

中國科學院為能物招加完備 Institute of High Energy Physics Chinese Academy of Sciences

光源实验数据处理及软件框架介绍

胡誉 (<u>huyu@ihep.ac.cn</u>)

中国科学院高能物理研究所

第五届高能物理计算暑期学校 2024年08月

Synchrotron radiation is produced by relativistic charged particles accelerated by magnetic fields. It is observed at particle accelerators

The vertical half-opening angle:

$$\psi \approx \frac{m_0 c^2}{E} = \frac{1}{\gamma}$$

BSRF: $E_e = 2.2 \text{ GeV}, \gamma = 4 305, \psi = 232 \mu \text{rad}$ HEPS: $E_e = 6 \text{ GeV}, \gamma = 11 800, \psi = 85 \mu \text{mrad}$

The emission is concentrated in the forward direction

History of Synchrotron Radiation Sources

... followed by decades of parasitic use of Synchrotron radiation on high-energy machines.

History of Synchrotron Radiation Sources

Major synchrotron facilities worldwide

Major synchrotron facilities worldwide

High Energy Photon Source (HEPS)

- New light source in China High energy, high brightness
- Located in Beijing about 80KM from IHEP
- Officially approved in Dec. 2017
- The construction was started in the mid-2019
- The whole project will be finished in mid-2025

Main parameters	Unit	Value
Beam energy	GeV	6
Circumference	m	1360.4
Emittance	pm∙rad	< 60
Brightness	phs/s/mm ² /mrad ² /0.1%BW	>1x10 ²²
Beam current	mA	200
Injection		Тор-ир

Beamlines in HEPS phase I

14 public beamlines + 1 optics test beamline in Phase I Can accommodate over 90 beamlines in total

g X-Ray Protein Crystallography-ID02 Beamlin <u>e</u>	ID30 <u>-</u> Transmission X-Ray Microscopic Beamline
sional Structure Probe Beamline-ID05	ID31 <u>-</u> High Pressure Beamline
Engineering Materials Beamline <u>-ID07</u>	ID33 <u>-</u> Hard X-Ray High Resolution Spectroscopy Beamline
ay Coherent Scattering Beamline <u>-</u> ID0 <u>9</u>	BM44-Tender X-Ray Beamline
Pink Beam SAXS Beamline <u>-</u> ID08	ID41-High Resolution Nanoscale Electronic Structure Spectroscopy Beamline
/ Nanoprobe Multimodal Imaging <u>-</u> ID19 Beamline	ID42 <u>-</u> Optics Test Beamline
Hard X-Ray Imaging Beamline <u>-</u> ID21	ID46 <u>-</u> X-Ray Absorption Spectroscopy Beamline
Structural Dynamics Beamline-ID23	

Progress of the HEPS project

- The construction of the civil structure completed. Now at the stage of equipment installation
- **D** 2023.01, HEPS booster installation completed
- 2023.03, HEPS achieved the first electron beam accelerated to 500 MeV
- □ 2023.11, Electron beam ramped up to 6 GeV
- □ 2024.07, HEPS storage ring installation completed
- □ 1st SR X-ray to be emitted in the near future

HEPS LINAC									
Beam Energy	500 MeV								
Bunch Charge	2.61 nC								
Trans. Efficiency	94 %								

The layout of a synchrotron source

A typical synchrotron beamline

电子发出的x射线被引到实验大厅中与存储环相切的束线站上

Sample **Detector** Storage ring **Optics** cabin **Experimental** cabin **Control room** Data reduction and analysis

每条光束线站都针对特定的 研究技术而设计

Synchrotron radiation - applications

Fundamental and applied studies on materials and living matter

Elastic or inelastic scattering

X-ray – matter interaction: the classical techniques

Types of synchrotron light experiments

衍散射

- 光被样品本身衍射,形成衍射图样
- 通过对衍射图样研究,可以获得原子结构、体相、表界面等纳米尺度结构信息

谱学

- 光穿过样品被吸收, 在另一侧可以测量到被吸收后的光谱
- 通过光谱分析,可以获得电子能级、能带结构、自旋和轨道磁矩、原子配位等信息

成像

- 光从样品透射,形成样品内部的对比图像
- 分析投影图像,可以获得形貌结构、磁畴结构、元素及化学态空间分布等信息

.....

