

Probing first-order electroweak phase transitions at the LHC and future colliders

Ke-Pan Xie (谢柯盼) Beihang University 2024.11.14 @ Qingdao CLHCP2024

The electroweak phase transition

The evolution of Higgs potential & vacuum expectation value

The feature of electroweak phase transition

Which pattern?

New physics is needed for FOEWPT

3 main reasons for studying FOEWPT

• *If* it has occurred, we may detect its stochastic *gravitational waves* in the next decade Caprini *et al*, JCAP 04 (2016) 001; JCAP 03 (2020) 024; Athron, Wu *et al*, Prog.Part.Nucl.Phys. 135 (2024) 104094

- It is the consequence of many BSM models
- It is the *essential* condition of many BSM mechanisms solving the puzzles in the SM

Why we like FOEWPTs

Very classic motivation: explaining the matter-antimatter asymmetry via EW baryogenesis: since 1980s, still active Joyce *et al*, PRL 75 (1995) 1695-1698; PRD 53 (1996) 2958-2980; Ramsey-Musolf *et al*, New J.Phys. 14 (2012) 125003 [review] Cline *et al*, PRD 101 (2020) 6, 063525; KPX, JHEP 02 (2021) 090; KPX, Bian, Wu, JHEP 12 (2020) 047; ...

Recent progress

Figure from Fuyuto, PhD thesis (2016)

Novel dark matter and/or baryogenesis scenarios based on FOPTs

Filtered dark matter

Baker *et al*, PRL 125 (2020) 15, 151102 Chway *et al*, PRD 101 (2020) 9, 095019

Solitons Hong, Jung, KPX, PRD 102 (2020) 7, 075028

Primordial black holes

Liu *et al*, PRD 105 (2022) 2, L021303; Kanemura, Tanaka, **KPX**, JHEP 06 (2024) 036; Cai *et al*, SCPMA 67 (2024) 9, 290411

Ke-Pan Xie (谢柯盼), Beihang University

Probing FOEWPT at colliders

Searching for the underlying physics of the **potential barrier** In general, this is

- Challenging, attempting to probe the <u>global feature</u> of the potential via phenomenology <u>around vacuum</u>
- Model-dependent, various signal channels

LHC → HL-LHC HE-LHC? LHeC? CEPC? ILC? FCC? Muon collider?

Probing FOEWPT at colliders

Searching for the underlying physics of the **potential barrier** In general, this is

- Challenging, attempting to probe the <u>global feature</u> of the potential via phenomenology <u>around vacuum</u>
- Model-dependent, various signal channels

However, it also has

- General and representative features, can be systematically summarized and classified
- Complementarity and crosscheck with the GW astronomy

A prototype model

Scalar sector: Higgs (*h*) + scalar (*s*)

• **Prototype** of many well-motivated models

Singlet-extended SM Cline *et al*, JCAP 01 (2013) 012; Alanne *et al*, NPB 889 (2014) 692; Chiang *et al*, PLB 789 (2019) 154; Jiang *et al*, PRD 93 (2016) 6, 065032; Alves *et al*, JHEP 04 (2019) 052, JHEP 12 (2018) 070, JHEP 03 (2020) 053, PLB 818 (2021) 136377; Carena *et al*, JHEP 08 (2020) 107; Liu, **KPX**, JHEP 04 (2021) 015; Huang, **KPX**, PRD 105 (2022) 11, 115033, Liu *et al*, PRD 105 (2022) 11, 115040; etc

2HDM Cline *et al*, JHEP 11 (2011) 089; Dorsch *et al*, JHEP 10 (2013) 029; Basler *et al*, JHEP 02 (2017) 121; Dorsch *et al*, JHEP 12 (2017) 086; Bian, Jiang *et al*, JHEP 05 (2018) 151; Wang *et al*, PLB 788 (2019) 519; Wang *et al*, PRD 101 (2020) 015015; Su *et al*, JHEP 04 (2021) 219; etc

Left-right model Brdar *et al*, JCAP 12 (2019) 027; Li *et al*, JHEP 03 (2021) 267; etc

Georgi-Machacek model Bian *et al*, JHEP 01 (2019) 216; Chen *et al*, PRD 106 (2022) 5, 055019; etc

Supersymmetry Lee *et al*, PRD 71 (2005) 075010; Balazs *et al*, PRD 71 (2005) 075002; Huang *et al*, PRD 91 (2015) 2, 025006; Bi *et al*, PRD 92 (2015) 023507; Bian, Guo, Shu, CPC 42 (2018) 9, 093106; Athron *et al*, JHEP 11 (2019) 151; Wang, **KPX**, Wu, Yang, EPJC 82 (2022) 12, 1120; etc

Composite Higgs Espinosa *et al*, JCAP 01 (2012) 012; Bian, Wu, **KPX**, JHEP 12 (2019) 028, JHEP 12 (2020) 047; De Curtis *et al*, JHEP 12 (2019) 149; Angelescu *et al*, JHEP 10 (2022) 019; etc and more...

