

CEPC Klystron development progress in EDR

周祖圣

高功率&高效率速调管研制团队

CEPC Day, Mar. 25, 2024, Main building, A415

主要内容

■ 工作进展

- 高效率样管测试
- 多注速调管 (MBK) 加工
- 0-1课题进展
- 能量回收型速调管设计
- C波段速调管
- 超导腔水平测试配套
 - 长电缆打火保护
 - 低电平控制
 - 功率分配与传输系统

■ 下一步计划

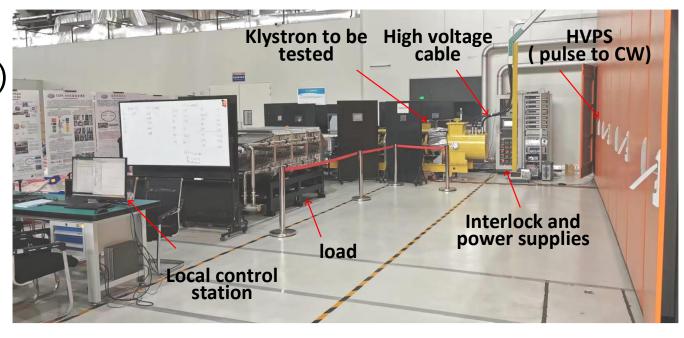
1.高效率速调管测试

主要时间点

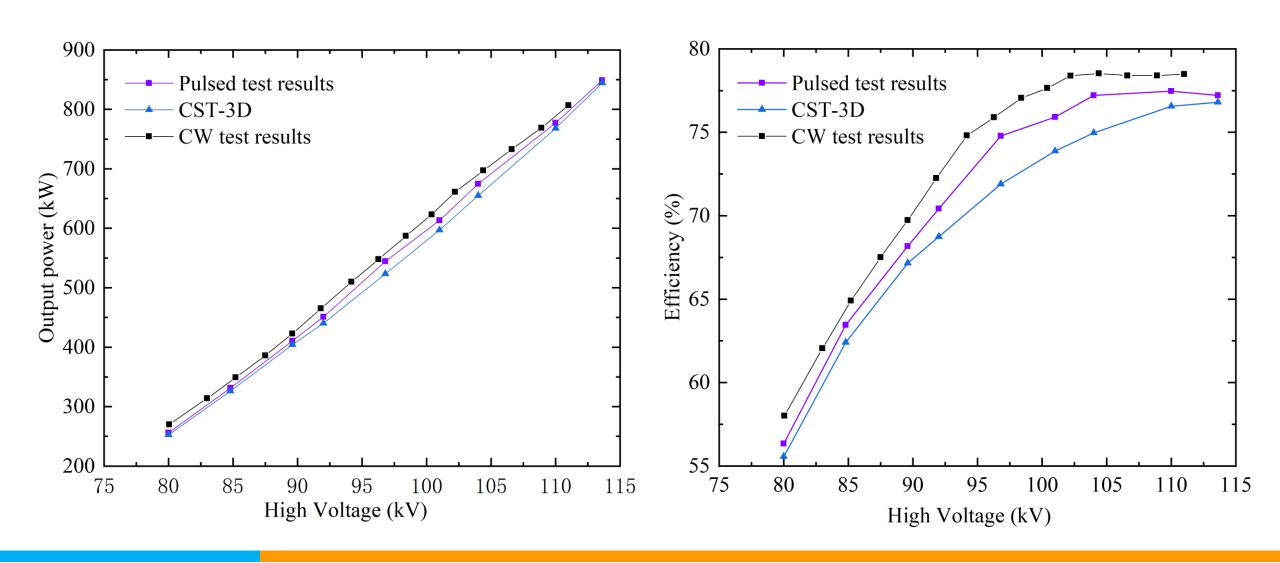
■ 01月11日:速调管运抵怀柔现场;

02月02日: 专家组测试(脉冲模式)

- 06月03日:复现2月测试结果


- 06月18日:10%占空比-满功率

■ 07月10日:50%占空比-满功率


■ 07月15日: 连续波-600kW

■ 07月16日:连续波-700kW

■ 07月23日: 连续波-800kW (max. 809kW)

