Large High Altitude Air Shower Observatory(LHAASO) 数据处理

zham@ihep.ac.cn 2024高能物理计算暑期学校 @ 21st - 24th August, 2024

outline

LHAASO and its detector

- LHAASO science
- Detector calibration

Data production

- Data reconstruction
- Data quality check
- MC data production

Scientific data analysis

- Gamma ray astronomy related
- Cosmic Ray related

LHAASO"拉索", Haizi Mountain 4410 m a.s.l. Daocheng, Sichuan Province, China Location: 29°21'27.6" N, 100°08'19.6" E

8/21/24

2021-07 completed built and in full array operation

The Energy Spectrum for Cosmic Ray

高海拔: 降低阈能 + 膝区宇宙线的极大发展深度

通过测量簇射中的次级粒子来获取原初宇宙线的信息(方向、能量、成分)

Ground-based air shower detection

- High sensitivity: ~2% Crab
 @3TeV@100TeV
- Wide energy range: sub-TeV to 10 PeV
- Large FOV:~1.8 sr
- Detect air shower secondary particles: Gammas, electrons/positrons, muons, photons, hadrons, ...
- Measure the numbers / (or energy eqv.), arrival time, as well as lateral / longitudinal distribution.
- Reconstruct the direction, energy, type of the primary particle.

伽马射线是重要的宇宙信使之一

LHAASO

KM2A: 5216 ED/1m² + 1188 MD/36m² Area: 1.3 km²

UHE gamma ray astronomy

WFCTA: 18 telescopes

CR individual spectrum...

WCDA: 3 pools, 3120 cells/25m² area: 78,000 m²

VHE gamma ray astronomy

Planed neutron detectors + IACT

...

20211114/160856/0.291121217: nTrig=-1, θ=11.60±0.01°, φ=139.31±0.06°

50000

1.5

0.8

0.4

Area:
78,000 m ²
Detector units:
3120
Energy Range:
0.1-30 TeV

Wide Field of View Cherekov Telescope Array (WFCTA)

Mirror: 5 m² spherical mirror FOV: 16°×16° / telescope Camera: 32x32 =1024 pixels /telescope Pixel: 0.5° each

> 10TeV-200TeV/ 100TeV-10PeV / 10PeV-100PeV/ 100PeV-2EeV

Features: full duty cycle

Days (2021/03/05 - 2024/02/29)

10

Features: wide field of view

Galactic

The Earth's rotation further enables a 3/4 sky coverage

Features: wide energy range coverage

- Covering 3.5 ~ 4 decdades of energy (200 GeV 2 PeV)
 - Consistent with others < 100 TeV
 - Self cross-check between WCDA and KM2A; KM2A and WFCTA

LHAASO Trigger

- Implemented on a computing cluster:
 - Soft trigger.
- Basic triggers:
 - KM2A (EDA + MDA), WCDA and WFCTA, independently;
 - 400 ns + 20 ED -> km2a
 - 250 ns + 30 DU -> WCDA
 - 3 parallel data streams;
 - for every stream, other detector hits in a time window are collected and stored.
- Special triggers:
 - Calibration;
 - For some special physics goals.
- Triggerless data:
 - Compact single counting signals (with precision lost) are cached;
 - Stored for up to 2 weeks;
 - For follow-up observations at very low energy threshold, on GRBs, Blazers, FRBs, neutrino counterparts, GW counterparts, etc.

Trigger logic of WCDA

LHAASO data volume: ~12 PB/yr

KM2A原始数据:

- 。 触发率: 2.6 kHz
- 。数据量: 0.20 Gbps = 2.2 TB/day = 760 TB/yr

WFCTA原始数据:

- 。 触发率: 1.1 Hz/telescope * 18 = 20 Hz
- 。数据量:100 TB/yr (注意:1400 hour/yr)

WCDA原始数据:

- 触发率: 34 kHz → 160 kHz (降低单道阈值及触发多重度阈值)
- 数据量(噪声过滤前): 1.1 Gbps = 12 TB/day = 4.4 PB/yr → 3.9 Gbps =
 42 TB/day = 15 PB/yr
- 数据量(噪声过滤后): 0.42 Gbps = 4.5 TB/day = 1.6 PB/yr → 1.2 Gbps = 12 TB/day = 4.3 PB/yr
- GRB数据 (~3 triggers/week, LAT GCN only): 8.7 TB/burst = 1.3 PB/yr → 30 TB/burst = 4.6 PB/yr

Pipeline of data production

Calibration @ WCDA

特色和难点:

- 。 电荷标定:
 - ▶ 4种不同类型PMT,每个PMT又分阳极(高增益)和打拿极(低增益)需要把8种信号归为一种
- 。 时间标定:
 - 探测器存在明显的Q-T(电荷与时间)关系,而且还包含
 R-T(芯距与时间)甚至与簇射方向关联,修正极其复杂
- 。 还有3个水池间的时间与电荷标定
- 。 水质及污染物等原因造成的探测效率的变化
- 。 探测器的复杂多变,需要定期或实时标定

解决方案:

- 电荷标定:采用簇射信号,采用迭代拟合的方式;每次标定需要采用4天以上的数据;已经实现自动数据处理,得到标定结果。
- 时间标定:基于硬件标定,采用天量级的簇射事例完成时间偏差、Q-T、R-T的修正参数的计算
- 水池间标定:采用复杂算法,采用簇射事例的对称性,实现了每天一次的水池间的标定
- 根据簇射信号的多峰结构进行标定,并提出了CRS的方法,实
 现了不同单元 (共3120) 间的效率的实时 (天量级) 标定

Charge calibration: SPE + AD ratio

Time calibration @ WCDA

PMT相应差异,TDC测量精度的差异, 信 号大小的差异

Shower reconstruction

- Shower geometry reconstruction
 - direction + shower core
 - Npe, Np, Ti @ each detector unit
- Shower energy reconstruction
 - Lateral or longitudinal distribution of Shower
- Primary particle identification
 - Mass sensitive parameters \rightarrow Nmuon

Classic way to reconstruct the direction

- ◆ 簇射前锋面到达阵列时,
- ◆ 第i个fired PMT 的坐标 为(x_i, y_i, t_i)
- 未知参量(L, M, T₀)
 L=sinθcosφ,
 M=sinθsinφ,

Direction reconstruction: 前锋面拟合

Plana fitting:

$$\chi^{2} = \sum_{i} w_{i} (c \cdot (t_{i} - T_{0}) - x_{i} \cdot L - y_{i} \cdot M)^{2}$$
$$\chi^{2} = \sum_{i} w_{i} (c \cdot (t_{i} - T_{0}) - x_{i} \cdot L - y_{i} \cdot M - c \cdot (\alpha R_{i}))^{2}$$

Classic way to reconstruct the core position

Center of Gravity(COG)

$$(X_c, Y_c) = \frac{\sum_{i=1}^{N} (x_i, y_i) n_i}{\sum_{i=1}^{N} n_i}$$

Tree length algarithm

∆Core gamma@10GeV-100TeV

Shower Core reconstruction

- COG is initial seed;
- NKG function is analytical function, in principle it is closely related with direction. $(x_c, y_c, \theta, \varphi)$

$$\rho_2(r) = N_e C(s) \left(\frac{r}{r_0}\right)^{s-\alpha} \left(1 + \frac{r}{r_0}\right)^{s-\beta}$$

 different experiments use different NKG-like or nkg-modified functions;

AGASA

$$\rho_4(r) = \frac{N_e}{r_0^2} C\left(\frac{r}{r_0}\right)^{-\alpha} \left(1 + \frac{r}{r_0}\right)^{-(\beta - \alpha)} \left[1 + \left(\frac{r}{10r_0}\right)^2\right]^{-\delta}$$

• AGRO-YBJ BigPad data

$$\rho(r) = A \left(\frac{r}{r_0}\right)^{s'-2} \left(1 + \frac{r}{r_0}\right)^{s'-4.5}$$

• Likelihood algorithm $LF2 = \prod_{k=1}^{N_S} p_k(m_k)$

Classic way to reconstruct the shower @ global fitting

Lateral distribution(global fitting) * To fit (xc, yc, theta, phi, Ne, rm, s)

 $\rho(r)=Ne.A(\frac{r}{rm})^{s-2}(1+\frac{r}{rm})^{s-4.5}$

G/P separation

Shower reconstruction resolution

Ground-based Air Shower Array

LHAASO MC simulation

特色和难点

- 。 空气簇射的模拟: CORSIKA/COSMOS/AIRES
 - ▶ 模拟样本多
 - ▶ 伽马、质子到铁核5组或56种元素
 - □ Multiple samples: Crab orbit and isotropic samples.
 - ▶ 多种强相互作用模型的结合)
 - □ QGSJET, EPOS-LHC, SIBYLL, GHEISHA, FLUKA
 - ▶ 能量范围宽广 (10 GeV 10 PeV)
- · 探测器模拟 (GEANT4 为基础)
 - ▶ 切伦科夫光子数巨大,内存消耗量大、模拟缓慢
 - WCDA实验大厅结构复杂,并存在结合KM2A (包括ED和MD) 探测器模拟的必要
 探测器存在若干不确定的参数(多变的水质、国际首次使用的20-cin PMT等)
 - IO @ ED, MD detector unit