X-ray diffraction and (in)elastic scattering

Crystal diffraction: Bragg' s law and laue condition

A single crystal is a periodic array of atoms in 3D. Description as the Fourier transform of a 3D array of δ -functions in reciprocal space: $G_{hkl}(\vec{Q})$ with integers h,k,l (Miller indices). Diffraction only occurs when $\vec{Q} = \vec{G}$: Laue condition

This is geometrically equivalent to $\mathbf{n} \cdot \mathbf{\lambda} = 2\mathbf{d}_{\mathbf{hkl}} \cdot \mathbf{sin} \theta$: **Bragg** law

$$|\vec{Q}| = 4\pi \cdot \sin(\theta) / \lambda$$

or
$$|\vec{G}| = 2\pi / d_{hkl}$$

d is the lattice spacing of planes hkl

X-ray diffraction —— data analysis

衍射强度谱

X-ray diffraction —— data analysis

PDF, 小角散射, 广角散射, X射线衍射

X-ray spectroscopy

X-ray absorption spectroscopy

覆盖几乎所有元素的许多特征吸收边

X-ray absorption spectroscopy-data analysis S

预处理:

能量校准、归一化、背景减除

XANES:

LCA、PCA、指纹分析、模拟、标准样本比对(判断化合价状态和配位环境)

EXAFS:

小波分析, 拟合, 模拟 配位键长, 配位数, 原子种类

Applications of x-ray spectroscopy

从 XAFS 光谱的不同区域可以获得许多有关材料结构的信息

7****	区域	特征	可获得的信息
	边前	● 因电子跃迁至外层空轨	● 原子局域结构
超导		道导致	 ● 氧化态
地球与行星科学		● 跃迁受选律约束	● 成键情况
环境科学	吸收边	● 给出电离能(吸收阈能)	● 氧化态(化学位移)
文化语产		的数值	● 吸收边常随氧化态的升高
			向高能区移动
Plumbonacrite Historical texts Micro-FTIR	XANES	● 由低能光电子的多重散	● 近邻原子位置,键长与键
Pbs(CO ₃) ₃ O(OH) ₂	(特指多重散射的影响)	射现象导致	角
		● 具有大的散射截面	● 几何结构
I Synchrotron	EXAFS	● 由高能光电子的单散射	● 配位半径
XRPD Litharge		导致	
paint formulations			

X-ray imaging – x-ray radiography

easily available in any lab or hospital

but no depth resolution = no three dimensional information

X-ray imaging – principle of x-ray tomography 🔶 🐼

360°(180°) rotation of the sample; at each $\Delta \theta$ take an image; **3D** reconstruction from N projections

X-ray imaging – tomography reconstruction

X-ray imaging – Coherent diffraction imaging 📀 💠 🐼

Reconstruct the structure of an object by analyzing the diffraction pattern of coherent light

X-ray imaging – Ptychography

对物体进行区域重叠的空间扫描

允许以纳米级空间分辨恢复物体的结构

从一系列部分重叠的区域收集衍射图样

X-ray imaging – Ptychography

Extended Ptychographical iterative engine (ePIE)

- Probe function *P*, object function *O*均未知
- 每一步迭代同时更新 P(r), O(r)

Applications of x-ray imaging

生物学

CDI显示酵母孢子细胞内的三维 细胞器,包括 细胞核,内质网, 液泡,线粒体,和颗粒

集成电路

15纳米分辨率的集成电路,显示具有最精细结构的有源层视图

古生物学

材料科学 纳米科学 考古学 神经科学

南方古猿sediba的大脑结构,一 些学者认为是现代人类真正祖先 的新物种

Experimental methods on light sources

□学科多样性,实验方法繁多,谱学、衍散射、成像.....

