
Introduction to Parallel and Quantum Computing

Wei Sun (孙玮, sunwei@ihep.ac.cn)

Computing Center, Institute of High Energy Physics

IHEP School of Computing 2024, 2024.8.21-23

mailto:sunwei@ihep.ac.cn

Parallel Computing Outline

• Introduction

• High performance computers and supercomputers

• Parallel programming models

• Summary and further reading

Introduction

Physics Mathematics

Computer
science

QCD αs(M z) = 0.1181 ± 0.0011

pp –> jets
e.w. precision fits (N3LO)

0.1

0.2

0.3

αs (Q2)

1 10 100Q [GeV]

Heavy Quarkonia (NLO)
e+e– jets & shapes (res. NNLO)

DIS jets (NLO)

April 2016

τ decays (N3LO)

1000

 (NLO
pp –> tt (NNLO)

)(–)

• analytical method at high energy

• numerical Monte Carlo method at
low energy

Introduction

ASCR/HEP Exascale Report [arXiv:1603.09303]

https://arxiv.org/abs/1603.09303

Introduction

Parallel (High Performance) Computing Numerical Linear Algebra on Supercomputers≈
my definition

High Performance Computers and Supercomputers
https://top500.org/lists/top500/2024/06/

High Performance Computers and Supercomputers
Supercomputer example: Sunway TaihuLight

Fu, H., Liao, J., Yang, J. et al., Sci. China Inf. Sci. 59, 072001 (2016).

• Decades ago - customized processors

• QCDOC (QCD On a Chip)
•Nowadays - supercomputers / clusters

• TOP 500

• LQCD awarded 1995,1998,2006 Goldon Bell Prize and 2018 finalist

High Performance Computers and Supercomputers
Example in HEP: LQCD with HPC

Before CUDA release!

Parallel Programming Models
Common programming language in HPC

• Fortran (Formula Translation)

• Oldest high level programming language, first compiler released in 1957

• Designed for numerical and scientific computing

• Highly efficient, still widely used in high performance computing today

• C

• Flexible, efficient, …

• C++

• Efficient, abstract, multi-paradigm (procedural, object oriented, functional)

• Assembly

• Highly efficient but not portable across different processor architecture

• Python

• Slow in python itself, but with great library such as Scipy, very suitable for  
data processing, analysis and visualization

• MPI (Message Passing Interface)

• MPI is a communication protocol for programming parallel computers

• The dominant programming model in high performance computing today

• Support point-to-point and collective communication

• MPI version 1.0 standard released in 1994

• Directly callable from C, C++, Fortran

• Very suitable for distributed memory system, therefore supported by all kinds of supercomputers

• Major implementation

• MPICH (https://www.mpich.org/)

• Open MPI (https://www.open-mpi.org/)

• Many others derived from MPICH and Open MPI, such as Intel MPI, Cray MPI, IBM Spectrum MPI

Parallel Programming Models
MPI + X model (cluster level + node level + processor level + instruction level)

https://www.mpich.org/
https://www.open-mpi.org/

Parallel Programming Models
MPI Basics

• Compile: mpicc hello_world.c -o hello_world

• Run: mpirun -np 4 hello_world

• NOTE: MPI is a library and mpicc is not a compiler, it is a wrapper

over regular C compiler

• Use mpicc -show to see the compile and link flags

• gcc -I /path to MPI/include -L /path to MPI/lib -lmpi

output

• Total 400+ APIs

Parallel Programming Models
MPI Basics (point-to-point communication)

• Total 400+ APIs

Parallel Programming Models
MPI Basics (collective communication)

A0P0

P1

P2

P3

A0

A0

A0

A0

MPI_Bcast

A0 B0 C0 D0P0

P1

P2

P3

A0

B0

C0

D0

MPI_Scatter

MPI_Gather

A0

A1

A2

A3

P0

P1

P2

P3

A0 A1 A2 A3

A0 A1 A2 A3

A0 A1 A2 A3

A0 A1 A2 A3

MPI_Allgather

A0

A1

A2

A3

P0

P1

P2

P3

A0 A1 A2 A3⊗ ⊗ ⊗

A0 A1 A2 A3⊗ ⊗ ⊗

A0 A1 A2 A3⊗ ⊗ ⊗

A0 A1 A2 A3⊗ ⊗ ⊗

MPI_Allreduce

: SUM, PRODUCT, MIN, MAX, etc.⊗

Parallel Programming Models
OpenMP (Open Multi-Processing)