Underlying physics of the barrier

The full one-loop finite-temperature potential ^[Quiros, hep-ph/9901312] $V_T(h,T) = V_0(h) + V_1(h) + V_{1,T}(h,T) + V_{daisy}(h,T)$ Tree level 1-loop CW 1-loop thermal Daisy resummation

A seminal classification ^[Chung, Long, and Wang, PRD 87 (2013) 2, 023509]

Ke-Pan Xie (谢柯盼), Beihang University

Type I: thermally loop-driven

Relevant
$$\mathcal{L} \supset -m_s^2 s^2 / 2 - \lambda_{hs} h^2 s^2 / 4$$

IF $m_s^2 \ll \lambda_{hs} h^2 / 2 \lesssim T^2$,
 $V_T \approx \frac{-\mu^2 + cT^2}{2} h^2 - \frac{T}{12\pi} \left(\frac{\lambda_{hs}}{2}\right)^{3/2} h^3 + \frac{\lambda}{4} h^4$

otherwise Boltzmann suppression $e^{-m_s/T}$

A strong FOEWPT requires

$$\frac{v_c}{T_c} \approx \frac{1}{6\pi\lambda} \left(\frac{\lambda_{hs}}{2}\right)^{3/2} \gtrsim 1$$
Usually, $\lambda = m_h^2/2v^2 \approx 0.13$ fixed
 \Rightarrow need a sizable λ_{hs}

Type I: thermally loop-driven

Relevant
$$\mathcal{L} \supset -m_s^2 s^2 / 2 - \lambda_{hs} h^2 s^2 / 4$$

IF $m_s^2 \ll \lambda_{hs} h^2 / 2 \lesssim T^2$,
 $V_T \approx \frac{-\mu^2 + cT^2}{2} h^2 - \frac{T}{12\pi} \left(\frac{\lambda_{hs}}{2}\right)^{3/2} h^3 + \frac{\lambda}{4} h^4$

otherwise Boltzmann suppression $e^{-m_s/T}$

A strong FOEWPT requires

$$\frac{v_c}{T_c} \approx \frac{1}{6\pi\lambda} \left(\frac{\lambda_{hs}}{2}\right)^{3/2} \gtrsim 1$$
Usually, $\lambda = m_h^2/2v^2 \approx 0.13$ fixed
 \Rightarrow needs a sizable λ_{hs}

Collider signal: a light scalar with significant coupling to the Higgs

- Candidates: stop (SUSY), h_2 (2HDM), etc
- Severely constrained by $\sigma(gg \rightarrow h), h \rightarrow \gamma\gamma$, etc, but still rooms for model-building ^[Cao et al, JHEP 01 (2022) 001]

Type IIB: tree-level non-renormalizable operator

Relevant
$$\mathcal{L} \supset -m_s^2 s^2/2 - \lambda_{hs} h^2 s^2/4$$

IF $m_s \gg 100$ GeV, EFT
 $V_T \approx \frac{\mu^2 + cT^2}{2} h^2 - \frac{\lambda}{4} h^4 + \frac{\lambda_{hs}^3}{48m_s^2} h^6$

Barrier exists at tree-level at T = 0 via operator $\mathcal{O}_6 \equiv |H|^6 / \Lambda^2$

A strong FOEWPT requires $0.55 \text{ TeV} < \Lambda < 0.89 \text{ TeV}$ Huang *et al*, PRD93, 103515 (2016) Type IIB: tree-level non-renormalizable operator

Relevant
$$\mathcal{L} \supset -m_s^2 s^2/2 - \lambda_{hs} h^2 s^2/4$$

IF $m_s \gg 100$ GeV, EFT
 $V_T \approx \frac{\mu^2 + cT^2}{2} h^2 - \frac{\lambda}{4} h^4 + \frac{\lambda_{hs}^3}{48m_s^2} h^6$

Barrier exists at tree-level at T = 0 via operator $\mathcal{O}_6 \equiv |H|^6 / \Lambda^2$

