN Information Parameter Map

ϕ

θ

61% Rejection 55% Rejection

Alarm 2:  Conventional CNN is not powerful 

enough to harness all symmetries in 
spatiotemporal data! 



A Time Series of 2D Images …
ConvLSTM


Convolutional Long-Short Term Memory (LSTM) Network

Attention Mechanism

Produce context images & provide interpretability

X. Shi et al., 

NeurIPS 28 (2015)

1st Frame 2nd Frame 3rd Frame

:

1st Frame

⃗h1 :

1st + 2nd Frame

⃗h2

⃗h1
⃗h2

⃗h3
⃗h4

⃗h5
⃗h22

⃗h23
⃗h24

⃗h25
⃗hlast

Context Image 

(c,θ,ɸ)

a1 ⋅ ⃗h1 a25 ⋅ ⃗h25+ +…+ + =a1 ⋅ ⃗h2 a26 ⋅ ⃗h26

:

All Frames

⃗hlast

……

Score Function s( ⃗hi , ⃗hlast )

Softmax Function

s1 s2 s3 s4 s5 s22 s23 s24 s25

a1 a2 a3 a4 a5 a22 a23 a24 a25

Hidden State

D Bahdanau et al., 

ICLR 2015



… Project onto A Sphere

θ

φ φ

θθ

φ φ

θ

θ

φ φ

θ

Spherical CNN

SO(3) symmetry & rotational invariance

Cohen, Taco et al. “Spherical 
CNNs.” ICLR 2018



KamNet: An Integrated Spatiotemporal Neural Network

18

Spherical CNN

SO(3) symmetry & rotational equivariance

KamNet

Maximal Information Extraction in 

KamLAND-Zen

A. Li et al,

Phys. Rev. C 107, 014323 (2023)

Editor’s Suggestion

AttentionConvLSTM

for Spatiotemporal symmetry

Spatiotemporal Data

A time series of images projected onto Sphere



KamNet vs. CNN

Better Performance

Across entire map, 61% → 74% 10C rejection at 

KamLAND-Zen hardware configuration

More Robust

Smoother transition from low to high information parameters

Every bit of additional information is absorbed by KamNet

Conventional CNN Information Parameter Map KamNet Information Parameter Map



KamNet-enabled Background Rejection
Time Projection Chamber

Water Cherenkov Detector

Monolithic LS detector has been at the heart of 
many great discoveries in neutrino physics …

“ Enhancing monolithic LS 
detectors with the capability to 
discriminate between different 
event types based on tracking 
and/or event topology would 
be a revolutionary                                      
advancement “



High Attention: Important

Low Attention: Unimportant

214Bi Attention Score

𝑒−

𝛾

𝛾 𝛾

𝛾

• Signal are strictly single-vertex events

• All energy deposited almost immediately

• Most backgrounds are closely-spaced multi-vertex events

• part of event energy is deposited by cascading γs that slightly alter 

event topology

𝑒−

𝑒−
𝛾

𝛾 𝛾

𝛾
Less than a few 

ns later …

KamNet captures this tiny alteration in event topology to 
efficiently reject most backgrounds in KamLAND-Zen!

KamNet-enabled Background Rejection



KamNet-enabled Background Rejection
While accepting 90% of 0𝑣ββ events, KamNet rejects ~27% of 

XeLS backgrounds and ~59% of film backgrounds

The increased rejection of film 
backgrounds allows for the 

expansion of the fiducial volume 
from 157cm to 165.8cm, resulting 

in 17.7% gain on exposure
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KamNet is independent and multiplicative to all existing 
background rejection methods in KamLAND-Zen



Apply KamNet to High-Background 
Period Only:

• Conservative use of KamNet

• Veto critical backgrounds that passes 

all traditional methods

0νββ Half-life Lower Limit with

Complete KamLAND-Zen Dataset: 


T0νββ
1/2 > 3.8 × 1026yr (90 % C . L.)

KamNet-enabled New Search
Exposure Before KamNet: 


2.097 ton·yr
Exposure After KamNet: 


2.453 ton·yr +17.7%

Previous KamLAND-Zen 800 Limit:


T0νββ
1/2 > 2.7 × 1026yr (90 % C . L.) +35%

Apply KamNet to All Data: 


T0νββ
1/2 > 2.0 × 1026yr (90 % C . L.)

American Physical Society

2023 Dissertation Awards


In Nuclear Physics



World-leading 0𝑣ββ Results

Result dependent on 
individual NMEs 

This Xe 0νββ search represents 
the worlds most stringent limit 
on the effective Majorana mass

(T0ν
1/2)

−1 = G0ν |M0ν |2 m2
ββ

 < 23–122 meV 
<latexit sha1_base64="IhkzMJP/akMWIGNg4la4qKbHTg4="></latexit>

hm��i
T0νββ

1/2 > 3.8 × 1026yr

KamLAND-Zen Collaboration

Phys. Rev. Lett. 130, 051801 

A. Li et al,

Phys. Rev. C 107, 014323 (2023)
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KamLAND-Zen Collaboration

ArXiv: 2406.11438

First tests of theoretical 
predictions.
(a) K Harigaya, Phys. Rev. D 86, 013002

(b) T Asaka, Phys. Lett.B 811 , 135956

(c) K. Asai, Euro.Phys.J.C 80, 76

This search reaches the inverted 
mass ordering region below 50 meV 
with half of the phenomenological 
NME calculations!



