

Global Performance

Manqi Ruan

中國科學院為能物品加完所 Institute of High Energy Physics Chinese Academy of Sciences

Aug. 7th, 2024, CEPC Detector Ref-TDR Review

- Introduction: Physics benchmarks & relevant Global performance
- Status of CEPC Physics Studies
 - Snowmass studies
 - Key technologies: Jet origin id & its application
- Physics benchmarks at CDR detector
- Comparison between CDR and Ref-TDR detector: Pid, VTX & PFA.
- Physics benchmarks at Ref-TDR
- Challenges and team
- Summary

Physics Benchmarks & Global Performances

Processes @ c.m.s.		Domain	Total Det. Performance	Sub-D
H->ss/cc/sb	vvH @ 240 GeV	Higgs	PFA + JOI (Jet origin id)	All sub-D, especially VTX
H->inv	H->inv qqH Higg		PFA	All
Vcb	WW@ 240/160 GeV	Flavor	JOI + Particle (lepton) id	All
W fusion Xsec	vvH @ 360 GeV	Higgs	PFA + JOI	All
α_{s}	Z->tautau @ 91.2 GeV	QCD	PFA: Tau & Tau final state id	ECAL + Tracker material
B->DK	91.2 GeV	Flavor	PFA + Particle (Kaon) id	All, especially Tracker & ToF
Weak mixing angle	Z	EW	IOI	All
Higgs recoil	IIH	Higgs	Leptons id, track dP/P	Tracker, All
H->bb, cc, gg	vvH	Higgs	PFA + JOI	All
	qqH	Higgs	PFA + JOI + Color Singlet id	All
H->di muon	qqH	Higgs	PFA, Leptons id	Calo, All
H->di photon	qqH	Higgs	PFA, Photons id	ECAL, All
W mass & Width	WW@160 GeV	EW	Beam energy	NAN
Top mass & Width	ttbar@360 GeV	EW	Beam energy	NAN
			·	
Bs->vvPhi	Z	Flavor	Object in jets; MET	All
Bc->tauv	Z	Flavor	-	All
B0->2 pi0 Z		Flavor	Particle/pi-0 in jets	ECAL

Physics Study : Status

- Higgs: Precisions exceed HL-LHC ~ 1 order of magnitude.
 - EW: Precision improved from current limit by 1-2 orders.
 - Flavor Physics, sensitive to NP of 10 TeV or even higher.
 - Sensitive to varies of NP signal.
- ..

200

250

100 150

Mag [GeV]

3000

1000

CEPC Physics Studies at Snowmass

The Physics potential of the CEPC

Prepared for the US Snowmass Community Planning Exercise

(Snowmass 2021)

CEPC Physics Study Grou	ly Group
-------------------------	----------

	$240{ m GeV}$	$V, 20 \text{ ab}^{-1}$	360	GeV, 1 :	ab^{-1}
	ZH	\mathbf{vvH}	ZH	vvH	eeH
inclusive	0.26%		1.40%	\	\
H→bb	0.14%	1.59%	0.90%	1.10%	4.30%
H→cc	2.02%		8.80%	16%	20%
H→gg	0.81%		3.40%	4.50%	12%
H→WW	0.53%		2.80%	4.40%	6.50%
$H \rightarrow ZZ$	4.17%		20%	21%	
$H \to \tau \tau$	0.42%		2.10%	4.20%	7.50%
$H \rightarrow \gamma \gamma$	3.02%		11%	16%	
$H ightarrow \mu \mu$	6.36%		41%	57%	
$H \rightarrow Z \gamma$	8.50%		35%		
$Br_{upper}(H \to inv.)$	0.13%				
Γ_H	1.65%			1.10%	