Type IIA: tree-level renormalizable operator

The most general case $V = -\frac{\mu^2}{2}h^2 + \frac{\lambda}{4}h^4 + \frac{a_1}{4}h^2s + \frac{a_2}{4}h^2s^2 + \frac{b_2}{2}s^2 + \frac{b_3}{3}s^3 + \frac{b_4}{4}s^4$

Fixing Higgs mass & VEV, 5 free parameters

$$\binom{h}{s} = \binom{\cos\theta & -\sin\theta}{\sin\theta & \cos\theta} \binom{h_1}{h_2} \frac{\text{Higgs-like, 125 GeV}}{\text{Singlet-like}}$$

Type IIA: tree-level renormalizable operator

The most general case

$$V = -\frac{\mu^2}{2}h^2 + \frac{\lambda}{4}h^4 + \frac{a_1}{4}h^2s + \frac{a_2}{4}h^2s^2 + \frac{b_2}{2}s^2 + \frac{b_3}{3}s^3 + \frac{b_4}{4}s^4$$

Fixing Higgs mass & VEV, 5 free parameters

$$\binom{h}{s} = \binom{\cos\theta & -\sin\theta}{\sin\theta & \cos\theta} \binom{h_1}{h_2} \frac{\text{Higgs-like, 125 GeV}}{\text{Singlet-like}}$$

Thermal corrections

FOEWPT parameter space

Varying the 5 free input parameters [Liu and KPX, JHEP 04 (2021) 015]

Sizable mixing required for a FOEWPT

Resonant heavy h_2 search

FOEWPT parameter space

• Produced via mixing, e.g. $gg \rightarrow h_2$, cross section $\propto \sin^2 \theta$

- Dominant decays $h_2 \rightarrow h_1 h_1$ and $h_2 \rightarrow W^+ W^-$ or ZZ
- $Br(h_2 \rightarrow t\bar{t}) \leq 20\%$ subdominant

Resonant heavy h_2 search

FOEWPT parameter space

- HL-LHC or multi-TeV muon colliders
- Complementary to gravitational wave search

Recent progress [Biermann et al, 2408.08043; Aboudonia et al, 2410.22700, etc]

Ke-Pan Xie (谢柯盼), Beihang University

Light h_2 search

Higgs exotic decay $h_1 \rightarrow h_2 h_2 \rightarrow XXYY$ [SM light particles] Carena, KPX, et al, LHEP 2023 (2023) 432

Higgs precision measurement

Higgs coupling deviations $\delta \kappa = |g/g_{\rm SM} - 1|$ • $\delta \kappa_V \rightarrow h_1 VV \propto |1 - \cos \theta|$

- $\delta \kappa_3 \rightarrow h_1^3$ and $\delta \kappa_4 \rightarrow h_1^4$
- CEPC, ILC, FCC-ee, CLIC, or muon colliders

 $\delta \kappa_3$ Alves, Guo, *et al*, JHEP 04 (2019) 052

Ke-Pan Xie (谢柯盼), Beihang University

Type III: loop driven

Ke-Pan Xie (谢柯盼), Beihang University

FOEWPT in classically conformal model

Very special feature of logarithmic potential

FOEWPT in classically conformal model

Very special feature of logarithmic potential

4 phase transition patterns (3 have FOEWPT) [Liu and KPX, 2408.03649]

Ke-Pan Xie (谢柯盼), Beihang University

Collider signals: for a heavy singlet

Collider search [Liu and KPX, 2408.03649]

- HL-LHC $gg \rightarrow \phi \rightarrow ZZ$
- 10 TeV muon collider VBF $\phi \rightarrow b\overline{b}$, VV, hh

Gravitational wave search: LISA (also TianQin, Taiji) and BBO

Ke-Pan Xie (谢柯盼), Beihang University

Collider signals: for a light singlet

Collider search [Liu and KPX, 2408.03649]

- Long-lived particle search; muon collider
- NO Higgs exotic decay signal, as ${\rm Br}(h o \phi \phi) < 10^{-10}$

GW search NOT sensitive, as the FOPTs complete too fast

Ke-Pan Xie (谢柯盼), Beihang University

Summary

FOEWPT { A good probe for physics beyond the SM A key ingredient for solving puzzles in the SM

Typical signals

- Resonant $s \to hh$, $s \to W^+W^-/ZZ$, or $h \to ss \to XXYY$
- Higgs couplings deviation, especially h^3 or hVVHopefully we can detect something in the next decade!