• Pros

• API that supports various instruction set architectures, operating system, and C, C++, Fortran

• First standard released in 1997

• Compiler directive based

• Simple, flexible, portable, scalable

• Easy to modify existing serial code into parallel

• OpenMP 4.0 and later version support GPUs

• Cons

• Multi-threading programming is easy  
to implement but hard to debug in general

• Need to deal with race condition very carefully

• Only used for parallelism within a node

• Major implementation

• GCC, Intel, Clang

source: wikipedia

Parallel Programming Models
OpenMP hello world example

Compile: gcc -fopenmp hello_world.c -o hello_world

Run: ./hello_world # use all cores / hardware threads available on single node

 OMP_NUM_THREADS=4 ./hello_world # use 4 cores / hardware threads

Parallel Programming Models
OpenMP program monitored with htop

Parallel Programming Models
CUDA for GPU computing

• CUDA (Compute Unified Device Architecture)

• CUDA is a parallel programming framework and API for general purpose GPU (GPGPU) computing

• Developed by Nvidia and support Nvidia’s GPUs

• Supported Tesla -> Fermi -> Kepler -> Maxwell -> Pascal -> Volta -> Turing -> Ampere -> Hopper

• Directly callable from C, C++, Fortran

• Need CUDA Toolkit to compile

• Free but not open source

• Multi-node GPU programming with CUDA-aware MPI

• The HIP (Heterogeneous Interface for Portability)  
developed by AMD can is portable both for  
AMD and Nvidia’s GPUs, and also free and open source source: wikipedia

• Vectorization: supported by x86 (SSE, AVX, AVX2, AVX512 etc.), Arm (NEON, SVE),
PowerPC (AltiVec) etc.

• Implementation: optimized math libraries (such as Intel MKL), inline assembly, intrinsic
function

A1

A2

A3

A4

B1

B2

B3

B4

+ =

C1

C2

C3

C4

Parallel Programming Models
SIMD (Single Instruction Multiple Data)

#include<arm_neon.h>
//compile: g++ -O3 -march=armv8-a -o exe src.c  

void add_neon(float* out, const float* input1,
 const float* input2, int N)

{
 for(int i=0; i<N; i+=4){
 float32x4_t v1 = vld1q_f32(input1+i);
 float32x4_t v2 = vld1q_f32(input2+i);

 float32x4_t v0 = vaddq_f32(v1, v2);
 vst1q_f32(out+i, v0);
 }
}

#include<immintrin.h>
//compile: g++ -O3 -mavx -o exe src.c  

void add_avx(float* out, const float* input1,
const float* input2, int N)

{
 for(int i=0; i<N; i+=8){
 __m256 v1 = _mm256_load_ps(input1+i);
 __m256 v2 = _mm256_load_ps(input2+i);

 __m256 v0 = _mm256_add_ps(v1, v2);
 _mm256_store_ps(out+i, v0);
 }
}

void add(float* out, const float* input1, const float* input2, int N)
{
 for(int i=0; i<N; i++){

out[i] = input1[i] + input2[i];
 }
}

No explicit SIMD

x86 AVX SIMD ARM NEON SIMD

Parallel Programming Models
SIMD with intrinsic functions

Parallel Programming Models
Software build tools

Makefile

GNU Autotools

CMake

Build: make

Build: autoreconf  

 ./configure

 make && make install

Build: mkdir build && cd build

 cmake ..

 make && make install

• Covered basics of high performance computing parallel programming models and tools widely used in high
energy physics

• Tips:

• Select the right programming model and tools before writing the code

• Correctness is the top priority, NOT performance at the beginning of the software development

• Use well established, tested libraries, do NOT reinvent the wheels unless you know what you are doing

• Use version control system such as git for code development, use github or gitlab for collaborative
development

• Useful resources: there are plenty of lectures, tutorials, courses available online

• Some very valuable links: https://www.nersc.gov (National Energy Research Scientific Computing
Center)

• https://www.olcf.ornl.gov/ (Oak Ridge National Laboratory Leadership Computing Facility)

Summary and Further Reading

https://www.nersc.gov
https://www.olcf.ornl.gov/

Quantum Computing Outline

• What is a qubit

• How does quantum computers look like

• How to program a quantum computer

• Summary and further reading

Seeking for Quantum Advantage

• A quantum computer is a machine
that performs computation based
on quantum mechanics

