Precision QCD and Flavor physics

focus on the ${\cal B}$ meson decays

Shan Cheng (程山)

Hunan University

The 10th China LHC Physics Conference (CLHCP2024) Qingdao

November 15, 2024

Overview

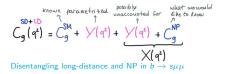
- I B physics and CP Violation
- II Factorization approaches
 Low energy effective hamiltonian
 Factorization approaches and precise QCD
- III Toward to high accuracy LCDAs $B_{(s)}$ LCDAs Light mesons LCDAs
- IV Conclusion

B physics and CP Violation

- "Matter \neq Antimatter" indicates the interaction with CPV
- Heavy flavour physics (HFP) provides many processes with CPV although it is inadequate and new mechanism of CPV is imminent
- Great running of B factories(1999-2008) and LHC(2009-)

CP 破坏测量 60 年

LHCb has become a general purpose detector nowadays

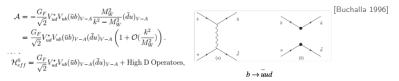

- CKM, CPV and rare decays in b and c hadrons
- $\circ~$ Indirect search of BSM via precise measurements
- this talk focus on precise QCD prediction of hadronic *B* decays
- presize QCD + EW
- hadron spectroscopy
- heavy-ion and fixed-target physics
- direct search of new physics dark sector, ···

Factorization approaches

i low energy effective hamiltonian ii factorization approaches and precise QCD

Low energy effective hamiltonian

- No direct evidence of BSM due to the mass gap
- $\circ~$ NP is either very heavy or light and weakly coupled to the SM
- Use Effective Field Theories and Data to bridge the gap
- describe heavy NP via high dimension operators
- use data (electroweak, flavor) to constrain the Wilson coefficients



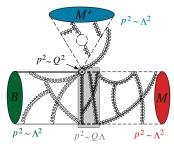
• Roadmap of the low energy EFT of heavy flavor decays

New physics:
$$\mathcal{L}_{NP}$$

 \downarrow
Electroweak scale (m_W) : $\mathcal{L}_{EW} + \mathcal{L}_{D>4}$
 \downarrow
Heavy quark scale (m_b) : $\mathcal{L}_{eff} = -\frac{G_F}{\sqrt{2}} V_{CKM} \sum_i C_i(\mu) O_i(\mu) + \mathcal{L}_{eff,D>6}$
 \downarrow
Hadron scale (Λ_{QCD}) : LCDAs, PDF, PDA

Low energy effective hamiltonian

• derive the low energy effective Hamiltonian by integrating over m_W



 product of two charged currents ~ a series of local operators O_i with the weighted coefficients C_i

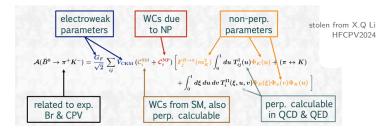
- dynamics at the scale $\mathcal{O}(m_W)$ is absorbed into Wilson coefficients $C_i(\mu)$
- $C_i \sim$ match the \mathcal{L}_{eff} with the full theory of weak decays [Ma '80, Inami&Lim '81, Clements '83]
- the NLO QCD/QED corrections to C_i has been finished [Buchalla, 1996, Rev. Mod. Phys]
- o the NNLL program [Gorbahn, Haisch '04; Misiak, Steinhauser '04]

- the rest goes into the four fermion effective operators $O_i(\mu)$
- the key is to calculate the hadron matrix element $\langle MM'|O_i|B\rangle$

• a multi-scale QCD & QED problem

QCD symmetry: isospin, U spin, V spin, SU(3)_F
 [Zeppenfeld, '81]

[London, Gronau, Rosner, He, Chiang, Cheng et al.]


 Factorization-assisted topological-amplitude approach (FAT) universal decay amplitudes to be determined by data
 [Li, Lü, Yu '12, Qin, Li, Lü, Yu '14]

it is definitely a QCD problem

- Naive factorization: ~ $F_{B \rightarrow M} \otimes f_{M'}$ [Bauer, Stech, Wirbel '85, '87]
- Generalized factorization: QCD corrections from O_{i=1},...,10 [Ali, Kramer, Lü '98,'99]
- Soft-collinear effective theory (SCET): introduces different fields in different energy regions, simple kinematics but complicated dynamics with several typical scales [Bauer, Flemming, Pirjol, Stewart '01, Beneke, Chapovsky, Diehl, Feldmann, '02]
- Light-cone sum rules (LCSRs): redundant formulism, hard for phenomena [Khodjamirian '01,'03,'05]
- Perturbative QCD (PQCD): pick up the transversal momentum to regularate end-point singularity, resummations, prediction of CPV [Keum, Li '01, Sanda, Lü, Yang '01]

• **QCDF**: systematic framework to all α_s orders, but limited by $1/m_b$ corr.

[Beneke '06,'07, Jain '07, Benele '10, Bell '15, '20, Huber '16]

- SCET: $\mathcal{A} \simeq \mathcal{F}_{BM} T_i^1 \otimes \phi_{M'} + T_i'' \otimes \phi_B \otimes \phi_M \otimes \phi_{M'}$ [Bauer '01, Chay '04, Becher '15]
- "QCD SCET = short distant coefficients T^I, T^{II} "
 SCET reproduces precise QCDF in collinear and soft regions [Beneke '15]
- F_{BM} form factors from LCSRs: high order & power corrections [HPQCD 2013], [Bharucha '16, Wang '15, '16, '20, Lü '19, Beneke '17, Gubernari '19, SC '17, '19]

- Full N 2 LO QCDF calculation ($\mathcal{O}(lpha_s^2)$) [Bell, Beneke, Huber, Li '20]
- $\circ~$ combining $1/\textit{m}_{b}$ expansion with light-cone expansion for hard processes