KamLAND-Zen Data as Point Cloud

Triggered PMT


(x, y, z, t, q)

Z. Fu et al., 

Eur. Phys. J. C 84, 651 (2024)


 https://doi.org/10.1140/epjc/s10052-024-12980-7

https://doi.org/10.1140/epjc/s10052-024-12980-7


PointNet-VAE Model for Event Generation
Z. Fu et al., 


Eur. Phys. J. C 84, 651 (2024)

 https://doi.org/10.1140/epjc/s10052-024-12980-7

https://doi.org/10.1140/epjc/s10052-024-12980-7


Event Generation Result Z. Fu et al., 

Eur. Phys. J. C 84, 651 (2024)


 https://doi.org/10.1140/epjc/s10052-024-12980-7

Basic Parameters Reconstruction Parameters

https://doi.org/10.1140/epjc/s10052-024-12980-7


Model-Centric AI vs. Data-Centric AI
NeurIPS 2023 Word Cloud

Algorithm Track Dataset & Benchmarking Track



Broadband Axion Dark Matter Search with Toroidal Magnet
Axion-Modified Maxwell’s Equation:

∇ × B =
∂E
∂t

− gaγγ(E × ∇a −
∂a
∂t

B)

Jeff = gaγγ 2ρDMcos(mat)B

Y. Kahn, B. R. Safdi, and J. Thaler,

Phys. Rev. Lett. 117, 141801

J. L. Ouellet et al.

Phys. Rev. Lett. 122, 121802 (2019)

C. P. Salemi et al.

Phys. Rev. Lett. 127, 081801 (2021) 

Experimental Apparatus Constructed by Winslow Lab at MIT

Ultra-long Time Series

10 million samples/second

1 millisecond

Frequency Spectrum

Broadband search for axion DM



J. T. Fry et al, arXiv:2406.04378 

Submitted to NeurIPS Dataset & Benchmarking Track

TIDMAD: Time Series Dataset for Discovering Dark Matter with AI Denoising


        Open Data

Release dark matter detector data for AI/ML 
algorithms

        Easy Benchmarking

Design a quantitative benchmarking score to 
quantify the performance of different algorithms

        AI for Science

Enables core AI algorithms to extract the signal 
and produce real physics results thereby 
advancing fundamental science



J. T. Fry et al, arXiv:2406.04378 

Submitted to NeurIPS Dataset & Benchmarking Track

TIDMAD: Time Series Dataset for Discovering Dark Matter with AI Denoising


CH2: Injected Time Series [Ground Truth] CH1: SQUID Time Series [Noisy]

Train AI denoising model to recover…

No Signal Injected

CH1: SQUID Time Series [Noisy]

Use trained AI model to denoise…



J. T. Fry et al, arXiv:2406.04378 

Submitted to NeurIPS Dataset & Benchmarking Track

TIDMAD: Time Series Dataset for Discovering Dark Matter with AI Denoising




J. T. Fry et al, arXiv:2406.04378 

Submitted to NeurIPS Dataset & Benchmarking Track

TIDMAD: Time Series Dataset for Discovering Dark Matter with AI Denoising


Fully Connected NN Positional U-Net Transformer
Frequency Frequency

Preliminary Preliminary Preliminary



J. T. Fry et al, arXiv:2406.04378 

Submitted to NeurIPS Dataset & Benchmarking Track

TIDMAD: Time Series Dataset for Discovering Dark Matter with AI Denoising


Λ = ( 1
n

n

∑
i=0

(SNRSQUID)i × (SNR′￼Injected)i)
Denoising Score = log5.27Λ

Test the denoising score by doping 
gaussian noise into Time Series



J. T. Fry et al, arXiv:2406.04378 

Submitted to NeurIPS Dataset & Benchmarking Track

TIDMAD: Time Series Dataset for Discovering Dark Matter with AI Denoising




J. T. Fry et al, arXiv:2406.04378 

Submitted to NeurIPS Dataset & Benchmarking Track

TIDMAD: Time Series Dataset for Discovering Dark Matter with AI Denoising


        Axion Limit Boost

ABRA TIDMAD Raw: 24 hr data, no denoising


ABRA TIDMAD Denoised: 24 hr data with FCNet denoising


ABRA Run 3: 2,400 hr data, no denoising


Efficient denoising algorithms increased Axion search limit by 
1-2 orders of magnitude, approaching the previous world-
leading ABRA run 3 results with only 1% of statistics





New Electronics for KamLAND-Zen

PMT

WC

TTL Input
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10 Gbps

Clock Input

10 Gbps  
SFP+

16-channel prototype for KamLAND2-Zen


Machine 
learning on 

FPGA

*30-40% power 
consumption 

savings

*50% cost 
savings

Reduction in 
PCB footprint

Primary Goals: 

1. Digitize waveform during the chaotic period after a 

muon passes through the detector in order to record 
all neutrons, allowing us to reduce the Long-Lived 
spallation background. 


2. Streaming data (deadtime free system), large data 
throughput.


3. Large memory buffers.


* compared to standard RF signal chain




Hardware-AI Codesign

Data Stream Offline Analysis

Energy

Position

Particle Type

Detector 
Response

FPGAFPGA

Deploy ML model onto FPGA 
to produce these in real-time

Online model update to account 
for detector status change



Summary
“AI and Data Science has shaped rare event search, it’s 
an accelerator for new physics results”


• KamLAND-Zen: KamNet, PointNet-VAE


• ABRACADABRA: TIDMAD Data Set

“It will continue to evolve and foster discovery in next-
generation experiments” 

• AI for Rare Event Lab: https://aobol.github.io/AoboLi/


• Email: aol002@ucsd.edu

https://aobol.github.io/AoboLi/
mailto:aol002@ucsd.edu