测试结果

2.多注速调管(MBK)加工

■ 截止到7月25日,MBK速调管3号、4号、5号、6号腔已经完成了焊接、检漏和调谐工作,7号腔在零件还在加工中,预计8月初完成零件加工。

3号腔 4号腔 5号腔 6号腔

多注速调管(MBK)加工

- 目前已经研制好的各腔体参数情况如下表:

腔体序号	2号腔	3号腔	4号腔	5号腔	6号腔
设计频率(MHz)	651.2	1296	1942.5	670	671
焊接前测量频率(MHz)	651. 237	1303.99	1936. 875	666. 9375	670. 3125
焊接后测量频率(MHz)	649. 375	1290. 5	1937. 4719	667. 21875	669. 7356
调谐后测量频率(MHz)	651. 1625	1295. 75	1942. 3249	669. 8125	670. 7325
进行温湿度矫正后设计频率 (MHz)	651. 108	1295. 624	1941. 983	669. 819	670. 844

18°C RH% 45% 22°C RH% 56% 21°C RH% 52% 21.5°C RH% 47% 20°C RH% 38%

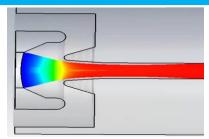
2023/2/17 2024/5/30 2024/7/23 2024/6/21 2024/5/6

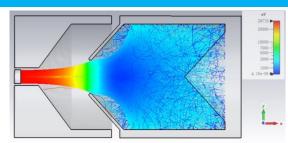
3.0-1课题-能量回收电源

■ 能量回收电源主要时间点:

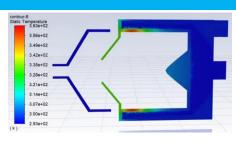
- 23年06月02日签订课题任务书
- 23年06月20日设计方案评审
- 23年10月16日实施方案评审
- 23年11月10日合同签订
- 24年03月21日出厂测试评审
- 24年04月23日运抵高能所
- 24年05月07日完成现场验收

项目	阴极电源	收集极电源	灯丝电源
输出电压	-15kV∼-30kV	1500V~3000V	-10~-15V
输出平均电流	≤200mA	≤4.5A	≤40A
稳定度	$\leq 10^{-3}$	$\leq 10^{-2}$	$\leq 10^{-2}$
输出纹波	$\leq 10^{-3}$	$\leq 10^{-3}$	$\leq 10^{-2}$




收集极样机

■ 收集极样机主要时间点:


- 23年06月完成电子枪设计
- 23年09月完成收集极设计
- 23年10月完成冷却系统设计
- 23年12月完成样机陶瓷绝缘结构设计
- 23年12月完成机械机构设计设计
- 24年03月启动机械加工
- 24年06月完成整体装配和排气
- 24年07月03日运抵高能所

验证样机电子枪

收集极束流光学

水冷系统热分析

阴极激活

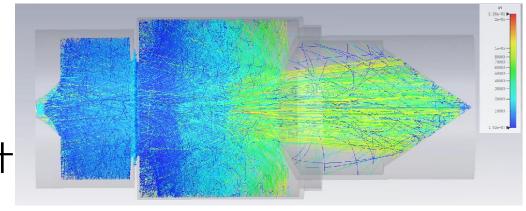
电子枪阴极及聚焦极焊接

排气炉排气

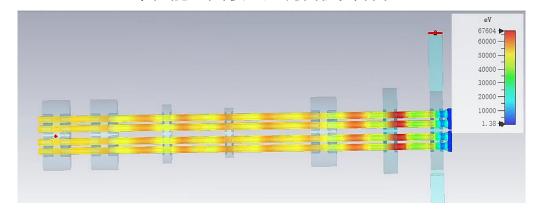
样机到货开箱检查

样机到货真空情况

能量回收样机


- 能量回收型样机测试准备:

- 完成冷高压老练,真空正常
- 完成测试平台搭建(水、电、流量、温度、离子流等联锁控制)
- 完成阴极灯丝加电
- 正在进行加高压实验

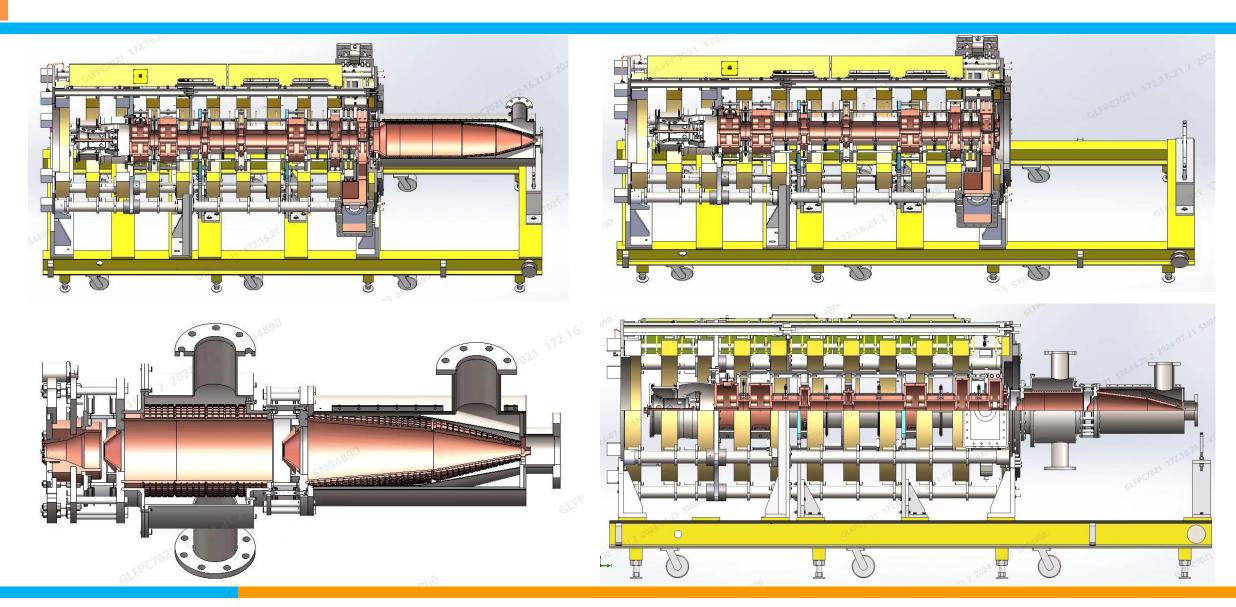


4. 能量回收型速调管设计

- 单注能量回收型速调管设计:
 - 完成理论分析,获得初步设计参数
 - 完成三维仿真,获得初步结构参数
 - 下一步将继续结构优化,完成冷却及绝缘设计
- 多注能量回收型速调管设计:
 - 通过数据分析,获得初步设计参数
 - 正进行束流动力学模拟

单柱能量回收型速调管仿真结果

多柱能量回收型速调管初步仿真结果


设计比较

以输出功率700kW,速调管在线性区实际工作效率-----65%

650MHz单注高效率速调管					
级数	效率	各极电位			
单极降压	72.92%	17.3kV			
二极降压	79.38%	17.2kV 113kV			
三极降压	82.95%	16.7kV 33.9kV 113kV			

650MHz多注速调管				
级数	效率	各极电位		
单极降压	75.16%	29.5kV		
二极降压	81.46%	17.7kV 54kV		
三极降压	86.10%	6.8kV 24.2kV 54kV		

能量回收型速调管 (多注)

能量回收型速调管用高压电源

- 能量回收型速调管用高压电源
 - 采用多路高压电源并联工作模式,每路高压电源采用LCC电源拓朴形式,每个电源模块最大功率在100kW
 - 输出参数: 120kV/1A, 60kV/2A
 - 可用于单注高效率速调管、多注速调管、单注能量回收型速调管和多注能量回收型速调管等多种管型的测试
 - 初步设计已完成,下一步将细化方案后进行设计评审

5. C波段高脉冲速调管

■物理设计

- 5月12日邀请所内外相关专家进行了物理设计评审。设计方案合理可行,设计结果达到预期目标,可进行下一步的结构和工艺设计。
- 结构和工艺设计已基本完成,将协调相关专家时间后进行评审。