		$A_B = 0.20 \pm 0.03$ GeV, $P_{B\pi} = 0.23 \pm 0.03$					
branching fraction	Modes	QCDF NNLO-I (10-6	$\frac{1}{2}$ QCDF NNLO-II (10 ⁻⁶)	DATA			
	$B^- \to \pi^- \pi^0$	$5.43^{+0.06}_{-0.06}^{+1.45}_{-0.84}$	$5.82^{+0.07}_{-0.06}^{+1.42}_{-1.35}$	$5.59^{+0.41}_{-0.40}$			
	$B^0 \to \pi^+\pi^-$	$7.37^{+0.86}_{-0.69}{}^{+1.22}_{-0.97}$	5.70 ^{+0.70} +1.16 -0.55 ^{-1.97}	5.12 ± 0.19			
	$B^0 \to \pi^0 \pi^0$	$0.33^{+0.11}_{-0.08}{}^{+0.42}_{-0.17}$	$0.63^{+0.12}_{-0.10}^{+0.64}_{-0.42}$	1.59 ± 0.26			

I: $\lambda_B = 0.35 \pm 0.15$ GeV, $F_{B\pi} = 0.25 \pm 0.05$ II: $\lambda_B = 0.20 \pm 0.05$ GeV, $F_{B\pi} = 0.23 \pm 0.03$

direct CPV	Modes	QCDF NN	LO QCDF NNL		O+LD	DATA
	$B^- \to K^- \pi^0$	$10.18\substack{+1.91\-1.90}$	+2.03 -2.02	$-1.17^{+0.22}_{-0.22}$	+20.0 -6.62	3.7 ± 2.1
	$B^0 \to K^- \pi^+$	$8.08^{+1.52}_{-1.51}$	2.52 2.65	$-3.23^{+0.61}_{-0.61}$	+19.6 -3.36	-8.3 ± 0.4
	$B^0\to \overline{K}{}^0\pi^0$	-4.33 ^{+0.84}	+3.29 -2.32	$-1.41^{+0.27}_{-0.25}$	+5.54 -6010	0 ± 13

LD: power suppressed spectator and annihilation terms

- large uncertainties comes from hadronic parameters
- annihilation diagram is calculable, finite, and contains strong phase $_{\rm [Lu,\ Shen,\ Wang^2\ '22]}$

- **PQCD**: pick up the transversal momentum in the hard scattering amplitudes to regulate the end-point singularity [Huang 1991]
- · end-point singularities appear in exclusive QCD processes
 - $\begin{array}{c} \uparrow \quad m_{1,2}^2 \ll Q^2, \mbox{ light-cone coordinate } p_2 = (\frac{Q_2}{\sqrt{2}}, 0, 0_T), \mbox{ } p_3 = (0, \frac{Q_2}{\sqrt{2}}, 0_T), \\ (\mbox{ anti-)valence quarks: } k_2 = x_2 p_2, \mbox{ } k_2 = x_2 p$
- pick up k_T in the internal propagators

$$\mathcal{M} \propto \sum_{t=2,3,4} \int du_1 du_2 dk_{1T} dk_{2T} \kappa_t(u_i) \frac{\alpha_s(\mu) \phi_1^t(u_1) \phi_2^t(u_2)}{u_1 u_2 Q^2 - (k_{1T} - k_{2T})^2}$$

· end-point singularity at leading and subleading powers

$$\mathcal{H} \propto \frac{\alpha_s(\mu)}{u_1 u_2 Q^2 - k_T^2} \sim \frac{\alpha_s(\mu)}{u_1 u_2 Q^2} - \frac{\alpha_s(\mu) k_T^2}{(u_1 u_2 Q^2)^2} + \cdots$$

• the power suppressed TMD terms becomes important at the end-points

- $\circ~$ scales of transversal momentum ($Q,\,\sqrt{\Lambda\,Q},\,\Lambda)$ and the large logarithms
- $\circ~$ hard scattering amplitude should not sensitive to $k_T \sim \Lambda_{\rm QCD}$
- k_T resummation for H to obtain S(x_i, b_i, Q) [Botts 1989, Li 92]
- $\circ~$ integrating over $k_T,$ large log $\ln^2(\mathbf{x}_i)$ when intermediate gluon is on shell
- $\circ~$ threshold resummation for Φ to obtain $S_t(x_i,\,Q)~[\mbox{Li 1999}]$
- o dynamics with $k_T < \sqrt{Q\Lambda}$ is organized into $S(x,\,b,\,Q)$
- o dynamics in small x is suppressed by $S_t(x, Q)$

 $\mathcal{M} = \sum_{t} \phi^{t}(u_{1}, b_{1}) \otimes \mathcal{H}_{i}(t, b) \otimes \phi^{t}(u_{2}, b_{2}) \operatorname{Exp} \left[-s(p^{+}, b) - \int_{1/b}^{t} \frac{d\bar{\mu}}{\bar{\mu}} \gamma_{\phi}(\alpha_{s}(\bar{\mu})) \right]$

- LO PQCD: both F_{BM} and annihilation amplitudes are calculable
- Sources of strong phase difference to generate *QP*

- Sudakov expanent (NLO)
- o NLO corrections to spectator emission amplitude from Glauber gluon
- o on shell charm quark loop correction (NLO), leading source in QCDF

successful in phenomena

- * predicted a large CPV in $\pi^- K^+$, $\pi^+ \pi^-$ (2000), confirmed by the *B* factories (2004)
- * predicted $\mathcal{B}(B_s \to \pi^+\pi^-) \sim 6 \times 10^{-6}$ (2007), confirmed by CDF (2011)
- * predicted $f_L \sim 0.7$ in penguin dominated $B \rightarrow VV$ by annihilation mechanism (2002), before the observation of "polarization puzzle"
- improved-PQCD with relativistic potential model of B-meson WF and soft form factor [Lü, Wang, Yang, '23,'24]

- dominate NLO PQCD (O(α²_s)): factorizable amplitudes [SC & Xiao '21], effective operators [Mishima '03, Li '05], hard scattering [Li '12, '13, '14; SC '14, '15, Hua '18, Liu '15,'16]
- state-of-the-art PQCD calculation [Chai, SC, Ju, Yan, Lü, Xiao CPC 46.12(2022)123103]
- * $S_{\pi^0\bar{K}^0} = 0.72^{+0.05}_{-0.05}$ is confirmed by Belle [PRL.131.111803(2023)]
- * $\mathcal{B}_{\omega\omega} = \left(1.21^{+0.45}_{-0.35}\right) \times 10^{-6}, f_L = 88.4 \pm 1.1$ are confirmed by Belle-II [PRL.133.1081801(2024)]

hunghing function	Modes	PQCD LO (10 ⁻⁶)	PQCD I	NLO (10 ⁻⁶)	DATA
branching fraction	$B^- \rightarrow \pi^- \pi^0$	3.58	4.18	+0.22+1.30 -0.22-0.94	$5.59^{+0.41}_{-0.40}$
	$B^0 \to \pi^+\pi^-$	6.97	7.31	+0.38+2.35 -0.36-1.68	5.12 ± 0.19
	$B^0 \rightarrow \pi^0 \pi^0$	0.14	0.23	+0.01+0.07 -0.01-0.05	1.59 ± 0.26