X射线光源技术的发展,不断催生出更加复杂的新方法、新技术以及新研究领域,需要新的学科软件 及算法

□ 多模态实验需要结合多个样本、技术和设备的数据

□ 原位和动态加载实验需要实时反馈和自主控制

□不同的光束线站以及科学目标,实验数据通量和容量

存在巨大差异

□ 源源不断的来自不同领域和背景的新用户

口亮度相对三代光源提升了 2-3 个量级

在更短的时间内产生更加海量的具有更多细节信息 的原始数据

ロ x 射线探测器能力不断提高:

- 更宽的动态范围,更快的读出速率,更大的像素阵 列 (32bits, 20KHz, 28kx10k)
- 更大的帧数,更高的帧率 => 更多的原始数据

34

- □ HEPS 一期(15个线站)数据产生率接近PB/天,每年将产 生超过200 PB的数据
- □ HEPS 总共能容纳超过90条线站,更多的数据
- □ 数据容量将很快达到 EB 量级

Data volume of HEPS Phase I Beamlines:

Beamlines	Burst output (TB/day)	Average output (TB/day)
Engineering Materials	600.00	200.00
Hard X-ray Multi-analytical Nanoprobe	500.00	200.00
Structural Dynamics	8.00	3.00
Hard X-ray Coherent Scattering	10.00	3.00
Hard X-ray High Energy Resolution Spec.	10.00	1.00
High Pressure	2.00	1.00
Hard X-Ray Imaging	1000.00	250.00
X-ray Absorption Spectroscopy	80.00	10.00
Low-Dimension Structure Probe	20.00	5.00
Biological Macromolecule Microfocus	35.00	10.00
pink SAXS	400.00	50.00
High Res. Nanoscale Elec. <u>Struc</u> . Spec.	1.00	0.20
Tender X-ray beamline	10.00	1.00
Transmission X-ray Microscope	25.00	11.20
Test beamline	1000.00	60.00
Total average:		805

35

□ 先进光源上大规模科学数据的处理和管理变得越来越具有挑战性

□ 需要发展和集成先进的分析和管理工具

- 提供海量科学数据的存储、组织和管理
- 为方法学软件和算法的多样化发展提供通用的底层软件框架支持
- 在实验过程中,进行实时数据分析和快速反馈,提供决策指导和修正实验过程,并优 化数据采集
- 在实验结束后,处理海量多模态数据,帮助用户快速完成实验数据分析、获取科研成
 果,加速科学发现
- 提供可伸缩的分布式异构算力支持,满足不同科学目标不同规模的计算分析需求
- 满足不同技术水平的用户需求

光源数据处理软件发展现状

■全球先进光源装置<mark>升级换代</mark>,数据通量<mark>爆发性增长</mark>,新的实验技术<mark>不断涌现</mark>,数据处理方面面临着 巨大挑战

■经过十几年的积累,形成了: EDNA (美国)、Mantid (英国)、DAWN (英国)等框架软件及众 多方法学软件

EDNA: ESRF

- Python + Java
- 架构基于Plugin
- 数据模型通过UML语言定义
- 框架不够完善, 学习曲线陡峭
- 高通量解决方案比较落后

Mantid: ISIS, SNS, ESS

- Python + C
- 成熟的软件框架和用户界面
- 数据对象实现较为复杂
- 算法依赖于复杂的数据对象
- 没有高通量解决方案

DAWN: Diamond

- JAVA + Eclipse-RCP + SWT
- 相对成熟的软件框架和用户界面
- 开发难度大,需要较大的团队
- 与未来主流基于Python的数据处理模块接口 研制困难

无法满足先进光源快反馈和超高通量的数据处理的需求

支持先进光源科学数据全生命周期的跟踪和管理

数据处理软件框架总体架构 (Daisy)

• 数据处理软件框架核心

- 满足新一代光源数据处理需求的衍生技术模块
 - 应对高通量数据I/O、多模态 数据解析、多源数据接入的数 据对象管理
 - 应对不同规模、不同通量、低 延迟数据处理需求的弹性异构 计算集群算力支持
 - 服务于学科方法学软件集成和 发展的用户软件接口和软件开 发环境支持
- 基于软件框架的学科专用应用 软件以及针对灵活数据处理需 求的通用工作流编排系统

