

CEPC Detector Mechanical integration

Ji Quan

中國科學院為能物記術完備 Institute of High Energy Physics Chinese Academy of Sciences

Aug. 7th, 2024, CEPC Detector Ref-TDR Review

- Introduction
- Requirements
- Technical challenges
- Comparison and selection of different schemes
- Overall installation concept design
- Research team
- Summary and working plan

CEPC Detector Mechanical integration : (R&D content)

- 1. Draw and optimize a reasonable overall mechanical layout drawing Based on the design requirements of the sub-detectors and its electronics
- 2. Design and optimize the connection structure between the sub-detectors Based on(After have completed) the self supporting structure of the sub-detectors
- 3. Plan and optimize installation steps for each sub-detector
- 4. Plan and optimize configuration of the auxiliary equipment between the detectors and the experiment room layout and lifting capacity , etc. (Underground experiment room)
- 5. Others (underground auxiliary room, ground room)

Overall Progress :

- 1. Original mechanical overall layout drawing
- 2. Original configuration drawing between the detectors and the underground experiment room

Key : Supporting frame structure is completed of each sub-detectors as soon as possible .

Mechanical integration progress : Initial Size Distribution

Mechanical integration progress : Configuration drawing between the detectors and the experiment room

Total weight : ≈ 6000 t

> Yoke : ≈ 3800 t Magnet : ≈ 265 t HCAL : ≈ 1780 t

> >

Requirements

Minimum gap principle :

As small as possible

Gap between sub detectors :

Installation gap : ≤ 10mm Note: Initial design parameters

Requirements

Connection design :

The design of the connection structure should follow the principle of proximity connection

Barrel Yoke : Fixed on the Base Magnet : Fixed on the Barrel Yoke Barrel HCAL : Fixed on the Barrel Yoke Barrel ECAL : Fixed on the Barrel HCAL TPC+OTK : Fixed on the Barrel ECAL ITK : Fixed on the TPC Beampipe(Vertex and LumiCal) : Fixed on the ITK

End-cap ECAL+OTK : Fixed on the Barrel HCAL End-cap HCAL : Fixed on the Barrel HCAL (Auxiliary cylinder or Flange) End Yoke : Fixed on the Base

Requirements

Technical challenges

The CEPC detector is a non-standard design device with complex assembly, mainly reflected in the following aspects :

(From the perspective of mechanical design)

- 1. Extra large size and extra heavy weight (Dimensions > 10m, Weight > 6000 t)
- 2. Very small installation clearance (≤ 10mm)
- 3. High installation and collimation accuracy
- 3. Critical balance design between strength and rigidity(Meet the Low material budget)

How to design a large scientific device that reflects its charm, integrates culture and history, and presents a challenge to mechanical engineers

Key : No design experience

The construction of CEPC has two characteristics : long construction time and huge cost

The purpose of mechanical design optimization : to reduce time and costs

Requirements for top-level installation design : (principle)

Complete the installation of all sub-detectors in the shortest time possible.

Design requirements for each sub-detector :

Minimal redundant installation tooling Minimal installation steps Key:

The design of each sub detector system must keep up with the overall requirements.

Taking yoke iron as an example (First installation component) introduce its optimization process and concept design for quick installation

The design optimization process of large scientific devices is a process of constant comparison and competition between the new options explored and the traditional ones

Structural design and optimization of yoke

From the perspective of Muon detector design :

Comparison: Symmetrical (Old) Spiral (New)

Drawing 1 : Undetectable blind zones

Drawing 2 : No detection blind zones

Structural design and optimization of yoke

From the perspective of maintenance design :

The µ detector can be installed from the side Spiral structure : Easy to maintain and replace

> **Comparison:** Symmetrical (Old) Spiral (New)

Symmetrical structure : Almost impossible to maintain and replace

The $\boldsymbol{\mu}$ detector can be installed from the both end

Structural design and optimization of yoke

From the perspective of Muon detector and mechanical strength :