$\lambda_B =$	= 0.40	±	0.04	GeV	and	parameters	of	light	mesons
---------------	--------	---	------	-----	-----	------------	----	-------	--------

direct CPV

Modes	PQCD LO	PQCD NLO		DATA
$B^- \rightarrow K^- \pi^0$	-10.9	2.28	50+1.53 57-1.65	3.7 ± 2.1
$B^0 \to K^- \pi^+$	-15.2	-5.43^{+1}_{-1}	l.26+1.86 l.34-1.92	-8.3 ± 0.4
$B^0\to \overline{K}{}^0\pi^0$	-2.63	-7.70^{+0}_{-0}).12+0.17).09-0.09	0 ± 13

- K\$\pi\$ puzzle: $\delta A_{CP}(K\pi) = 0.11 \pm 0.01$, ~ 9\$\sigma\$ deviation from SM prediction
- $\pi^0\pi^0$ puzzle: theoretical prediction gives a much smaller ${\cal B}$

Modes	QCDF NNLO-I (10 ⁻⁶)	QCDF NNLO-II (10 ⁻⁶)	DATA	1	Modes	PQCD LO (10 ⁻⁶)	PQCD NLO (10 ⁻⁶)
$B^- \to \pi^- \pi^0$	5.43+0.06+1.45	5.82 ^{+0.07} +1.42	$5.59^{+0.41}_{-0.40}$		$B^- \to \pi^- \pi^0$	3.58	$4.18^{+0.22+1.30}_{-0.22-0.94}$
$B^0 \to \pi^+\pi^-$	7.37+0.86+1.22	5.70 ^{+0.70} +1.16 -0.55-1.97	5.12 ± 0.19		$B^0 \to \pi^+\pi^-$	6.97	7.31 ^{+0.38+2.35}
$B^0 \to \pi^0 \pi^0$	0.33+0.11+0.42	0.63+0.12+0.64 -0.10-0.42	1.59 ± 0.26		$B^0 \to \pi^0 \pi^0$	0.14	$0.23^{+0.01+0.07}_{-0.01-0.05}$
Modes	QCDF NNLO	QCDF NNLO+LD	DATA]]	Modes	PQCD LO	PQCD NLO
$B^- \to K^- \pi^0$	10.18+1.91+2.03	$-1.17^{+0.22}_{-0.22}^{+20.0}_{-6.62}$	3.7 ± 2.1		$B^- \to K^- \pi^0$	-10.9	$2.28_{-0.57-1.65}^{+0.50+1.53}$
$B^0 \to K^- \pi^+$	8.08+1.52-2.52	$-3.23^{+0.61}_{-0.61}^{+19.6}_{-3.36}$	-8.3 ± 0.4	1	$B^0 \to K^- \pi^+$	-15.2	$-5.43^{+1.26+1.86}_{-1.34-1.92}$
$B^0\to \overline{K}{}^0\pi^0$	$-4.33^{+0.84}_{-0.78}$	-1.41+0.27+5.54	0 ± 13		$B^0\to \overline{K}{}^0\pi^0$	-2.63	-7.70+0.12+0.17

• high order, power corrections significantly improve the accuracy, reduce the μ dependence

[23] Chai, SC, Ju, Yan, Lu, Xiao, CPC 46.12(2022)123103
 [19] Zou, Ali, Lu, Liu, Li, PRD 91.054033(2015)

Our results for B and f_L agree well with predictions from next-to-leading-order (NLO) perturbative QCD (PQCD) [23], but not from leading-order (LO) PQCD [19]. This indicates that NLO corrections and power-suppressed terms play an important role in color-suppressed the $\rightarrow (u, d)$ decays. Such a role would help clarify the puzzle in $B^0 \rightarrow \theta^0 p^0$, where the measured f_L is significantly higher than the LO PQCD prediction [19]. Our result for A(p shows no significant CP violation, consistent within uncertainties

with CKM unitarity. Belle, PRL.133.1081801(2024)

• high accuracy B meson LCDAs is imperative in the high precision era

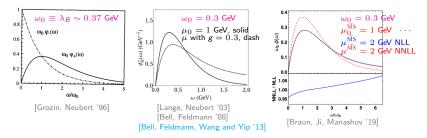
DATA $5.59^{\pm0.41}_{-0.40}$ 5.12 ± 0.19 1.59 ± 0.26 DATA 3.7 ± 2.1 -8.3 ± 0.4 0 ± 13

Towards to high accuracy LCDAs

i $B_{(s)}$ LCDAs

see talks from Jun Zeng, 14:00, Nov 14th and Yan-bin Wei, 14:00, Nov 16th

see talk from Xue-ying Han, 14:20, Nov 15th (Theory/CEPC/Computing/Performance Parallel)


ii Light mesons LCDAs

Leading twist *B*-meson LCDA $\phi_+(\omega)$

• Two-particle (2p) distribution amplitudes up to twist five [Grozin, Neubert '97]

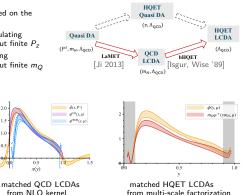
$$\begin{split} \langle 0|\bar{d}_{\alpha}(x)h_{\nu\beta}(0)|\bar{B}_{\nu}\rangle &= -\frac{\mathrm{i}f_{\beta}m_{\beta}}{4}\int_{0}^{\infty}d\omega e^{-i\omega\nu\cdot x}\Big[(1+\not\!\!\!/)\Big\{\left[\phi_{+}(\omega)+x^{2}g_{+}(\omega)\right]\right.\\ &\left.-\frac{\left[\phi_{+}(\omega)-\phi_{-}(\omega)+x^{2}\left(g_{+}(\omega)-g_{-}(\omega)\right)\right]}{2\nu\cdot x}\not\!\!/\Big\}\gamma_{5}\Big]_{\beta\alpha} \end{split}$$