• The data is represented by qubits,
a two level system

• The operations on qubits are
unitary quantum gates

1. A scalable physical system with well characterized qubits

2. The ability to initialize the state of the qubits to a simple fiducial state, such as

3. Long relevant decoherence times, much longer than the gate operation time

4. A universal set of quantum gates

5. A qubit-specific measurement capability

|000...000⟩

DiVincenzo’s Criteria D. DiVincenzo, arXiv: quant-ph/0002077

Brief History of Quantum Computing

Credit: Quantumpedia

• A qubit is a quantum state of a two-level quantum system

• Orthonormal basis states denoted as

• A general qubit can be represented by a linear superposition of
basis states,

|0⟩ = (1
0), |1⟩ = (0

1)
|ψ⟩ = α |0⟩ + β |1⟩, α, β ∈ C, |α |2 + |β |2 = 1

What is a Qubit

[Nano Convergence 11, 11 (2024)]

| + ⟩ =
|0⟩ + |1⟩

2
| − ⟩ =

|0⟩ − |1⟩

2

|Φ+⟩ =
|00⟩ + |11⟩

2
|Φ+⟩ =

|00⟩ − |11⟩

2

|Ψ+⟩ =
|01⟩ + |10⟩

2
|Ψ−⟩ =

|01⟩ − |10⟩

2
Bell states

• Quantum gates are represented by unitary matrix
and operated on qubits

• Single qubit gates: X, Y, Z, H, P, T, …

• Two qubit gates: CNOT, CZ, …

• Universal quantum gate sets: approximate any

unitary gate by any precision

• Choose one of the possible universal gates set

(Solovay-Kitaev theorem)

• {CNOT, H, T}
• {CNOT, all single qubit gates}
• {Toffoli, H}

•

•

X |0⟩ = |1⟩, | + ⟩ = H |0⟩
CNOT |01⟩ = |01⟩, CNOT |11⟩ = |10⟩

Quantum Gates

Simulation of quantum computer on classical computer needs exponential resource

Y. Liu et.al. SC’ 21

Current quantum computers are in the NISQ (Noisy Intermediate-Scale Quantum) era

• Real hardwares are very noisy
• Error mitigation / correction is essential
• Need classical simulator to verify the quantum algorithms, while need memory to

simulate the quantum circuits
O(2N)

• Many high quality quantum computing softwares available
• Curated list of open-source quantum software projects

• Most based on Python interfaced with C++
• https://github.com/qosf/awesome-quantum-software

• Drag and drop playing with quantum circuits (https://qc.ihep.ac.cn)
• If you want to try the high performance GPU simulator, please contact me

Quantum Programming Softwares

https://github.com/qosf/awesome-quantum-software
https://qc.ihep.ac.cn

• Compare the time complexity

• Try to implement the algorithms with popular qiskit package

• pip install qiskit, play with jupyter notebook

Quantum Algorithms
https://quantumalgorithmzoo.org/

|Φ+⟩ =
|00⟩ + |11⟩

2

• Quafu from Beijing Academy of Quantum Information Sciences [https://quafu.baqis.ac.cn]

• pip install pyquafu

Running on real hardwares

Some other quantum cloud platform: OriginQ (not free)

Application of Quantum Computing in HEP
Ex

pe
rim

en
t

Theory

Quantum machine learning for HEP experiments

• Classification of particle collision events
• Particle track reconstruction • W. Guan et al, Mach. Learn.: Sci. Technol. 2021

Quantum simulation of quantum field theories

• 1+1 dimensional model on atomic, optical,

trapped ion, superconducting qubits • C. Bauer et al., PRX Quantum 4, 027001, 2023

Summary of the QC4HEP Working Group [arXiv: 2307.03236]

The Future - Hybrid Quantum Classical Computing

• Covered the very basics of quantum computing, including qubits, quantum gates,
quantum programming softwares and running jobs on real hardware.

• Further reading: plenty of useful online resources

Summary and Further Reading

A practical introduction to quantum computing(CERN): https://indico.cern.ch/event/970903/
If you are interested in parallel and quantum computing, and want more in-depth discussion,
please contact me (sunwei@ihep.ac.cn)

mailto:sunwei@ihep.ac.c