arXiv:2205.08553v1

Jet Origin ID

$ \begin{array}{c} \mathbf{F} & 0.738 & 0.167 & 0.034 & 0.026 & 0.005 & 0.003 & 0.002 & 0.003 & 0.002 & 0.003 & 0.002 & 0.003 & 0.001 \\ \hline \mathbf{F} & 0.167 & 0.737 & 0.026 & 0.034 & 0.003 & 0.004 & 0.003 & 0.002 & 0.003 & 0.001 & 0.001 \\ \hline \mathbf{C} & 0.015 & 0.015 & 0.015 & 0.055 & 0.037 & 0.032 & 0.032 & 0.003 & 0.002 & 0.003 & 0.001 & 0.003 \\ \hline \mathbf{C} & 0.015 & 0.015 & 0.015 & 0.057 & 0.037 & 0.032 & 0.003 & 0.002 & 0.003 & 0.001 & 0.003 \\ \hline \mathbf{C} & 0.015 & 0.015 & 0.015 & 0.015 & 0.037 & 0.032 & 0.033 & 0.010 & 0.026 & 0.016 & 0.010 & 0.041 \\ \hline \mathbf{C} & 0.003 & 0.003 & 0.020 & 0.018 & 0.511 & 0.014 & 0.030 & 0.025 & 0.025 & 0.045 & 0.016 & 0.016 \\ \hline \mathbf{C} & 0.003 & 0.003 & 0.013 & 0.012 & 0.014 & 0.132 & 0.375 & 0.057 & 0.079 & 0.168 & 0.107 \\ \hline \mathbf{C} & 0.003 & 0.003 & 0.012 & 0.020 & 0.111 & 0.033 & 0.035 & 0.23 & 0.261 & 0.036 & 0.164 \\ \hline \mathbf{C} & 0.003 & 0.003 & 0.012 & 0.012 & 0.011 & 0.093 & 0.083 & 0.23 & 0.261 & 0.080 & 0.11 \\ \hline \mathbf{C} & 0.003 & 0.003 & 0.012 & 0.012 & 0.011 & 0.093 & 0.083 & 0.23 & 0.07 & 0.166 & 0.164 & 0.107 \\ \hline \mathbf{C} & 0.003 & 0.003 & 0.012 & 0.013 & 0.013 & 0.013 & 0.033 & 0.033 & 0.035 & 0.014 & 0.033 & 0.035 & 0.014 \\ \hline \mathbf{C} & 0.003 & 0.003 & 0.012 & 0.013 & 0.013 & 0.013 & 0.013 & 0.014 & 0.033 & 0.033 & 0.035 & 0.014 & 0.033 & 0.035 & 0.014 \\ \hline \mathbf{C} & 0.003 & 0.003 & 0.003 & 0.005 & 0.015 & 0.005 & 0.013 & 0.013 & 0.014 & 0.033 & 0.035 & 0.014 \\ \hline \mathbf{C} & 0.003 & 0.003 & 0.005 & 0.005 & 0.053 & 0.053 & 0.053 & 0.054 & 0.014 & 0.033 & 0.035 & 0.056 \\ \hline \mathbf{C} & 0.005 & 0.005 & 0.055 & 0.055 & 0.055 & 0.055$		h											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		<i>D</i> -	0.738	0.167	0.034	0.026	0.005	0.003	0.002	0.003	0.002	0.002	0.018
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Ъ -	0.167	0.737	0.026	0.034	0.003	0.004	0.003	0.002	0.002	0.003	0.018
$ \begin{bmatrix} \bar{c} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & $		с-	0.015	0.015	0.740	0.057	0.037	0.032	0.026	0.010	0.009	0.017	0.043
s 0.003 0.003 0.020 0.018 0.104 0.104 0.030 0.022 0.002 0.019 0.019 0.101 0.103 0.030 0.022 0.019 0.019 0.101 0.543 0.035 0.023 0.014 0.019 0.019 0.019 0.011 0.543 0.055 0.025 0.019 0.0		. -	0.015	0.015	0.055	0.741	0.032	0.037	0.010	0.026	0.016	0.010	0.043