• Exponential models $\phi_+(\omega) = \frac{\omega}{\omega_0^2} e^{\frac{-\omega}{\omega_0}}$ inspired by QCD sum rules

• a new representation in dual spectral functions $\phi^+(\omega) = \frac{\omega}{2\bar{\Lambda}^2}\Theta(2\bar{\Lambda}-\omega)$

 $\circ~$ the eigenfunctions of the LN renormalization kernel, an alternative representation of the RG solution

 \circ convolution integrals with $J_1(\sqrt{\omega/\omega'})$ to reproduce the exponent expression


Leading twist *B*-meson LCDA $\phi_{+}(\omega)$

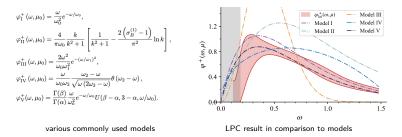
- various models of ϕ_B^+ [Wang, Shen, '15]
- large uncertainty of first inverse moment $\lambda_B = \int_{-\infty}^{+\infty} d\omega \phi_B^+(\omega,\mu) \in [0.2, 0.6]$ GeV
- the lattice simulation [LPC 2410.18658]
- LCDAs can not be directly simulated on the lattice
- Light-cone can be accessed by simulating correlation functions with a large but finite P_{z}
- HQET can be accessed by simulating correlation functions with a large but finite m_{Ω}

DI -

1.5 1.0

0.5

0.5


2.0

 $({}^{,1.5}_{,d},{}^{,y}_{,l}) = 1.0$

0.5

Leading twist *B*-meson LCDA $\phi_+(\omega)$

· consists with the existing model parametrizations

- extracted $\lambda_B(1 \, \text{GeV}) = 0.38 \pm 0.04 \, \text{GeV}$
- the simulation of quasi DAs with a single lattice spacing and perturbative calculation at leading power
- various systematic uncertainties from both lattice and analytical sides are not considered yet

Leading twist $B_{(s)}$ -meson LCDA $\phi_+(\omega)$

• estimation $\lambda_{B_{(s)}}$ from HQET sum rule [Khodjamirian, Mandal, Mannel 2008.03935]

$$\begin{split} \lambda_{\mathcal{B}_{\mathcal{S}}} &= 438 \pm 150 \text{ MeV}, \quad \lambda_{\mathcal{B}} = 383 \pm 153 \text{ MeV} \\ \lambda_{\mathcal{B}_{\mathcal{S}}} / \lambda_{\mathcal{B}} &= 1.19 \pm 0.14 \end{split}$$

- $SU(3)_f$ violation in the λ_{B_S} is an appreciable effect, in the same ballpark as for $f_{B_{(S)}}$
- · HQET sum rules is an independent (approximate) tool to investigate the heavy-meson DAs
- constraining λ_{B_s} by $B_s o \gamma^*(\phi)$ form factors [Ivanov, Melikhov, Simula, 2407.13498]
- $\circ~$ define correlation function to calculate $B_s \to \gamma^*$ form factors ${\it F}_i(q^2,q'^2)$ from B_s LCSRs

$$\begin{split} &i \int dx e^{iq'x} \langle 0| \left\{ T j_{\alpha}^{\text{e.m.}}(x), \bar{s} \gamma_{\mu} q^{\nu} b(0) \right\} |\bar{B}_{s}(p) \rangle \ = \ ie \ \epsilon_{\mu \alpha q q'} \frac{F_{V}(q^{2}, q'^{2})}{M_{B_{s}}}, \\ &i \int dx e^{iq'x} \langle 0| \left\{ T j_{\alpha}^{\text{e.m.}}(x), \bar{s} \sigma_{\mu \nu} q^{\nu} b(0) \right\} |\bar{B}_{s}(p) \rangle \ = \ ie \ \epsilon_{\mu \alpha q q'} F_{TV}(q^{2}, q'^{2}). \end{split}$$

