

1

Recent searches for new physics and rare decays at LHCb

俞洁晟 (湖南大学)

第十届中国LHC物理年会 山东大学*青岛 2024年11月15日

Outline

Introduction

- ➢ Rare decays
 - **D**FCNC
 - □Other rare decays
- Prospects
- > Summary

LHC is the forefront of high energy physics

Two ways to search for new physics in LHC

High energy frontier
 ATLAS and CMS
 Search new particles in collision directly

High precision frontier

LHCb Precise measurement of FCNC processes to search for new particles.

- Search for new physics far above the accelerator collision energy
- Test new physics models, determining coupling constants and phases

LHCb experiment

LHCb collaboration: 25 counties, 107 institutes, 1770 members

- Understand matter-antimatter imbalance (CP violation)
- Search for new physics (Rare decays)
- Explore and understand QCD (Hadron properties, exotic hadrons)

LHCb data samples

Luminosity levelling $L \sim 3 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$

Run-I: 3 fb⁻¹, Run-II: 6 fb⁻¹

Large $b\bar{b}$ and $c\bar{c}$ production cross sections: $\sigma(b\bar{b}X) \sim 0.5\% \times \sigma_{pp}^{\text{inelas}}, \ \sigma(c\bar{c}X) \sim 10\% \times \sigma_{pp}^{\text{inelas}}$

FCNC $b \rightarrow s\gamma(l^+l^-)$ decays

- > Direct search of $B_{(s)}^0 \rightarrow \gamma \mu^+ \mu^-$ [JHEP 07 (2024) 101]
- > Direct search of $B_{(s)}^{*0} \rightarrow \mu^+ \mu^-$ [arXiv:2409.17209v1]
- > Amplitude analysis of $\Lambda_b^0 \rightarrow p K^- \gamma$ [JHEP 06 (2024) 098]
- > Amplitude analysis of $B_s^0 \rightarrow K^+ K^- \gamma$ [JHEP 08 (2024) 093]
- ▶ Photon polarization in $B_s^0 \rightarrow \phi e^+ e^-$, low q2 [LHCb-PAPER-2024-030, prelim.]
- > Angular analysis of $B^0 \rightarrow K^{*0}e^+e^-$, central q2 [LHCb-PAPER-2024-022, prelim.]
- > Angular analysis of $\Lambda_b^0 \rightarrow p K^- \mu^+ \mu^-$ [arXiv:2409.12629]
- > z-Expansion fit with $B^0 \to K^{*0} \mu^+ \mu^-$ [PRD 109 (2024) 052009, PRL 132 (2024) 131801]
- > Local & non-local amplitudes in $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ [JHEP 09 (2024) 026]
- ► LFU in $B_s^0 \rightarrow \phi l^+ l^-$ [arXiv:2410.13748]
- ► LFU in $B^+ \rightarrow K^+ \pi^+ \pi^- l^+ l^-$ [LHCb-PAPER-2024-046, prelim.]

$b \rightarrow s l^+ l^-$ decays

$> b \rightarrow sl^+l^-$ decays described by effective Hamiltonian

$$H = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_i C_i O_i + \frac{K}{\Lambda_{NP}^2} O_j^{(6)}$$

New physics can affect Wilson coefficients C_i or add new operators O_j

Sensitivity to Wilson coefficients

Wilson Coefficients: Ci

- → Perturbative, short distance physics
- → Describes heavy SM+NP effects

Operators: O_i

- → Non-perturbative, long distance physics
- → Strong interactions, difficult to calculate

7: photon penguin; 9,10: EW penguin; S,P: (pseudo-) scalar penguin

> Theoretically clean probes of NP

- Pure leptonic decays
- **\square** Ratio between $e/\mu/\tau$
- Special angular observables
- Differential BF

First direct search on $B^0_{(s)} \rightarrow \gamma \mu^+ \mu^-$ with Run II data