Structural design and optimization of yoke

From the perspective of structural deformation :

The spiral structure is more resistant

Structural design and optimization of yoke

From the perspective of structural deformation : (Spiral)

Structural design and optimization of yoke

From the perspective of structural deformation : (Spiral)

Structural design and optimization of yoke

From the perspective of structural deformation : (Spiral)

Self-weight deformation : $\approx 1.40 \text{ mm}$

Self-weight deformation : $\approx 0.60 \text{ mm}$

Meet : < 1

Structural design and optimization of yoke

From the perspective of installation design :

Key : Different structural designs result in different installation designs

Shortcomings :

- 1. Installation steps are complex Assembly must be possible with the help of the auxiliary tooling
- 2. Every step of the installation requires collimation
- 3. Installation process requires more space and time
- 4. Uncontrollable installing accuracy

Structural design and optimization of yoke

From the perspective of installation design :

Key : Different structural designs result in different installation designs

The whole installation process, without any additional auxiliary tools.

Selection : (?) ---- It's too early to make a final decision Recommendation: Optimize the spiral structure

- 1. Continue to optimize the mechanical design of the yoke based on :
 - 1.1 The requirements of tracking detectors and electronics
 - 1.2 Technical feasibility of processing, transportation, and assembly
- 2. Optimize the configuration of lifting fixtures and lifting equipment based on the idea of quick installation
- 3. Suggestion:

The mechanical design of each sub detector must have a similar process of comparison and optimization

Overall installation requirements:

- 1. Overall reliability and safety assessment (FEA --- stress and deformation)
- 2. Overall installation steps
- 3. Installation sequence
- 4. Considerations for integral and separate lifting of components

Overall reliability and safety assessment

Key:

Deformation and stress of the Yoke and the connection structure (Yes ? No)

As shown in the left figure:

1. Preliminary design of the connection structure between the yoke, magnet and HCAL

2. Other lighter components are ignored

These components do not affect the calculation results and overall assessment

L: 桶轭+超导+HCAL简化Static Structural

Overall reliability and safety assessment

Overall installation steps :

Note:

Combination guideway is the installation reference, and is pre-aligned with the yoke

1. On the ground assembly room Complete the assembly work of each sub detector , including electronics, etc.

2. Each subdetector is lifted into the underground experimental room through vertical shafts in sequence

3. In the underground experimental room Assemble the sub-detectors on the combination guideway and push them into the yoke in sequence

Detectors installation steps (As shown in the exploded view) Installation sequence :

- 1. Install the barrel sub-detector first, in the following order : Yoke, Magnet, HCAL, ECAL, TPC+OTK, ITK, Beampipe(Vertex)
- 2. Then install the end sub-detector, in the following order : ECAL+OTK, HACL

Considerations for integral and separate lifting of components

Research team

The mechanical team needs to be cultivated and diversified :

Enhance comprehensive abilities :

Global perspective, Comprehension ability, Communicate ability, Technological innovation capacity, etc.

Research team

Question and recommendation :

Question :

- 1. Most mechanical engineers are part-time workers
- 2. Serious shortage of human resources

Recommendation :

- 1. With the deepening and expansion of mechanical design,
 - it is necessary to continuously increase the number of mechanical engineers
- 2. If human resources are sufficient, choose high-quality mechanical engineers as much as possible

Summary and working plan

Summary

- 1. The overall design requirements and the design requirements for each sub detector need to be further refined
- 2. The top-level installation design is basically clear, but further feasibility needs to be demonstrated

Summary and working plan

Working plan

- 1. Refine the installation plan and connection design of sub detectors
- Complete the framework layout of the underground experimental room and its supporting room
 Complete the layout of the ground room

Thank you for your attention!

中國科學院為能物招研究所 Institute of High Energy Physics Chinese Academy of Sciences

Aug. 7th, 2024, CEPC Detector Ref-TDR Review