interpolate the numerical results using a simple analytic fit formula

$$F(y_1, y_2) \;=\; f_0\left(1 + a_0 \frac{y_1}{1 - y_1}\right) + R_\phi F_0\left(1 + a_1 \frac{y_1}{1 - y_1}\right) \frac{y_2}{1 - y_2} \\ + R_\phi F_1\left(1 + a_2 \frac{y_1}{1 - y_1}\right) \frac{y_2}{1 - y_2/\tau^2} \\ + R_\phi F_1\left(1 + a_2 \frac{y_1}{1 - y_1}\right) \frac{y_2}{1 - y_2/\tau^2} \\ + R_\phi F_1\left(1 + a_2 \frac{y_1}{1 - y_1}\right) \frac{y_2}{1 - y_2/\tau^2} \\ + R_\phi F_1\left(1 + a_2 \frac{y_1}{1 - y_1}\right) \frac{y_2}{1 - y_2/\tau^2} \\ + R_\phi F_1\left(1 + a_2 \frac{y_1}{1 - y_1}\right) \frac{y_2}{1 - y_2/\tau^2} \\ + R_\phi F_1\left(1 + a_2 \frac{y_1}{1 - y_1}\right) \frac{y_2}{1 - y_2/\tau^2} \\ + R_\phi F_1\left(1 + a_2 \frac{y_1}{1 - y_1}\right) \frac{y_2}{1 - y_2/\tau^2} \\ + R_\phi F_1\left(1 + a_2 \frac{y_1}{1 - y_1}\right) \frac{y_2}{1 - y_2/\tau^2} \\ + R_\phi F_1\left(1 + a_2 \frac{y_1}{1 - y_1}\right) \frac{y_2}{1 - y_2/\tau^2} \\ + R_\phi F_1\left(1 + a_2 \frac{y_1}{1 - y_1}\right) \frac{y_2}{1 - y_2/\tau^2} \\ + R_\phi F_1\left(1 + a_2 \frac{y_1}{1 - y_1}\right) \frac{y_2}{1 - y_2/\tau^2} \\ + R_\phi F_1\left(1 + a_2 \frac{y_1}{1 - y_1}\right) \frac{y_2}{1 - y_2/\tau^2} \\ + R_\phi F_1\left(1 + a_2 \frac{y_1}{1 - y_1}\right) \frac{y_2}{1 - y_2/\tau^2} \\ + R_\phi F_1\left(1 + a_2 \frac{y_1}{1 - y_1}\right) \frac{y_2}{1 - y_2/\tau^2} \\ + R_\phi F_1\left(1 + a_2 \frac{y_1}{1 - y_1}\right) \frac{y_2}{1 - y_2/\tau^2} \\ + R_\phi F_1\left(1 + a_2 \frac{y_1}{1 - y_1}\right) \frac{y_2}{1 - y_2/\tau^2} \\ + R_\phi F_1\left(1 + a_2 \frac{y_1}{1 - y_1}\right) \frac{y_2}{1 - y_2/\tau^2} \\ + R_\phi F_1\left(1 + a_2 \frac{y_1}{1 - y_1}\right) \frac{y_2}{1 - y_2/\tau^2} \\ + R_\phi F_1\left(1 + a_2 \frac{y_1}{1 - y_1}\right) \frac{y_2}{1 - y_2/\tau^2} \\ + R_\phi F_1\left(1 + a_2 \frac{y_1}{1 - y_1}\right) \frac{y_2}{1 - y_2/\tau^2} \\ + R_\phi F_1\left(1 + a_2 \frac{y_1}{1 - y_1}\right) \frac{y_2}{1 - y_2/\tau^2} \\ + R_\phi F_1\left(1 + a_2 \frac{y_1}{1 - y_1}\right) \frac{y_2}{1 - y_2/\tau^2} \\ + R_\phi F_1\left(1 + a_2 \frac{y_1}{1 - y_1}\right) \frac{y_2}{1 - y_2/\tau^2} \\ + R_\phi F_1\left(1 + a_2 \frac{y_1}{1 - y_1}\right) \frac{y_2}{1 - y_2/\tau^2} \\ + R_\phi F_1\left(1 + a_2 \frac{y_1}{1 - y_1}\right) \frac{y_2}{1 - y_2/\tau^2} \\ + R_\phi F_1\left(1 + a_2 \frac{y_1}{1 - y_1}\right) \frac{y_2}{1 - y_2/\tau^2} \\ + R_\phi F_1\left(1 + a_2 \frac{y_1}{1 - y_1}\right) \frac{y_2}{1 - y_2/\tau^2} \\ + R_\phi F_1\left(1 + a_2 \frac{y_1}{1 - y_1}\right) \frac{y_2}{1 - y_2/\tau^2} \\ + R_\phi F_1\left(1 + a_2 \frac{y_1}{1 - y_1}\right) \frac{y_2}{1 - y_2/\tau^2} \\ + R_\phi F_1\left(1 + a_2 \frac{y_1}{1 - y_1}\right) \frac{y_2}{1 - y_2/\tau^2} \\ + R_\phi F_1\left(1 + a_2 \frac{y_1}{1 - y_1}\right) \frac{y_2}{1 - y_2/\tau^2} \\ + R_\phi F_1\left(1 + a_2 \frac{y_1}{1 - y_1}\right) \frac{y_2}{1 - y_2/\tau^2} \\ + R_\phi F_1\left(1 + a_2 \frac{y_1}{1 - y_1}\right) \frac{y_2}{1 - y_2/\tau^$$

• consider a dispersion representation in q'^2 by the sum of two poles, m_{ϕ}^2 and an effective heavier pole • obtain $B_s \to \phi$ form factor $V(q^2)$, $T_1(q^2)$ without involving the systematic uncertainties of sum rules • constraint λ_{B_s} by comparing with the result obtained from approaches which do not use the $\phi_{B_s}^+$

$$\lambda_{B_s}(1\,\text{GeV}) = 490 \pm 70\,\text{MeV}$$

High twist B-meson LCDAs

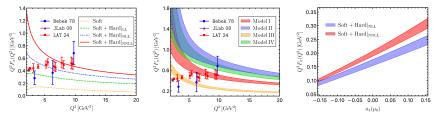
- relations of 2p and 3p LCDAs via EOM and HQS [Kawamura, Kodaira, Qiao, Tanaka '01]
- transversal momentum dependence $\chi(\omega, k_T)$ of *B* meson WFs [Huang, Qiao, Wu '06] • ~ hyperbolalike curve, much different from Wandzura-Wilczek $\chi^{WW}(\omega, k_T)$ (~ delta function)
- evolution equation for high twist B meson DAs [Braun, Manashov, Offen, '15]
- $\circ~$ twist-three three-particle DA $\phi_3=\Psi_{A}-\Psi_{V}$ is related to two particle DAs ϕ_-
- complete three-particle higher-twist DAs of the B-meson [Braun, Ji, Manashov '17]
- eight independent three-particle DAs classified by collinear twist and chirality (conformal transformations)
- evolution equations of three twist-four DAs $\Psi_A + \Psi_V, \Psi_A + X_A, \Psi_V \tilde{X}_A$
- simple models of DAs with different large-energy behavior that satisfy all tree-level EOM constraints

$$\begin{split} \langle 0|\bar{\mathfrak{s}}_{\alpha}\left(x\right)G_{\rho\delta}\left(ux\right)h_{\nu\beta}\left(0\right)|\bar{B}_{\mathfrak{s},\nu}\rangle &= \frac{f_{\mathsf{B}_{\mathsf{S}}}m_{\mathsf{B}_{\mathsf{S}}}}{4}\int_{0}^{\infty}d\omega\int_{0}^{\infty}d\zeta e^{-i(\omega+u\zeta)\nu\cdot x}\Big[(1+\nu)\Big\{-i\sigma_{\rho\delta}\Psi_{V}(\omega,\zeta)\right] \\ &+ (\nu_{\rho}\gamma_{\delta} - \nu_{\delta}\gamma_{\rho})\left[\Psi_{A}(\omega,\zeta) - \Psi_{V}(\omega,\zeta)\right] - \left(\frac{x_{\rho}\nu_{\delta} - x_{\delta}\nu_{\rho}}{\nu\cdot x}\right)X_{A}(\omega,\zeta) + i\epsilon_{\rho\delta\alpha\beta}\frac{x^{\alpha}\nu^{\beta}}{\nu\cdot x}\gamma_{\mathsf{S}}\tilde{X}_{A}(\omega,\zeta) \\ &+ \left(\frac{x_{\rho}\gamma_{\delta} - x_{\delta}\gamma_{\rho}}{\nu\cdot x}\right)\left[Y_{A}(\omega,\zeta) + W(\omega,\zeta)\right] - i\epsilon_{\rho\delta\alpha\beta}\frac{x^{\alpha}\gamma^{\beta}}{\nu\cdot x}\gamma_{\mathsf{S}}\tilde{Y}_{A}(\omega,\zeta) \\ &- \left(\frac{x_{\rho}\nu_{\delta} - x_{\delta}\nu_{\rho}}{\nu\cdot x}\right)\frac{\not{k}}{\nu\cdot x}W(\omega,\zeta) + \left(\frac{x_{\rho}\gamma_{\delta} - x_{\delta}\gamma_{\rho}}{\nu\cdot x}\right)\frac{\not{k}}{\nu\cdot x}Z(\omega,\zeta)\Big\}\gamma_{\mathsf{S}}\Big]_{\beta\alpha} \end{split}$$