Daisy 数据处理流程

- 支持流处理和批处理
- 支持交互式处理和自动化处理

Daisy 图形化用户接口

Daisy W File View Workspace Load	/orkbench Interfaces H Delete Save	elp Clea	Interfaces Integra MaxMi PyFAI o XRF Ba	Help ation in calib atch Fitting	rt Dasiy algorit	Ø≷ Options ▼ :hms, numr ★	IPython In [4]: load star workflow:LoadHDF5 INF0: initialized HDF5 File: /root/ workflow:LoadHDF5	t:tooth .config , read tooth.h5 .execute	System I Plots	Memory Usag 1.72/6	> ge (2.76 GB (2%)	0 X 0 X	A REPS	と「ご Jupyterhub Home 启动已选择的	汾析环境	huy 🕒 Eogou
name • tooth tooth	n.		daisyworkbench		Lrt matplotl umpy as	ib.pypl	INFO: Load data / data as tooth fro	exchange/ m /root/	Calact				分析	应用分析 ¹	小項列表	
			1	2	<u> </u>	* *	• → + Q ≅	~ B			Plot Name		分析	、		
		2	[27008.75	[26096.25	-						tion Plot 🛛 😽 🖉	×	25 1013			
		3	[27051.75	[20980.25							• 0	, ×		CT 3D reconstruction		
		4	[2/192.75	[2/10/.5		0-								CT 3D reconstruction service based on tomopy.		
		5	[27208	[27020.25		1										
		6	[27181.75	[26995		100 -								0		
		7	[27190	[27033.5		100					(0 ×		alphatold-with-40g alphatold-with-40g		
		8	[26869.75	[27169.25			100 200	300 4	0 500	600	:onfig INFO: DF5 File: /root/	^		apraioù mui tog		
Algorithms		9	[27142.25	[26977.75		0	100 200	550 4	55 550	500	execute INFO:			0		
Excute	AlgMatrixTran	10 Spose	[27407.75	[27282.5	•						/data as tooth from	n		cumopy cumopy		
▼ Daisy Load Load Save Save	HDF5 ITIFs HDF5 H5VDS			▲ ▼ 1		•			0.01137 QCoreAp is alre	35198974609 plication:: ady running] J38s :exec: The event loop g	•	开发	<mark>省环境</mark> ○		

Daisy workbench:

- 通用用户界面,基于 PyQt5
- 包含数据对象列表,算法列表,数据展示/可视化,Log信息,系统内存监控,以及提供给开发者的IDE等模块
- 面向多样化学科方法学的专用用户界面接口

Web data analysis platform:

- 基于 Jupyterlab 生态,开箱即用
- 利用容器技术封装开发和运行时环境
- 通过K8s提供弹性可伸缩的计算资源
- 终端+用户友好界面,适合不同专业程度的用户

Daisy I/O module

- 提供统一的批处理 I/O 接口,屏蔽底层体系 结构和数据结构的差异
- 采用多种方法对数据 I/O 进行优化

TIFF I/O optimizing

n(thread)

• HDF5文件:多进程并行读写,内存拷贝,异步I/O

time/s

- TIFF文件:多线程并行读写,异步I/O
- 基于流处理、分布式共享内存的流数据处理 方案

Daisy distributed computing engine

- HEPS成像实验的单个数据集将达到 TB 量级
- 实验用户希望数据处理时间少于数据采集时间,单机无法满足需求
- 借助分布式技术向多机多卡进行扩展,支持分布式异构算力
- 在 CT 重建任务中,加速效果明显,采集时间内重建6k相机数据
- •为计算模型提供统一的编程接口API,降低并行编程的复杂性

Mode	Detector pixel	Projections number	Data rate	Dataset (TB)	Acquisition time	Daily data (TB/d)	Annual data (PB/y)
Powder CT	6k×6k	6k	1.08 GB/s	0.432	6.3 min.	78	9.4
High voxel CT	28kx10k	28k	1.1 GB/s	15.68	240 min.	87	10.4
Fast CT	5k×4k	5k	1.7 GB/s	0.1	1 min.	98	5.9