Conclusion and outlook

It's challenging to confirm what happened right after the Big Bang!

Future exploration

- More detailed simulations (e.g. boosted by AI)
- More sensitive channels (e.g. $h \rightarrow ss \rightarrow \mu^+\mu^-\mu^+\mu^- @$ CEPC)
- Distinguishing the 4 scenarios by combining all channels

•

Backup: type IIA light singlet general case

Backup: type IIA Z_2 spontaneous breaking case

Motivated by dark symmetry breaking models [Carena et al, 1911.10206]

$$V = -\frac{\mu^2}{2}h^2 + \frac{\lambda}{4}h^4 + \frac{a_2}{4}h^2S^2 + \frac{b_2}{2}S^2 + \frac{b_4}{4}S^4$$

A complete one-loop level analysis

$$V_{\rm CW} = \frac{1}{64\pi^2} \left(\sum_B n_B m_B^4(h, S) \left[\ln \frac{m_B^2(h, S)}{Q^2} - c_B \right] - \sum_F n_F m_F^4(h, S) \left[\ln \frac{m_F^2(h, S)}{Q^2} - \frac{3}{2} \right] \right)$$
$$V^T(h, s, T) = \frac{T^4}{2\pi^2} \left[\sum_B n_B J_B \left(\frac{m_B^2(h, S)}{T^2} \right) + \sum_F n_F J_F \left(\frac{m_F^2(h, S)}{T^2} \right) \right] + \text{Daisy resummation}$$

Ke-Pan Xie (谢柯盼), Beihang University

Backup: the classically conformal model

Particle content

- A scalar ϕ mixing with the Higgs
- Heavy particle(s) that generates the Coleman-Weinberg potential

Early Universe evolution of the logarithmic-shaped potential

First-order phase transition along the ϕ -direction guaranteed

Backup: thermal history patterns of CC theories

Normal pattern: high scale ϕ transition, then low scale h transition

Inverted pattern: low scale h transition, then high scale ϕ transition

I1: QCD-EW-FOPT $\rightarrow \phi$ -FOPT • **I2**: joint QCD-EW- ϕ -FOPT

Inverted pattern first proposed by Witten [NPB 177, 477 (1981)] Transition rate $\Gamma(T) \sim e^{-S}$ with $S \propto g_X^{-3}$ [Iso *et al*, PRL 119 (2017) 14, 141301] Small $g_X \rightarrow$ Universe trapped at $(h, \phi) = (0, 0)$ QCD transition occurs first! A FOPT with 6 massless quarks

 $-y_t h \langle \overline{t}t \rangle$ yields an EWPT $h: 0 \mapsto v_{\text{QCD}} \approx 100 \text{ MeV}$

Backup: parametrization of the CC model

Fixing $m_h = 125 \text{ GeV}$ and $v_{ew} = 246 \text{ GeV}$ --

- Only 2 free parameters
- First thorough and rigorous analysis in [Liu and KPX, 2408.03649]

• $m_{\phi} \neq 125 \text{ GeV}$: ϕ cannot be degenerate with the Higgs

Ke-Pan Xie (谢柯盼), Beihang University

Backup: phase diagram of the CC model

Full <u>one-loop</u> calculation & <u>completeness check</u> in [Liu and KPX, 2408.03649] **Type-N1**: ϕ -FOPT \rightarrow EW crossover **Type-N2**: joint ϕ -EW-FOPT **Type-I1**: QCD-EW-FOPT $\rightarrow \phi$ -FOPT **Type-I2**: joint QCD-EW- ϕ -FOPT

♦ $w = 10^7$ GeV, $T_* = 1$ MeV • $w = 10^5$ GeV, $T_* = 1$ MeV

Ultra-supercooled phase transitions!

Backup: reheating in the CC model

The Universe is reheated to $T_{\rm rh}\gtrsim T_{*}$ ^[Liu and KPX, 2408.03649]

- Possible EW symmetry restoration and a second EWPT
- Early matter era, if reheating is slow

Comparison between type IIA and type III

	Type IIA	Type III
Motivation	Prototype of many BSM models	Hierarchy problem
Potential	Polynomial with mass terms	Logarithmic
# of parameters	5	2
Origin of barrier	<i>h</i> - <i>s</i> interaction	Z' from $U(1)_X$
FOEWPT	In some parameter space	Almost guaranteed
PT strength	Moderate	Ultra-supercooling
Pheno of heavy s	Resonant $s \rightarrow hh, VV$	
Pheno of light s	Higgs exotic decay	Long-lived particle