• updated calculations of $B \rightarrow \pi, K, \rho, \phi, f_0$ form factors from *B*-meson LCSRs [Grbernari '19, Lü '19, Descotes-Genon '19, Cheng '20, · · ·]

Leading twist π -meson LCDA $\phi(u, \mu) = 6u(1-u) \sum_{n=0} a_n^{\pi}(\mu) c_n^{3/2}(u)$

- QCD definition $a_n^{\pi}(\mu) = \langle \pi | q(z) \bar{q}(z) + z_{\rho} \partial_{\rho} q(z) \bar{q}(z) + \cdots | 0 \rangle$
- QCDSR: 0.19 ± 0.06 [Chernyak '84], $0.26^{+0.21}_{-0.09}$ [Khodjamirian '04], $0.28^{+0.08}_{-0.08}$ [Ball '06]
- nonlocal vacuum condensate is introduced and modeled for a^π_{n>2} [Bakulev '01]
- LQCD: 0.334 ± 0.129 [UKQCD '10], 0.135 ± 0.032 [RQCD '19], $0.258^{+0.079}_{-0.052}$ [LPC '22]
- \circ a_4^{π} is not available so far, what's the convergence ? \Leftarrow the growing number of derivatives in $q\bar{q}$ operator
- a_2, a_4, a_6 (QCD DAs) \Leftarrow fitting to the quasi-DAs evaluated from LAMET
- dispersion relation as an Inverse problem[Li '20, Yu '22]
- quark-hadron duality → Laguerre Polynomials spectral density: $\{a_2, a_4\} = \{0.249, 0.134\}$

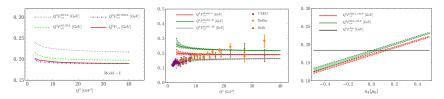

Method	$a_2^{e}(2 \text{ GeV})$	Refs.
LO QCDSR, CZ model	0.39	[30,31]
QCDSR	0.18+0.15	[32]
QCDSR	0.19 ± 0.06	[33]
QCDSR, NLC	0.13 ± 0.04	[34,35]
F _{gyr} , LCSRs	0.12 ± 0.04 (2.4 GeV)	[36]
Fmr, LCSRs	0.21 (2.4 GeV)	[37]
F _{gyr} , LCSRs, R	0.19	[38]
F _{syr} , LCSRs, R	0.31	[39]
F ₈₇₇ , LCSRs, NLO	0.096	[40]
F _{syr} , LCSRs, NLO	0.068	[41]
F ^{en} , LCSRs	$0.17 \pm 0.10 \pm 0.05$	[42]
F ^{em} _x , LCSRs, R	0.14 ± 0.02	[43]
FRam LCSRs	0.13 ± 0.13	[44]
$F_{B \rightarrow s}$, LCSRs	0.11	[45,46]
LQCD, TWST, $N_f = 2$, CW	0.201 ± 0.114	[47]
LQCD, TWST, $N_f = 2 + 1$, DWF	0.233 ± 0.088	[48]
LQCD, MST, $N_f = 2$	0.136 ± 0.03	[27]
LQCD, MST, $N_f = 2 + 1$, CW	0.0762 ± 0.0127	[29]

• study status of $a_2^{\pi}(2\,{
m GeV})$

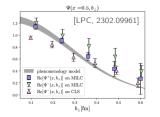
[SC, 1901.06071, Dipion LCDAs]

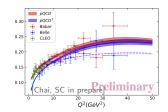
Leading twist π -meson LCDA $\phi(u, \mu) = 6u(1-u) \sum_{n=0} a_n^{\pi}(\mu) c_n^{3/2}(u)$

- N²LO hard-collinear factorization of $F_{\pi}(Q^2)$ [Ji, Shi, Wang³, Yu 2411.03658]
- o rigorous two-loop computation of leading-twist contribution in the hard-collinear factorization
- N²LO factorization at leading power of A²_{QCD}/Q² expansion by employing the light-cone projections on the leading-twist-collinear operators [Chen², Feng, Jia 2312.17228]

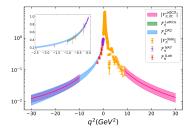


Model I: anti-de Sitter-QCD ~ $(u\bar{v})^{\alpha\pi}$ with $\alpha_{\pi} = 0.585 \pm 0.06$ [Khodjamirian, et al 2011.11275] Model II: { a_2, a_4 } = {0.181(32), 0.107(36)} from data-driven with the modular DR [SC, et al 2007.05550] Model III: { a_2, a_4 } = {0.149(50), -0.096(60)} from QCD sum rules [Stefanis 2006.10576] Model IV: { a_2, a_4, a_6 } = {0.196(32), 0.085(26), 0.056(15)} from LAMET [Cloet, et al 2407.00206]


the N²LO QCD correction to the short-distance coefficient function is enormous
an improved extraction of a₂, a₄ dictating the intricate profile of the pion DAs

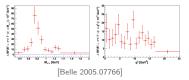

Leading twist π -meson LCDA $\phi(u, \mu) = 6u(1-u) \sum_{n=0} a_n^{\pi}(\mu) C_n^{3/2}(u)$