B S 0.002 0.003 0.018 0.021 0.101 0.543 0.085 0.028 0.044 0.029 0.093 u 0.002 0.003 0.019 0.012 0.044 0.132 0.375 0.057 0.079 0.168 0.199 u 0.003 0.002 0.011 0.020 0.132 0.043 0.062 0.368 0.166 0.064 0.199 u 0.003 0.002 0.011 0.020 0.111 0.093 0.062 0.263 0.264 0.064 0.199 u 0.003 0.003 0.012 0.010 0.111 0.093 0.026 0.273 0.264 0.064 0.114 u 0.003 0.003 0.013 0.025 0.013 0.013 0.026 0.013 0.026 0.014 0.024 0.014 0.025 0.013 0.013 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014		s -	0.003	0.003	0.020	0.018	0.541	0.104	0.030	0.082	0.062	0.045	0.092
u · 0.002 0.003 0.019 0.012 0.044 0.132 0.375 0.057 0.079 0.168 0.167 u · 0.003 0.002 0.011 0.020 0.132 0.043 0.062 0.368 0.166 0.064 0.071 d · 0.003 0.003 0.012 0.020 0.111 0.093 0.083 0.223 0.261 0.060 0.111 d · 0.003 0.003 0.020 0.013 0.093 0.113 0.226 0.079 0.076 0.265 0.114 d · 0.015 0.014 0.025 0.025 0.053 0.053 0.043 0.044 0.033 0.035 0.666	True	<u>s</u> -	0.002	0.003	0.018	0.021	0.101	0.543	0.085	0.028	0.044	0.062	0.092
\$\overline{U}\$ - \$0.003 0.002 0.011 0.020 0.132 0.043 0.062 0.368 0.166 0.084 0.101 \$d\$ - \$0.003 0.003 0.012 0.020 0.111 0.093 0.083 0.223 0.261 0.060 0.111 \$d\$ - \$0.003 0.003 0.020 0.013 0.093 0.113 0.226 0.079 0.076 0.265 0.114 \$d\$ - \$0.015 0.014 0.025 0.025 0.053 0.053 0.044 0.043 0.033 0.036 0.666 \$d\$ - \$\$ \$\$ <t< td=""><td></td><td>u -</td><td>0.002</td><td>0.003</td><td>0.019</td><td>0.012</td><td>0.044</td><td>0.132</td><td>0.375</td><td>0.057</td><td>0.079</td><td>0.168</td><td>0.109</td></t<>		u -	0.002	0.003	0.019	0.012	0.044	0.132	0.375	0.057	0.079	0.168	0.109
d - 0.003 0.003 0.012 0.020 0.111 0.093 0.083 0.223 0.261 0.080 0.114 d - 0.003 0.003 0.020 0.013 0.093 0.113 0.226 0.079 0.076 0.265 0.114 G - 0.015 0.014 0.025 0.025 0.053 0.043 0.044 0.033 0.036 0.666		u -	0.003	0.002	0.011	0.020	0.132	0.043	0.062	0.368	0.166	0.084	0.108
\$\vec{d}\$ - 0.003 0.003 0.003 0.020 0.013 0.093 0.113 0.226 0.079 0.076 0.265 0.114 \$\vec{G}\$ - 0.015 0.014 0.025 0.025 0.053 0.053 0.043 0.044 0.033 0.035 0.066 \$\vec{b}\$ = \vec{b}\$ - \vec{b}\$ - \vec{b}\$ = \vec{b}\$ - \vec{b}\$ - \vec{b}\$ = \vec{b}\$ - \vec{b}\$ - \vec{b}\$ - \vec{b}\$ = \vec{b}\$ - \v		d -	0.003	0.003	0.012	0.020	0.111	0.093	0.083	0.223	0.261	0.080	0.110
G - 0.015 0.014 0.025 0.025 0.053 0.053 0.043 0.044 0.033 0.035 0.66		d -	0.003	0.003	0.020	0.013	0.093	0.113	0.226	0.079	0.076	0.265	0.110
		G -	0.015	0.014	0.025	0.025	0.053	0.053	0.043	0.044	0.033	0.035	0.661
			b	$\frac{1}{b}$	Ċ	ċ	s	5	ů	ū	d	$\frac{1}{d}$	Ġ