User and software ecosystem support

软件开发可持续集成,可持续交付,可持续部署系统

- 自动化软件开发服务 CI/CD 平台, 实现多开发者代码集 成—>代码测试—>代码编译—>软件部署全流程自动化
- 简化并加快软件开发生命周期

用户使用文档,开发者开发指南

Daisy applications for synchrotron radiation

覆盖成像、衍散射、谱学多个学科:

- CT 数据处理软件 HEPSCT
- 叠层成像相位恢复软件 Hepsptycho
- 衍散射 PDF 应用 Daisy-PDF
- 生物大分子结构解析应用 Daisy-BMX
- 吸收谱学谱线分析软件 (谱学匹配XASMatch和PCA&LCF 成分分析应用)
- 荧光光谱批处理软件 XRF-mapping
- Daisy 工作流管理系统

计划 (正在) 开发:

- 小角数据处理软件
- Holotomography
- XPCS
- Bragg CDI
- •••

Integrate	2 transform	# pipeline				PDF
Data: > /or	t/jupyter_app_launcl	ner/entries/PDFgui/fig	3 Output:	 Same Pat 	h as Data	
> Data Files	Filter & Preview					
poni PON	41: > /opt/jupyter_	app_launcher/entries	/PDFgul/figs PI	DF_CFG:	/opt/jupyter_app_l	auncher/entries/PDFgui/figs
→ Extra setti	ings for integration					
▶ Extra setti	ngs for transform					
🗬 Run	Stop					
Results: s	resul 'resul	t plots to show"				

https://daisy.ihep.ac.cn/en/latest/reference/installation.html

Heterogeneous computing support

CT 数据处理软件适配

• 常用 GPU 加速 CT 软件 ASTRA, UFO, Tomocupy, 能够借助曙光 DCU Z100 进行加速计算

叠层成像数据处理软件适配

- ePIE、DM 等相位恢复算法可以在曙光 DCU Z100上运行
- 支持太原曙光超算集群大规模分布式并行

人工智能算法适配

• 自研AI算法 W1-Net,在曙光DCU Z100和华为昇腾910上均适配成功

软件	UFO	ASTRA	Tomocupy	ePie, DM	W1-Net
适配平台	曙光 DCU	曙光DCU	曙光DCU	曙光DCU	曙光DCU、华为昇 腾910、天数智芯
性能	与 A100 相当	_	_	A100 25%	曙光是A100 66%, 华为GPU表现较差

Application of Daisy in space astronomy

可能的应用场景

- 数据处理,数据分析,数据产品生成
- 探测器模拟,观测模拟
- 整合现有软件资源,形成共性软件包

HXMT web 数据处理平台

- 基于 jupyterlab 的 HXMT web 数据分析平台
- 通过 web 浏览器为用户提供数据处理环境和服务

Svom 数据产品生成软件集成

- 软件框架应用于 Svom 卫星二级数据产品生成
- fits 数据文件读写算法的集成,部分数据产品生 成算法

eXTP 卫星数据处理软件集成

• 数据模板生成,数据分割等算法的集成

Ф	IXMT web data	analysis pla	tform/慧眼卫	星 web 数据	分析平台						Home
ta selection	2.Data processing										
Search for targe	et data.										
ou can search dir	ectly for the object name suc	h "Crab", or click on "m	ore search condition" for	a more complex sear	h by source posit	ion and/or observation	time)				
arch by object r	name:										
ject Name: Cra	ab	e.g., Cyg_X-1, Cr	ab (Note use the underlin	e to replace the space	in the name. Que	ery more object name,	please click: HXI	AT data)			
and/or search b	y date:										
rgin date: 年 /	(月/日: 〇	End date: 年 /月/	8: 0								
and/or search b	v coordinates:										
ordinator:	,	dec		(degrees T	000 e.c. 92 622	22 012)					
areb Bediue:		(degroee)		(degrees, or		22.010)					
arch Radius: 0		(degrees)									
Ind/or search b	y proposal:										
posal type:		 Proposal r 	number:	(e.g. P0101	299)						
und/or search b	y timestamp:(Unix timestam	p differences between	the selected datetime an	d 2012-01-01T00:00:0	0, e.g. 179038244	4. MET, TT time. A Date	a/Time Conversio	n Utility, pleas	e click: xTime)		
rt time(MET or N	AJD):	Stop time(MET o	er MJD):								
Search	Simplify search o	ondition Con	dition clear	Duration sort:	Default	~					
ect the Observa	ation ID and Exposure ID fr	om the search result:									
a. ID: P01012	99001	 Exp. ID: 	P010129900101	~							
i selected data f	iles are in the directory: /sdcf	s/hepdata/Astro/HXMT	1L/A01/P0101299001/P	010129900101-20170	827-01-01/LE.						
ase go to the "2.	Data processing" tab to proc	ess the data!									
arch result:											
Search criteria:											
Object name	e: Crab										
dex_ T obsid	T Istart	T tstop	obsDate T	obsEnd T	duration	T targetId	τ pi τ	propos T ta	irget T ra	τ dec τ	<u>^</u>
1 P01012	178430732	179027741	2017-08-27104:05:29	2017-08-28104:17:50	230121	1023	HANT-	c c	rah 83.03	3 22.0145	
	TIGIDIOEO							- 0	00.00		