LHAASO MC status

- ◆ 解决了内存耗尽
- ◆ 优化中间结果的存储
- ◆ 易于探测器真实化
- ◆ 简化各类探测器的统一模拟。
- Example: version >2.0

LHAASO MC status

WCDA Data Production

Releasing working version: Mk

Releasing directory @ /publish/

1:progs/ 2:Mk/ 3:goodlist/ 4:Simulation/ 5:Skymap/

Reconstruction and Simulation programme @ progs/

• Reconstruction: Mk/ + test/test.sh

• Simulation: g4wcda/8.02run + test1.sh && test2.sh

Three physics data products in root format @ Mk/

• yyyy/mmdd → 2023/0101

- Readme.wcda \rightarrow details about root elements
- Recdata/ \rightarrow Standard reconstruction data 450 G/day
- Recgdata/ \rightarrow Gamma-like reconstruction data 1.6 G/day
- Sampdata/ \rightarrow specific sample data around the sources(crab) 100 G/day

File-list about Data quality Check @ goodlist/

• Txt format: yyyy/mmdd.dat \rightarrow 2023/0101.dat

Two scientific data products in root format @

- One skymap data in root format @ skymap
- One simulation samples in root format @ simulation/
- MC1 is for 20210305-20220930
- MC2 is for 20210305 20240131

Data Quality Monitoring

- Done by monitoring some parameters related with the daily stability of detector running and reconstruction;
- $t_{\text{live}}, n_{\text{hit}}, \theta, \varphi, x_c, y_c, \chi^2 @ Nq05t30>150$
- Over 5 sigma file is marked as bad file;
- On average around 3% file is marked as bad file.

Crab Nebula monitoring @ N_{hit}>100

33

Moon shadow monitoring @ N_{hit}>100

• N_{hit}>100 pointing error <0.1 deg

天体源数据分析

- ・背景估计
 - 等天顶角, 等赤纬,
 - 时间交换法,直接积分
 - 环绕窗口……
- ・ 天图分析

....

- · 显著性计算
- · 流强估计和能谱拟合
 - Forward folding
 - 单源/多源分析
 - 复杂背景物理图像的考虑

WFCTA 数据符合

all particle energy spectrum and composition by LHAASO

A complex variable $N_{e\mu}$ is constructed with weak dependent on primary CR mass

Energy reconstruction with $N_{e\mu}$

better resolution, less bias between components + R: 12% + B: <5% @ 1 PeV

\rightarrow Systematic uncertainties are sufficiently small

The all-particle energy spectrum knee is dominant by the knee of light components, instead of the mediumheavy components

ML or AI @ LHAASO

$20221009/132204/0.886943440; \ \theta{=}29.01{\pm}0.13^\circ, \ \phi{=}163.20{\pm}0.26^\circ$

Deep learning @ shower reconstruction (geometry + particle identification)

Summary and Prospect

- · LHAASO 原始数据经过标定后转变为可以测出簇射信息的物理量;
- LHAASO模拟数据的真实化是后续物理分析中的系统误差的一个主要来源;
- LHAASO将继续在20年内将采用四种探测技术,全方位、多变量地测量来自于北天区的高能天体的 伽马射线和宇宙线;
 - 甚高能区 (1 TeV 30 TeV) 灵敏度最优的伽马巡天探测器;
 - · 超高能区 (30 TeV 1 PeV) 灵敏度最好的伽马天文探测器;
 - 能区跨度范围 (10 TeV 1 EeV) 最大的宇宙线探测器。
- LHAASO数据分析的优化,更新和升级是LHAASO生命力的重要支撑点。
 参考文献
 - LHAASO collaboration, Chinese Physics C Vol.45, (2021) 025002;
 - LHAASO Collaboration, Chinese Physics C Vol.45, (2021) 085002;

backup

Data and Simulation are divided into periods

Timeline of LHAASO

Energies of the commonly triggered events derived by WFCTA and by the formula of the absolute energy scale

Supper Stable & Fruitful Operation

Wide Field of View Cherekov Telescope Array

10TeV-200TeV/ 100TeV-10PeV / 10PeV-100PeV/ 100PeV-2EeV