- Jet origin identification: 11 categories (5 quarks + 5 anti quarks + gluon)
 - Jet Flavor Tagging + Jet Charge measurements + s-tagging + gluon tagging...
- Full Simulated vvH, Higgs to two jets sample at CEPC baseline configuration: CEPC-v4 detector, reconstructed with Arbor + ParticleNet (Deep Learning Tech.)
- 1 Million samples each, 60/20/20% for training, validation & test

Physics benchmarks: H->ss

Physics benchmarks: H→cc & Vcb

- Vcb: $0.75\% \rightarrow 0.45\%$ (muvgg channel. evgg: 0.6%, combined 0.4%)

Physics Benchmarks using CDR baseline

		Anticipated relative	Using Jet Origin id
	Processes @ c.m.s.	accuracies/up limit with CDR	with ideal Kaon id
		baseline detector + TDR	
		Luminosity	
H->cc		3% (Snowmass)	1.7%
H->ss	vvH @ 240 GeV	NAN	95% up limit of 0.75E-3
H->sb		NAN	95% up limit of 0.22E-3
H->inv	qqH @ 240 GeV	95% up limit of 0.13%	
Vcb	WW->lvqq @ 240/160 GeV	0.65%	0.4%
W fusion Xsec	vvH @ 360 GeV	1.1%	
α_s	Z->tautau @ 91.2 GeV	NAN	
B->DK	Z->bb @ 91.2 GeV	NAN	

Det. Concepts: CDR to TDR

- The TDR detector has
- Better Pid via
- dE/dx or dN/dx from Gaseous detector
- ToF of 50 ps
- Better Jet origin identification via a Stitching VTX detector:
- Inner radius reduced from 26 mm to 20 mm)
- Material budget reduced by 1/2 compared to CDR
- PFA compatible Calorimeter with larger sampling fractions:
- Glass Scintillator HCAL
- Xstal ECAL

Pid via ToF + dE/dx or dN/dx

dE/dx or dN/dx with relevant uncertainty of 3% + ToF of 50 ps: eff & purity of Kaon id > 95%

dE/dx or dN/dx @ ref-TDR goal

Performance from simulation

- Full simulation framework of pixelated TPC developed using Garfied++ and Geant4 at IHEP
- Investigating the π/κ separation power using reconstructed clusters, **a** 3σ separation at 20GeV with 50cm drift length can be achieved

Develop sophisticated software tools for DC PID simulation

DC R&D efforts and results

International collaboration of the beam test

- A major goal for the Ref-TDR Gaseous Tracker is the Pid: to achieve 3% dE/dx or dN/dx performance.
- Promising results, to be validated with further studies, especially test beam.
- Gaseous Tracker inner radius: to be optimized.

VTX and Jet Flavor/Charge measurement

- Compared to CDR, VTX at TDR:
 - Inner radius reduced by 30% (26 mm -> 20 mm)
- Material reduced by 1/2 (Stitching Technology)
- Tr(Mig): 2.64 -> 2.7

- H->cc accuracy improved by ~o(10%)
- Vcb accuracy improved by ~o(20%)

PFA Goal: BMR < 4% & pursue 3%

14

BMR Decomposition

1st, 50% from Confusion, 25% from detector resolution & 25% from acceptance, for BMR of 3.7% at CDR

2nd, HCAL resolution dominant the uncertainties from detector resolution: TDR HCAL: Glass Scintillator - Iron with thickness of 6 lambda (compared to GRPC - Iron of 5 lambda) BMR of 3.4%

BMR of ~ 4% at TDR baseline

- BMR at ref-TDR: not far from CDR (BMR of 3.7%).
- **To control the confusion (fake particles, etc) is the critical: Need optimization + reconstruction development.**