https://sdccompute.ihep.ac.cn/

- •同步辐射光源的实验变得更快、更复杂、更多样化
- •新一代光源上的X射线实验能够在短时间内采集到海量数据
- 光源上不同实验方法的数据处理需求存在差异,且新的实验方法
 不断涌现
- •急需基础软件框架提供底层共性支持,并开发先进的软件和算法

https://daisy.ihep.ac.cn/

谢谢!

Daisy代码组织结构

Daisy

- Base
- DataHdlerAlg
- Examples
 - ___init__.py
 - PyAlgorithms
 - PyServices
 - README.md
 - setup.sh
 - Webapp
 - Workbench
 - Workflow

- Base: Daisy 的核心基类,包括data store, algorithm, workflow, workflow engine以及service等
- PyAlgorithms:领域方法学模型即数据处理逻辑的具体 实现,如积分算法,转轴矫正算法等。不同学科的代码将 有更细致的组织
- Workflow: 用户完整业务逻辑的实现,如CT图像重建, 材料原子结构定量分析及建模,数据产品生成等
- DataHdlerAlg:不同类型数据 I/O 的实现,如HDF5, Tiff, fits等
- Workbench: 通用用户界面
- Webapp: 基于 web 的应用软件
- PyServices: 外部公共服务,如条件数据库查询等
- Examples: 用户开发示例

方法学应用开发示例 —— 算法实现 (Python)

方法学应用开发示例 —— Workflow 实现(Python) 🔶 公

@Daisy.Singleton class WorkflowCTReconstruct(Daisy.PyWorkflow): В 工作流和算法一样, 实现 initialize、execute def execute(self): 和 finalize 三个方法。在**execute**方法中按序 self.engine['loadhdf5'].execute(input_path='/entry/tomo', output_dataobj='tomodata') 列调用算法或者子工作流,实现具体的业务逻 self.engine['loadhdf5'].execute(input_path='/entry/dark', output_dataobj='darkdata') 辑。 self.engine['loadhdf5'].execute(input_path='/entry/flat', output_dataobj='flatdata') self.engine['normalize'].execute(projs_dataobj='tomodata', darks_dataobj='darkdata',\ flats_dataobj='flatdata', output_dataobj='normdata') self.engine['angles'].execute(input_dataobj='normdata', output_dataobj='thetas') self.engine['minuslog'].execute(input_dataobj='normdata', output_dataobj='mlogdata') self.engine['reconstruct'].execute(input_dataobj='mlogdata', theta='thetas',\ center=1030, alg_type='fbp',output_dataobj='recodata') 工作流初始化时需要指定工作流引擎,工作流引 self.engine['savehdf5'].execute(input_dataobj='recodata',output_path='/entry/reco') 擎通过算法名创建和调用特定算法和工作流模块, 并通过数据仓库管理算法所需的输入输出数据对 wf = WorkflowCTReconstruct('WorkflowCTReconstruct') 象。 wf.initialize(workflow_engine='PyWorkflowEngine', 🙏 workflow_environment = init_dict, algorithms_cfg = cfg_dict) wf.execute() 算法对象初始化参数列表和算法运行参数可以由 data =wf.data_keys() JSON 对象或者 Python 字典对象表示 algs =wf.algorithm_keys() wf.finalize()