- data-driven study of a_2 from $F_{\pi\gamma\gamma^*}$ by LCSRs
- o 0.14 [Agaev 2010, BABAR+CLEO], 0.10 [Agaev 2012, Belle+CLEO]
- large uncertainty of $a_{n>2}^{\pi}$, discrepancy data at large Q^2
- N^2LO hard-collinear factorization of $F_{\pi\gamma\gamma^*}(Q^2)$ [Gao, Huber, Ji, Wang 2160.01390]


• intrinsic transverse momentum function (iTMD)

High twist π -meson LCDA chiral mass m_0^{π}

- higher twist contributions to exclusive QCD processes are commonly power suppressed $\mathcal{O}(1/Q)$
- twist 3 contribution is dominate in F_{π} due to chiral enhancement $\mathcal{O}(\frac{m_0}{w_0})$
- o odd-twist LCDA DO NOT contribute in LCSRs with the chiral symmetry limit
- this effect is greatly enhanced by the end-point problem
- the joint study of F_{π} from the NLO PQCD up to twist four and the modular DR
- a comprehensive description of F_{π} in the whole kinematics [Chai, SC, Hua 2209.13312]


- fitting the PQCD prediction to the result obtained from modular DR
- o the obtained chiral mass $m_0^{\pi} = 1.37 \pm 0.30$ GeV
- much smaller than the ChPT value 1.89 GeV [Leutwyler '96]
- $\circ~$ also smaller than the value obtained with $\overline{\rm MS}$ current quark masses $m_0^\pi=\frac{m_\pi^2}{m_u+m_d}$
- o N^2LO correction or iTMD effect ?

Width effects of ρ LCDAs DiPion LCDAs

- B_{l4} decays have rich observables, nontrivial tests of SM [Faller '14]
- Different exclusive $b \rightarrow u$ processes help in the $|V_{ub}|$ determination
- V_{ub} extracted from $B^0 \rightarrow \pi^- l^+ \nu$ and $B^+ \rightarrow \rho^0 l^+ \nu$ has $\sim 3\sigma$ deviation [Belle II 2407.17403]

$$\begin{split} |V_{ub}|_{B\to\pi l\nu} &= (3.93\pm0.19\pm0.13\pm0.19(\text{theo}))\times10^{-3} \quad [\text{LQCD}] \\ |V_{ub}|_{B\to\pi l\nu} &= (3.73\pm0.07\pm0.07\pm0.16(\text{theo}))\times10^{-3} \quad [\text{LQCD}+\text{LCSRs}] \\ |V_{ub}|_{B\to\rho l\nu} &= (3.19\pm0.12\pm0.18\pm0.26(\text{theo}))\times10^{-3} \quad [\text{LCSRs}] \end{split}$$

- o the theoretical uncertainty does not consider the width effect of ho in the $\pi\pi$ invariant mass spectral
- $B \to \rho l \bar{\nu}_l \ (1.63 \pm 0.20) \times 10^{-4}$ [BABAR '11, Belle '13, Belle II '24]
- first measurement of $B^+ \rightarrow \pi^+ \pi^- l^+ \bar{\nu}_l$ (2.3 ± 0.4) × 10⁻⁴ [Belle '20]

- First measurement of $D^0
 ightarrow \pi^+\pi^-e^+e^-$ [LHCb-PAPER-2024-047, prelim.]
- o $(4.53\pm1.38)\times10^{-7}$ in ρ/ω and $(3.84\pm0.96)\times10^{-7}$ in ϕ
- \circ *c* \rightarrow *u*-typed FCNC upper limit 0.7 \times 10⁻⁵ by [BES III '18]
- $D^0 \to K^- \pi^0 \mu^+ \nu ~(0.729 \pm 0.014 \pm 0.011)$ % [BESIII 2403.10877]
- $\circ~$ in which the S-wave accounts (2.06 $\pm~0.05)$ %
- First Lattice QCD study of the $B \rightarrow \pi \pi l \bar{\nu}$ transition amplitude in the region of large q^2 and $\pi \pi$ invariant mass near the ρ resonance [Leskovec et.al. 2212.08833[hep-lat]]

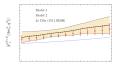
Width effects of ρ LCDAs DiPion LCDAs

- The study of DiPion distribution amplitude will shine a light on the width effect encounted in Flavor Physics (multibody decays, $B \rightarrow [\pi\pi] l\nu$, $b \rightarrow sll$, $c \rightarrow ull$, $D\pi$ system \cdots) and the controversial structure of scalar meson ?
- Chiral-even LC expansion with gauge factor [x, 0] [Polyakov '99, Diehl '98]

$$\langle \pi^{a}(k_{1})\pi^{b}(k_{2})|\overline{q}_{f}(zn)\gamma_{\mu}\tau q_{f'}(0)|0\rangle = \kappa_{ab}\,k_{\mu}\int dx\,e^{iuz(k\cdot n)}\,\Phi_{\parallel}^{ab,ff'}(u,\zeta,k^{2})$$

• 2 π DAs is decomposed in terms of $C_n^{3/2}(2z-1)$ and $C_\ell^{1/2}(2\zeta-1)$

$$\Phi^{l=1}(z,\zeta,k^2,\mu) = 6z(1-z) \sum_{n=0,\text{even}}^{\infty} \sum_{l=1,\text{odd}}^{n+1} B_{n\ell}^{l=1}(k^2,\mu) C_n^{3/2}(2z-1) C_{\ell}^{1/2}(2\zeta-1)$$


- $B_{n\ell}(k^2,\mu)$ have similar scale dependence as the a_n of π,ρ,f_0 mesons
- Evolution from $4m_{\pi}^2$ to large invariant mass $k^2 \sim \mathcal{O}(m_c^2)$ and furtherly to $\mathcal{O}(m_b \lambda_{\text{QCD}})$

$$B_{n\ell}^{l}(k^{2}) = B_{n\ell}^{l}(0) \operatorname{Exp}\left[\sum_{m=1}^{N-1} \frac{k^{2m}}{m!} \frac{d^{m}}{dk^{2m}} \ln B_{n\ell}^{l}(0) + \frac{k^{2N}}{\pi} \int_{4m_{\pi}^{2}}^{\infty} ds \frac{\delta_{\ell}^{l}(s)}{s^{N}(s-k^{2}-i0)}\right]$$