Physics Benchmarks at CDR & TDR

		Anticipated relative	@ Ref TDR
	Processes @ c.m.s.	accuracies/up limit with CDR	
		baseline detector + TDR	
		Luminosity, with Jol	
H->cc		1.7%	1.5%
H->ss [1]	vvH @ 240 GeV	95% up limit of 0.75E-3	95% up limit of 0.68E-3
H->sb [1]		95% up limit of 0.22E-3	95% up limit of 0.20E-3
H->inv [2]	qqH @ 240 GeV	95% up limit of 0.13%	0.13%
Vcb [3]	WW->lvqq @ 240/160 GeV	0.4%	0.32%
W fusion Xsec [2]	vvH @ 360 GeV	1.1%	~1%
α_s	Z->tautau @ 91.2 GeV	NAN	Theoretical uncertainty
			dominant
B->DK	Z->bb @ 91.2 GeV	NAN	~o(0.1) degree

[1] H. Liang, et al, PHYSICAL REVIEW LETTERS 132, 221802 (2024)
[2] CEPC Phy-Det Snowmass White Paper, arXiv:2205.08553v1

[3] H. Liang, Ph.D thesis

[4] Z. Zhao, et al., Chinese Physics C Vol. 47, No. 12 (2023) 123002 [5] Z. Yang, et al., Chinese Physics C Vol. 41, No. 2 (2017) 023003 [6] P. Shen, et al., Eur. Phys. J. C (2020) 80:66

[7] Z. Li, et al., arXiv:2207.12177

[8] Y. Wang, et al., PHYSICAL REVIEW D 105, 114036 (2022)

[9] T. Zheng, et al., Chinese Physics C Vol. 45, No. 2 (2021) 023001

[10] Y. Wang, et al., JHEP12(2022)135

17

Physics Benchmarks at CDR & TDR

	Processes @ c.m.s.	Anticipated relative accuracies/up limit with CDR baseline detector + TDR Luminosity	@ Ref TDR
Weak mixing angle [4]	Z	2.4E-6 using 1 month of Z pole data (~ 2E11 Z)	~ 10% improvement due to VTX
Higgs recoil [5]	IIH	δm = 2.5 MeV $\delta \sigma / \sigma$ = 0.25%/0.4% (wi/wo qqH)	Same
H->bb, cc, gg [2]	vvH + qqH	bb: 0.14% -> 0.13% gg: 0.81% -> 0.65% (wi/wo Jol)	bb: 0.12% gg: 0.60%
H->di muon [2]	qqH	6.4%	Same
H->di photon [2]	qqH	3%	1.8% if low mass tail could be controlled
W mass & Width [6]	WW@160 GeV	0.7 MeV & 2.4 MeV @ 6 iab	Same
Top mass & Width [7]	ttbar@360 GeV	9 MeV & 26 MeV @ 100 ifb	Same
Bs-> <i>vvф</i> [8]	Z	0.9% (1.8% @ Tera-Z)	Same
Bc->tauv [9]	Z	0.35% (0.7%@Tera-Z)	Same
B0->2 pi0 [10]	Z	NAN	0.3%
			photon finding need to be validated

If BMR of 3% achieved, precisions of all Higgs benchmarks could be further improved for 5-10%

Team

- Core team: ~ 2 staff (FTE) + 2 PostDoc + 5 Students + 2 Visitors
- Performance: with sub-detector team
- Advanced Algorithms: collaboration with PKU, LLR & CERN
- Benchmark: in pace with physics white paper efforts
 - Higgs: Yaquan Fang (IHEP)
 - Flavor Physics: Tao Liu (HKUST), Lorenzo (NKU), Shanzhen Chen(IHEP) etc
 - New Physics: Xuai Zhuang (IHEP), Mengchao Zhang (JNU)
 - EW: Zhijun Liang (IHEP), Jiayin Gu (FuDan U), Siqi Yang (USTC)
 - QCD: Zhao Li (IHEP), Meng Xiao (ZJU), Huaxing Zhu (PKU)
- Physics studies in communication with ECFA physics focus studies.