方法学应用开发示例 —— 方法学 interface 开发 🌮 🔶 🐼

•	:a	lculator(于 v	mcomp	_		×
		name	value			
	1	File path				
	2	Date Path				
	3	operation	max	Ŧ		
	4	display	print	Ŧ		
			•		3	
		(Calculate			

Interface 功能:

1.调用 Daisy 算法从 HDF5 文件中读取矩阵数据。 2.调用 Daisy 算法求矩阵数据的最大值或最小值。 3.打印结果。

建议开发设计模式: MVC/MVP

- Model 是业务模型, View 层是界面, Controller 用来调度 View 和 Model。
- 用户界面和业务逻辑分离,使得一个程序可以使用不同的表现形式,同一个界面下面也可以有不同的业务实现,使得代码具有可扩展性、可复用性,维护方便。
- 本例中 Daisy 的数据处理逻辑即包含在 Model。

方法学应用开发示例 —— 方法学 interface 开发 🍼 🗧

开发流程:

- 在 Daisy/Workbench/windows/ interface/ 目录下创建该 interface 的子目录,本例为 Calculator/。
- 2. Calculator 目录下创建必要的文件 并实现相应的代码,本例的代码目录 如下:
 - 1 CalculatorManager.py
 - 2 ├── Controller.py 3 └── __init__.py

```
4 - Model.py
```

```
5 🖵 View.py
```

CalculatorManager.py文件为该 interface 的入口程序。

CalculatorManager.py:

from windows.interface.Calculator.Model import Model
from windows.interface.Calculator.View import View
from windows.interface.Calculator.Controller import Controller

....

A wrapper class for setting the main window of the interface """

class CalculatorManager(QtWidgets.QMainWindow):

def __init__(self, parent=None):
 super(CalculatorManager, self).__init__(parent) # noqa
 self.setWindowFlag(Qt.Window)
 self.setAutoFillBackground(True)

self.window = QtWidgets.QMainWindow()
demo_view = View()
demo_model = Model()
create controller
self.controller = Controller(demo_view, demo_model)
set the view for the main window
self.setCentralWidget(demo_view)
self.setWindowTitle("Calculator")

def show(self) -> None: super(CalculatorManager, self).show() self.activateWindow()

方法学应用开发示例 —— 方法学 interface 开发 🍛 🔶

开发流程:

- 在 Daisy/Workbench/windows/ interface/ 目录下创建该 interface 的子目录,本例为 Calculator/。
- 2. Calculator 目录下创建必要的文件 并实现相应的代码,本例的代码目录 如下:

```
4 - Model.py
```

```
5 🖵 View.py
```

Model.py 调用Daisy 算法'LoadHDF5' 和 'MaxMin' 实现HDF5 文件的加载以 及矩阵数据极值的求解

Model.py:

from api import work_flow

```
class Model(object):
   def init (self):
       # Get the algorithms from Daisy workflowengine
       self.MaxMin = work flow.engine['MaxMin']
       self.Loadh5 = work flow.engine['LoadHDF5']
   def CalMaxmin(self, Filepath, DataPath, operation):
       # Load matrix data from the HDF5 file
       self.Loadh5.config({'inputfile name': Filepath})
       self.Loadh5.execute(input path = DataPath, output dataobj='data h5')
       # Calculate the maximum or minimum of the matrix
       if operation == "max":
            self.MaxMin.execute(input dataobj='data h5', output dataobj='maxmin', showMin=False)
       elif operation == "min":
           self.MaxMin.execute(input dataobj='data h5', output dataobj='maxmin', showMin=True)
       # Get the result from the datastore
       self.result = work_flow.engine.datastore['maxmin']
        return self.result
```

方法学应用开发示例 —— 方法学 interface 开发 🍛 📢

开发流程:

- 在 Daisy/Workbench/windows/ interface/ 目录下创建该 interface 的子目录,本例为 Calculator/。
- 2. Calculator 目录下创建必要的文件 并实现相应的代码,本例的代码目录 如下:

```
1 - CalculatorManager.py
```

2 - Controller.py

```
4 - Model.py
```

5 - View.py

View.py 添加窗口小部件实现图形化用户 界面

View.py:

```
class View(QtWidgets.QDialog):
   # In PyQt signals are the first thing to be defined in a class:
   displaySignal = QtCore.pyqtSignal()
   btnSignal = QtCore.pyqtSignal()
   def init (self, parent=None):
       # Call QDialog's constructor
        super(View, self). init (parent)
        # Initialise the widgets for the view (this can also be done from Qt Creator
        self.table = QtWidgets.QTableWidget()
        self.table.setWindowTitle("MVP Demo")
        self.table.resize(600, 250)
        self.table.setRowCount(5)
        self.table.setColumnCount(2)
        self.table.setHorizontalHeaderLabels("name;value;".split(";"))
        self.FilePath = ''
        # Set display values in the widgets
        keys = ['File path', 'Date Path', 'operation', 'display', 'result']
        self.combo = {}
        self.create_File_selction(0, 1, 'File')
        self.create combo table(2, 1, 'operations')
        self.create combo table(3, 1, 'display')
       for row in range(len(keys)):
            self.set_names(keys[row], row)
```

Initialise layout of the widget and add child widgets to it
grid = QtWidgets.QGridLayout()
grid.addWidget(self.table)

方法学应用开发示例 —— 方法学 interface 开发 🍼 🗧

开发流程:

- 在 Daisy/Workbench/windows/ interface/ 目录下创建该 interface 的子目录,本例为 Calculator/。
- 2. Calculator 目录下创建必要的文件 并实现相应的代码,本例的代码目录 如下:
 - 1 CalculatorManager.py
 - 2 Controller.py

```
4 - Model.py
```

5 🖵 View.py

Controller.py 连接 Model 和 View 模块,实现界面控制逻辑

Controller.py:

```
class Controller(object):
    # Pass the view and model into the presenter
    def __init__(self, demo_view, demo_model):
        self.model = demo_model
        self.view = demo_view
```

Define the initial view # Note that, in the view, the drop-down could be replaced with a set of # tick boxes and this line would remain unchanged - an advantage of # decoupling the presenter and view self.view.set_options('operations', ['max', 'min']) self.view.set_options('display', ['print', 'update', 'print and update']) self.printToScreen = True self.view.hide display()

Connect to the view's custom signals
self.view.btnSignal.connect(self.handle_button)
self.view.displaySignal.connect(self.display_update)

```
# The final two methods handle the signals
def display_update(self):
    display = self.view.get_display()
    if display == 'update':
        self.printToScreen = False
        self.view.show_display()
    elif display == 'print':
        self.printToScreen = True
        self.view.hide_display()
    else:
        self.printToScreen = True
```

self.view.show display()

方法学应用开发示例 —— 方法学 interface 开发 🚿

开发流程:

- 在 Daisy/Workbench/windows/MainWindowManager.py 中主窗口的 setup 函数中进行 interface 窗口实例化。 3.
 - from windows.interface.Integration.CalculatorManager import CalculatorManager 1 self.interfaces_calculator = CalculatorManager(self)
- 4. 在 create_interfaces_action 中,为该 interface 在主窗口的 interface 菜单下添加一个按钮连接到该 interface。

```
create_action(
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       File View
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               nterfaces Help
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Image: Book State Participation Control Co
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Workspaces
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               integration
                                                                                                                                                                                                        self,
2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Group
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Load
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               calculator
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             +
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        New 🗙
3
                                                                                                                                                                                                          "calculator",
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               pyFAI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Sort
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   # import Dasi
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               PyMca
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   from api
                                                                                                                                                                                                        on triggered=self.interfaces calculator.show,
4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   import ma
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     name
5
                                                                                                                                                                                                        shortcut context=Qt.ApplicationShortcut,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   import nur
6
                                                                                                                                                             ),
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         6
7
```

Daisy WOLKDE