1. IE browser is NOT supported anymore. Please use Chrome, Firefox or Edge instead.
2. If you are a new user, please register to get an IHEP SSO account through https://login.ihep.ac.cn/registlight.jsp Any questions, please email us at helpdesk@ihep.ac.cn or call 88236855.
3. If you need to create a conference in the "Conferences, Workshops and Events" zone, please email us at helpdesk@ihep.ac.cn.
4. The max file size allowed for upload is 100 Mb.
13–17 Nov 2024
山东省青岛市鳌山湾 (Aoshan Bay, Qingdao, Shandong)
Asia/Shanghai timezone

Jet Tagging with More-Interaction Particle Transformer

Not scheduled
20m
山东省青岛市鳌山湾 (Aoshan Bay, Qingdao, Shandong)

山东省青岛市鳌山湾 (Aoshan Bay, Qingdao, Shandong)

Speaker

Kun Wang (University of Shanghai for Science and Technology)

Description

Based on arxiv:2407.08682, we present the More-Interaction Particle Transformer (MIParT), a novel deep learning neural network designed for jet tagging. This framework incorporates our own design, the More-Interaction Attention (MIA) mechanism, which increases the dimensionality of particle interaction embeddings. We tested MIParT using the top tagging and quark-gluon datasets. Our results show that MIParT not only matches the accuracy and AUC of LorentzNet and a series of Lorentz-equivariant methods, but also significantly outperforms the ParT model in background rejection. Specifically, it improves background rejection by approximately 25% at a 30% signal efficiency on the top tagging dataset and by 3% on the quark-gluon dataset. Additionally, MIParT requires only 30% of the parameters and 53% of the computational complexity needed by ParT, proving that high performance can be achieved with reduced model complexity. For very large datasets, we double the dimension of particle embeddings, referring to this variant as MIParT-Large (MIParT-L). We find that MIParT-L can further capitalize on the knowledge from large datasets. From a model pre-trained on the 100M JetClass dataset, the background rejection performance of the fine-tuned MIParT-L improved by 39% on the top tagging dataset and by 6% on the quark-gluon dataset, surpassing that of the fine-tuned ParT. Specifically, the background rejection of fine-tuned MIParT-L improved by an additional 2% compared to the fine-tuned ParT. The results suggest that MIParT has the potential to advance efficiency benchmarks for jet tagging and event identification in particle physics.

Primary author

Kun Wang (University of Shanghai for Science and Technology)

Presentation materials

There are no materials yet.