C 波段 80MW 脉冲速调管物理设计 评审意见

2024 年 5 月 12 日,CEPC 项目组在高能所组织召开 C 波段 (5712MHz) 80MW 脉冲速调管物理设计评审会(现场+视频)。来自中国科学院空天信息创新研究院、电子科技大学、东南大学、中国科学院上海高等研究院、中国原子能科学研究院和中国科学院高能物理研究所等 9 位专家(名单见附件),听取了项目组作的《Design of gun, magnet and collector for C band 80MW klystron》和《Beam dynamic design for C band 80MW klystron》报告。经质询和认真讨论,专家组提出如下建议:

- 1、优化高频互作用段的设计,研究进一步提高效率和功率的可能性。
 - 2、考虑收集极二次电子返流对速调管稳定性的影响。
 - 3、研究谐振腔高次模对速调管性能的影响。

专家组认为:设计方案合理可行,设计结果达到预期目标,可进行下一步的结构和工艺设计。

平申组长:) 表 表 日期: 2024年5月12月

C 波段 80MW 速调管物理设计评审会 议 日 程

会议时间: 2024年5月12日(周日)14:00

会议地点:中国科学院高能物理研究所2#厅2楼会议室

Zoom Meeting ID: 95338275315, Password: 000000

时 间	内 容	主持人			
14:00~14:10	领导讲话及介绍评审专家	周祖圣			
14-10 14-40	Design of gun, magnet and collector Munaware Iqbal				
14:10~14:40	for C band 80MW klystron				
14.40 15.10	Beam dynamic design for C band Abid Aleem		专家组长		
14:40-15:10	80MW klystron				
15:10~16:30	16:30 讨论并形成评审意见				

评审专家:

丁耀根 研究员 中国科学院空天信息创新研究院

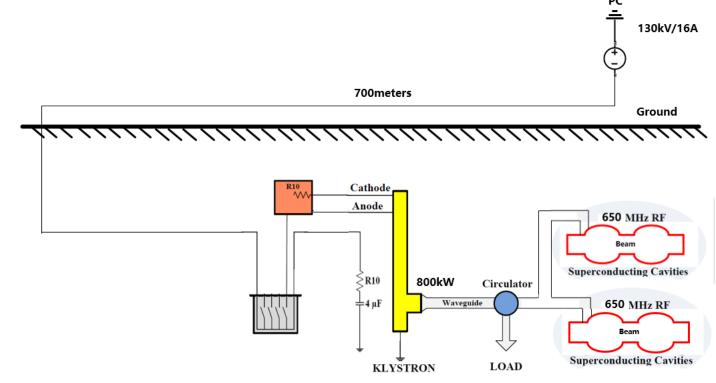
段兆云 教 授 电子科技大学

王琦龙 教 授 东南大学

刘 波 研究员 中国科学院上海高等研究院

杨京鹤 正高级工程师 中国原子能科学研究院

高 杰 研究员 中国科学院高能物理研究所

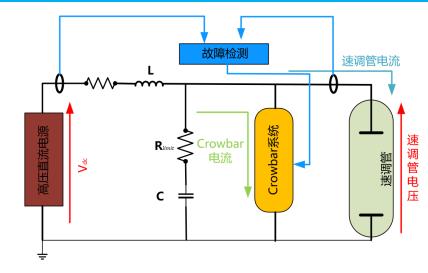

裴国玺 研究员 中国科学院高能物理研究所

李京祎 研究员 中国科学院高能物理研究所

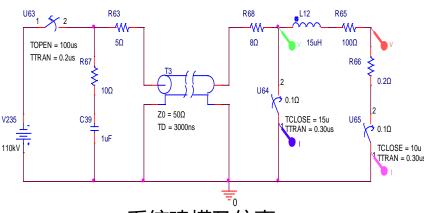
张敬如 研究员 中国科学院高能物理研究所

6. 超导腔水平测试配套-长电缆打火保护

- 基于650MHz超导腔测试平台
 - PAPS C厅(速调管位置)-A厅(水平测试坑)约80m
- 打火保护技术参数
 - 耐压等级120kV;
 - 响应时间: ≦5us;
 - 能量限制: ≦10J;