- Intensive CEPC Physics studies
- Well quantified Physics Merits
- Iterates with Detector R&D
- CEPC Ref-TDR detector provides
- Pid: critical for Physics.
- Better VTX: improves precisions on benchmark analysis by 10-20%
- PFA Compatible Calorimeter with larger samplings: HCAL improves the BMR by ~10%, while for the Xbar ECAL the pattern recognition is challenging.
- To do:
- To quantify & to ameliorate the impact of Beam induced background, the T-DAQ effect, especially at Z pole
- To develop Smart Reco. Algo, especially with AI tools.

Thank you for your attention!

中國科學院為能物記納完所 Institute of High Energy Physics Chinese Academy of Sciences

Aug. 7th, 2024, CEPC Detector Ref-TDR Review

Back Up

Physics process: $ee \rightarrow ZH \rightarrow \nu\nu\gamma\gamma$ in $\sqrt{s} = 240$ GeV

- Full simulation and digitization, with energy correction in crack regions

JOI: validation & comparison

Stable at different Hadronization model, different simulation method (Geant 4 & Delphes - Fast Sim)

Referee: A "game changer" and opens new horizon for precise flavor studies at all future experiments

Challenges

- More realistic collision environments: Beam induced background, Primary IP reco, etc
 - To be addressed by a few benchmark performance study wi. Beam induced background & to be included in TDR
- Event overlap in time (Z pole):
 - To be solved by **PFA in Space time: Future Plan.**
- More Realistic Digitization, including Noise & TDAQ effects

+

- Further Optimization (5D Calorimerter, Time resolution, cell configuration, etc)
 - To be addressed by joint study with Sub-detector & Software team (Long term plan)
 - Al enhanced reco. algorithm. will be the key.

- Introduction: Physics requirements
- Recap of sub-detector performance, tracking, Pid, etc
- Detector global Performance:
 - BMR
 - Jol
 - Pid
 - Outlook: 1-1 correspondence reco.
- Physics Benchmarks
- Challenges & Plan
- Teams
- Summary

BMR Decomposition

1st, 50% from Confusion, 25% from detector resolution & 25% from acceptance, for BMR of 3.7% at CDR

- 2nd, HCAL resolution dominant the uncertainties from detector resolution: TDR HCAL: Glass Scintillator - Iron with thickness of 6 lambda (compared to GRPC - Iron of 5 lambda) BMR of 3.4%
- 3rd, Leading contribution: Confusion from shower Fragments (fake particles), need better Pattern Reco. Mostly can be reduced by AI enhanced Arbor at SiW ECAL + GS HCAL: <u>BMR of 2.9%</u>

BMR of ~ 4% at TDR baseline

Physics performance: $H \rightarrow gg$

• Physics process: ee
ightarrow ZH
ightarrow
u
u gg in $\sqrt{s} = 240$ GeV

• Full reconstruction in CEPC detector: Silicon + TPC tracker, crystal ECAL, glass tile HCAL.

- BMR at ref-TDR: not far from CDR (BMR of 3.7%).
- **To control the confusion (fake particles, etc) is the critical: Need optimization + reconstruction development.**
- One solution is to add a few timing & positioning layers.

Fake particle veto using AI

BMR @ CDR & AURORA: 3.7% & 2.9%

JOI: tagging efficiency & flip rates

Kaon id: a must

Could be calibrated on Z->qq events, and is relatively stable VS hadronization models, etc

Pid of all final state particle...

 $nCluHit != 0 \& E > 1 GeV \& |cos\theta| < 0.9$

At vvH, H->gg events @ 240 GeV, Using AURORA, No TPC dE/dx Digitization.