- 2πDAs LCSRs results in [SC, Khodjamirian, Virto 1709.0173, SC 1901.06071]
- $\circ~$ high partial waves give few percent contributions to $B \to \pi\pi$ form factors
- o $~\rho^{\prime}, \rho^{\prime\prime}$ and NR background contribute $\sim 20\% 30\%$ to P-wave

Width effects of ρ LCDAs DiPion LCDAs

- 30% smaller than it obtained from *B*-meson LCSRs [SC, Khodjamirian and Virto 1701.01663]
- high twist contributions ?
- uncertainty of B-meson LCDAs

 q^2 (GeV²)

- At the current accuracy, they give same order plots of $B
 ightarrow \pi^+ \pi^0$ FFs
- For the P-wave FFs, they both predict sizable non- ρ contribution (~ 15%)
- $\circ~$ qualitatively explain the $|V_{ub}|$ obtained from $B \to \pi l \nu$ and $B \to \rho l \nu$
- B-meson LCSRs can not predict the contributions from higher partial waves, but it indeed exist in the DiPion LCSRs, althogh small
- *B*-meson LCSRs rely on the resonance model (an inverse problem), DiPion LCSRs is currently limited by the poor knowledge of DiPion LCDAs
- high twist DiPion LCDAs is a big task for the practitioners of QCD in HP

Conclusion

Much more topics of the precise QCD in flavor sector, including but not limited to

- CPV in baryon decays [He, Liu 2404.19196], [Jia, Jiang, Wang, Yu 2408.14959], [Wang, Yu 2407.04110]
- Double mixing CPV $B_s^0(\bar{B}_s^0) \to \rho^0 \bar{K}_0(K_0) \to \rho^0 \pi^- e^+ \nu$ [Shen, Song, Qin, 2301.05848, 2403.01904]
- CPV in D meson from LCSRs [Lenz, Piscopo, Rusov 2403.02267]
- see talks from Zheng-hua Zhang 16:20, Nov 14th for CPV from the interference terms in cascade decays
- RG evolution of three-particle B-meson soft function [Huang, Ji, Shen, Wang² 2312.15439]
- LCDAs of heavy mesons from bHQET [Beneke, et al 2305.06401, Deng, et al 2409.00632]
- LD penguin contribution to $B_{d,s} \rightarrow \gamma \gamma$ decays [Qin, Shen, Wang² 2207.02691]
- the weak annihilation contribution in $B \to \{K, \pi\} \uparrow^+ I^-$ [Shen, Huang, Wang² 2403.11258]
- QED effects in B → ττ [Zhou, et al 2301.00697], in LCDAs [Beneke, Böer, et al 2204.09091, 2108.05589]
- $\mathcal{B}(B^+ \rightarrow K^+ \nu \bar{\nu}) = (2.3 \pm 0.7) \times 10^{-5}$, 2.7 σ from the SM [Belle II 2311.14647] no hadronic uncertainty beyond FF [HPQCD 2207.13371]
- FCNC in Kaons $\mathcal{B}(\kappa_l^0 \to \pi^0 \nu \bar{\nu}) < 2 \times 10^{-9}$ [New preliminary result from KOTO]
- form factors of kaon and nucleon [Huang, et al 2407.18724], [Chen, Feng, Jia 2406.19994]
- gravitational form factors and the conformal anomaly [Corianó, et al 2409.19586]
- gravitational form factors of proton from lattice [Hackett, et al 2310.08484]
- lattice revisiting of D^{*}_s radiative decay and the width [Meng, et al 2401.13475]
- lattice evaluation of B → D* form factor [HPQCD 2304.03137, JLQCD 2306.05657]
- lattice evaluation of leading twist η_c DA [Blossier, et al 2406.04668]

• • • • • • • •

- SuperKEKB(2018-2026) [E. Kou et al. [Belle-II], 2019]
 - $\circ~$ Belle II has collected 531 \textit{fb}^{-1} data so far with record peak luminosity $4.7{\times}10^{34}\textit{cm}^{-2}\textit{s}^{-1}$
 - Goal: 50 ab^{-1} data and peak luminosity at $6.5 \times 10^{35} cm^{-2} s^{-1}$
 - $\begin{array}{l} \circ \quad |V_{ub}| \text{ to } 1.2\% \text{ in } B \rightarrow \phi, \rho l \nu, \, \delta A_{CP} \text{ in } \\ B \rightarrow K^* \pi, K \rho, K^* \rho, B \rightarrow VV, \, \alpha \text{ from } \\ B \rightarrow \pi^0 \pi^0, \cdots \end{array}$
 - † $B^+ \rightarrow \rho^+ \rho^0, B^0 \rightarrow \kappa^0 \pi^0$ [Belle-II, 2021]
 - † First measurement of CP asymmetry parameters in $B^0 \rightarrow K_S^0 \pi^0$, $\omega \omega$ [Belle-(II), 2023,04].

- HL-LHC(2030-2033) [CERN Yellow Rep. Monogr, 2019]
 - $\label{eq:L} \begin{array}{ll} \mbox{\mathcal{L}} = 23(300) \mbox{$\rm fb$}^{-1}$ in phase 1(2), 2 order \\ larger than LHC, \ 2\times 10^{33(34)} \mbox{$\rm cm$}^{-2} \mbox{$\rm s$}^{-1} \end{array}$
 - $\begin{array}{l} \circ \quad |V_{ub}| \mbox{ to } 0.7\%(0.4\%) \mbox{ in } B \to \pi\pi, \pi\rho, \rho\rho, \\ C_{\pi+\pi^-}, S_{\pi+\pi^-} \mbox{ (one order improvement),} \\ \alpha \mbox{ from } B \to \rho\rho, \rho\pi, \cdots . \end{array}$
 - † $A_{\pi\pi}^{\rm dir} = (2.32 \pm 0.61) \times 10^{-3}$ [LHCb, 2023]
 - $\label{eq:constraint} \begin{array}{l} \dagger \quad \delta A_{CP}(\Lambda_b^0 \rightarrow \Lambda {\it K}^+ {\it K}^-) = 0.083 \pm 0.028 \\ \\ [{\rm LHCb-Paper-2024-043}] \end{array}$

重味物理研究即将全面进入精确测量的时代,这为深入理解基本 相互作用和探索新物理机制提供了极佳的机遇。

Thank you for your patience.