CEPC TDR CW速调管结构布局示意图

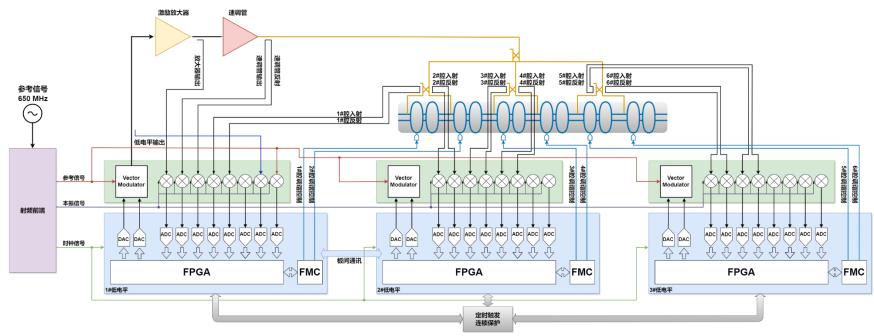
长电缆打火保护


- 完成技术方案设计

- 在速调管一端并联Crowbar, 在速调管打火, 迅速触发Crowbar, 将能量瞬间旁路泄放掉
- 完成长距离传输电缆分布电容放电能量分析
- 完成PSM高压直流电源放电仿真及测试
- 完成系统建模及系统仿真、能量计算及验证方法设计
- 将协调专家时间,尽快完成方案评审,进行实验验证

电缆长度	12.5m	50m	80m	100m	200m	300m	600m	1000m
电缆储能	9.6J	38J	<mark>61J</mark>	<mark>76J</mark>	153J	230J	460J	<mark>766J</mark>

高压直流长距离传输打火保护结构示意图



系统建模及仿真

低电平控制系统

■ 方案设计:

- 6个2-cell超导腔由一套速调管功率源系统驱动
- 低电平系统采用国产MicroTCA平台,包含3套控制板卡
- 采用基于矢量和的多腔控制算法,实现一套功率源驱动下6个超导腔幅度相位频率的同步控制

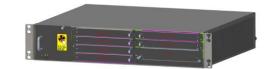
低电平控制系统

■ 研制进展:

- 软件
 - 完成了国产低电平控制板卡底层固件的开发
 - 正在进行低电平算法的移植、多腔控制算法的研发、上层EPICS应用的开发

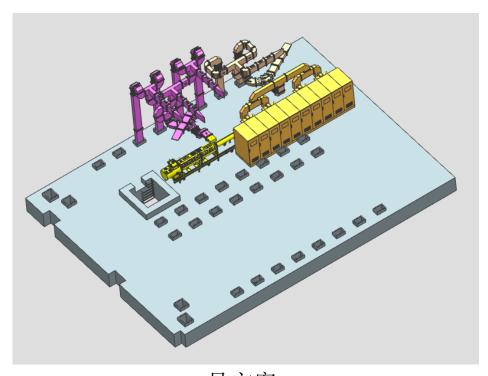
- 硬件

- 完成了超导腔调谐控制板卡的调研与采购,正在进行板间通讯程序的开发与调试
- 机箱电源、CPU板卡、FPGA控制板卡等国产MicroTCA硬件已完成研发,正在开始 采购流程



超导腔调谐控制板卡

调谐控制子卡



部分国产化MicroTCA硬件

功率分配与传输系统

- 基于PAPS 2A厅屏蔽间顶部空间,进行相关功率分配及传输系统布局
 - 3月布局——由速调管1to4&固放1to2
 - 8月布局——速调管1带6超导腔,将尽快进行方案评审。

5766

8月方案

3月方案

下一步计划

- 650MHz高效率样管高功率测试、验收or鉴定
- 650MHz高效率速调管量产实施方案评审和样管研制情况总结
 - 优化输出腔结构,提高电子注填充因子,提高电子枪高压
 - 完善剂量屏蔽/腔体频率控制.....
- C波段速调管机械与工艺设计评审
- 完成MBK加工及高功率测试准备
- 完成基于MBK进行能量回收速调管物理设计
- 完成P波段和C波段谐振环研制
- 完成超导腔水平测试配套国产低电平、打火保护、功率分配与传输等研制

谢谢大家