1-1 correspondence between Reco particle & real particle in detector fiducial volume

Confusion free PFA + Particle Identification

Impact on Jol

M11 2

PID l^{\pm}, K^{\pm}

0.75-0.77 0.73-0.75 0.70-0.73 0.67-0.70

0.65-0.67

0.60 - 0.65

0.50-0.60

0.38-0.50 0.34-0.38

0.30 - 0.34

0.25 - 0.30

0.21-0.25

0.20-0.21

0.18-0.20

0.17-0.18

0.14-0.17

0.11-0.14

0.10-0.11

0.09-0.10

0.085-0.09

0.08-0.085

0.075-0.08

0.07-0.075

0.06-0.07

0.05-0.06

0.04-0.05

0.03-0.04

0.02-0.03

0.01-0.02

0.009

0.008

0.007

0.006

0.005

0.004

0.003

0.002

0.001

	b -	0.738	0.167	0.034	0.026	0.005	0.003	0.002	0.003	0.002	0.002	0.018
	<u></u> -	0.167	0.737	0.026	0.034	0.003	0.004	0.003	0.002	0.002	0.003	0.018
	с -	0.015	0.015	0.740	0.057	0.037	0.032	0.026	0.010	0.009	0.017	0.043
	. -	0.015	0.015	0.055	0.741	0.032	0.037	0.010	0.026	0.016	0.010	0.043
	s -	0.003	0.003	0.020	0.018	0.541	0.104	0.030	0.082	0.062	0.045	0.092
True	5 -	0.002	0.003	0.018	0.021	0.101	0.543	0.085	0.028	0.044	0.062	0.092
	u -	0.002	0.003	0.019	0.012	0.044	0.132	0.375	0.057	0.079	0.168	0.109
	u -	0.003	0.002	0.011	0.020	0.132	0.043	0.062	0.368	0.166	0.084	0.108
	d -	0.003	0.003	0.012	0.020	0.111	0.093	0.083	0.223	0.261	0.080	0.110
	d -	0.003	0.003	0.020	0.013	0.093	0.113	0.226	0.079	0.076	0.265	0.110
	G -	0.015	0.014	0.025	0.025	0.053	0.053	0.043	0.044	0.033	0.035	0.661
		b	$\frac{1}{b}$	ċ	$\frac{1}{c}$	s	5	ù	$\frac{1}{u}$	d	$\frac{1}{d}$	Ġ
	Predicted											

M11 4 b - 0.761 0.146 0.034 0.022 0.005 0.003 0.002 0.003 0.003 0.002 0.018 \overline{b} - 0.155 0.750 0.024 0.033 0.003 0.005 0.003 0.003 0.002 0.003 0.018 C - 0.016 0.014 0.751 0.049 0.042 0.033 0.021 0.008 0.009 0.017 0.039 \overline{C} - 0.015 0.017 0.051 0.745 0.034 0.044 0.008 0.022 0.016 0.010 0.039 *S* - 0.004 0.002 0.025 0.018 0.635 0.101 0.020 0.052 0.036 0.036 0.071 **₽** 5 - 0.002 0.003 0.019 0.024 0.101 0.637 0.050 0.019 0.036 0.035 0.073 *u* - 0.003 0.003 0.017 0.008 0.031 0.092 0.400 0.063 0.095 0.183 0.105 <u>u</u> - 0.003 0.003 0.009 0.015 0.089 0.03 0.067 0.396 0.191 0.092 0.105 *d* - 0.003 0.003 0.01 0.015 0.068 0.065 0.097 0.195 0.365 0.073 0.105 *ā* - 0.003 0.003 0.017 0.01 0.066 0.068 0.204 0.095 0.075 0.353 0.107 G - 0.015 0.014 0.024 0.023 0.049 0.049 0.044 0.044 0.042 0.041 0.655 ά d b \overline{b} d G Predicted

BMR with perfect Neutral hadron id

- Pid, including neutral hadron (~ o(10 ps))
- PFA Confusion id & Control (~ ns)
- Event Overlap at Z pole (~ ns)

Physics benchmarks: alpha-s

Confusion matrix of leptonic and pionic τ decay modes. The migration chance are normalized to truth channel.

Extracting $\alpha_{\rm S}$ at future e^+e^- Higgs factory with energy correlators

Zhen Lin,^a Manqi Ruan,^b Meng Xiao,^a and Zhen Xu^a

- ^a Zhejiang Institute of Modern Physics, Department of Physics, Zhejiang University, Hangzhou, Zhejiang 310027, China
- ^bInstitute of High Energy Physics, Chinese Academy of Sciences,
- 19B Yuquan Road, Shijingshan District, Beijing 100049, China

E-mail: zhenlin@zju.edu.cn, ruanmq@ihep.ac.cn, mxiao@zju.edu.cn, zhen.xu@zju.edu.cn

ABSTRACT: The prospected sensitivity in α_S determination using an event shape observable, ratio of energy correlators at future electron-positron collider is presented. The study focuses on the collinear region which has suffered from large theoretical and hadronization uncertainty in the past. The ratio effectively reduces the impacts of the uncertainties. With the amount of data that future electron-positron collider could produce in 1 minute (40 pb⁻¹) and 0.5 hour (1 fb⁻¹), a 1% and 0.2% precision of α_S could be reached.

Figure 3: The expected sensitivity to $\alpha_{\rm S}(m_{\rm Z})$ using E3C/E2C at CEPC in different luminosity scenarios. The world average precision for $\alpha_{\rm S}$ extraction is shown for a comparison [1]. The breakdown of statistical, hadronization, and theoretical uncertainties is shown.

36

Physics benchmarks: Bs oscillation

Physics benchmarks: Bs oscillation

From Peng Ji (IHEP), Xiaoling Wang (SCNU), Mingrui Zhao (CIAE), etc

Preliminary Estimation based on Yield & Key Performance comparison:

measure $\gamma - 2\beta_s$ to precision of o(0.1 degree)

~ 20 times better than current precision... ~ 4 times better than LHCb @ HL-LHC

Single Particle: differential efficiency

Sep. power.

Sub-detector	Key technology	Key Specifications
Silicon vertex detector	Spatial resolution and materials	$\sigma_{r\phi}\sim 3~\mu{ m m}, X/X_0 < 0.15\%$ (per layer)
Silicon tracker	Large-area silicon detector	$\sigma(\frac{1}{p_T}) \sim 2 \times 10^{-5} \oplus \frac{1 \times 10^{-3}}{p \times \sin^{3/2} \theta} (\text{GeV}^{-1})$
TPC/Drift Chamber	Precise dE/dx (dN/dx) measurement	Relative uncertainty 2%
Time of Flight detector	Large-area silicon timing detector	$\sigma(t) \sim 30 \; \mathrm{ps}$
Electromagnetic	High granularity	EM energy resolution $\sim 3\%/\sqrt{E({\rm GeV})}$
Calorimeter	4D crystal calorimeter	Granularity $\sim 2 \times 2 \times 2 \text{ cm}^3$
Magnet system	Ultra-thin	Magnet field $2 - 3$ T
	High temperature	Material budget $< 1.5 X_0$
	Superconducting magnet	Thickness $< 150 \text{ mm}$
Hadron calorimeter	Scintillating glass	Support PFA jet reconstruction
	Hadron calorimeter	Single hadron $\sigma_E^{had} \sim 40\%/\sqrt{E({\rm GeV})}$
		Jet $\sigma_E^{jet} \sim 30\%/\sqrt{E({\rm GeV})}$

These specifications continue to be optimized

PiO energies at Z->tautau events at Z pole.

Sep power ~ 1.6 cm ~ 30 GeV Pi0

Sub D recap

- Tracking: efficiency & resolutions as a function of cos(theta) & Pt
- Calorimeter: efficiency & resolution linearity of photon, neutral hadron
- Pid relevant: ToF, dE/dx, dN/dx, etc.