- Sensitive to the Wilson coefficients C7, C9, and C10
- > SM predict: BF~ 10^{-10} to 10^{-9} JHEP 12 (2020) 148 JHEP 11 (2017) 184

Search for $B_{(s)}^{0} \rightarrow \gamma \mu^{+} \mu^{-}$ with Run II data

First measurement, no significant signal and upper limits on the branching ratio

 $\mathcal{B}(B_s^0 \to \mu^+ \mu^- \gamma) < 4.2 \times 10^{-8}, \ m(\mu^+ \mu^-) \in [2m_\mu, \ 1.70] \text{ GeV}/c^2, \overset{\text{T}}{\xrightarrow{5}} \overset{\text{10}^{\circ}}{\xrightarrow{5}} \overset{\text{IHCb}}{\xrightarrow{10^{\circ}}} \mathcal{B}(B_s^0 \to \mu^+ \mu^- \gamma) < 7.7 \times 10^{-8}, \ m(\mu^+ \mu^-) \in [1.70, \ 2.88] \text{ GeV}/c^2, \overset{\text{T}}{\xrightarrow{5}} \overset{\text{IC}^{\circ}}{\xrightarrow{5}} \overset{\text{IC}^{\circ}}{\xrightarrow{5}} \overset{\text{IC}^{\circ}}{\xrightarrow{5^{\circ}}} \overset{\text{IC}^{\circ}}{\xrightarrow{5^{\circ}}$ - LHCb direct (5.4 fb - LHCb indirect (9 fb Single pole Multipole SCET LCSR LQCD + HQET + VMD LQCD + HQET $\mathcal{B}(B^0_s \to \mu^+ \mu^- \gamma) < 4.2 \times 10^{-8}, \ m(\mu^+ \mu^-) \in [3.92, \ m_{B^0_s}] \,\text{GeV}/c^2, \overset{\downarrow}{\uparrow}_{\mathfrak{S}_{10^{-10}}}$ 10-11 FSR C9 10 10-12 5 25 30 10 15 20

 $q^2 \left[{
m GeV}^2/c^4
ight]$

Search for $B^{*0}_{(s)} \rightarrow \mu^+ \mu^-$ in $B^+_c \rightarrow \pi^+ \mu^+ \mu^-$

 $> B_{(s)}^{*0} \rightarrow \mu^+ \mu^-$ are highly suppressed in

- (s) provide the might y supplies see in the might y supplies set in the m Could be enhanced by New Physics
- > Prompt $B_{(s)}^{*0}$ have large background from pp interactions
- $\gg B_c^+ \rightarrow J/\psi(\rightarrow \mu^+\mu^-)\pi^+$ as

normalization channel

$$\begin{aligned} \mathcal{R}_{B_{(s)}^{*0}(\mu^{+}\mu^{-})\pi^{+}/J/\psi\pi^{+}} &\equiv \frac{\mathcal{B}(B_{c}^{+} \to B_{(s)}^{*0}(\mu^{+}\mu^{-})\pi^{+})}{\mathcal{B}(B_{c}^{+} \to J/\psi\pi^{+})} \\ &= \frac{N_{B_{(s)}^{*0}\pi^{+}}}{N_{J/\psi\pi^{+}}} \cdot \frac{\varepsilon_{J/\psi\pi^{+}}}{\varepsilon_{B_{(s)}^{*0}\pi^{+}}} \cdot \mathcal{B}(J/\psi \to \mu^{+}\mu^{-}) \\ &= \alpha_{B_{(s)}^{*0}\pi^{+}}^{\mathrm{SES}} \cdot N_{B_{(s)}^{*0}\pi^{+}} \,, \end{aligned}$$

Search for
$$B^{*0}_{(s)} \rightarrow \mu^+ \mu^-$$
 in $B^+_c \rightarrow \pi^+ \mu^+ \mu^-$

First measurement, no significant signal and upper limits on the branching ratio

$$\mathcal{R}_{B^{*0}(\mu^+\mu^-)\pi^+/J/\psi\pi^+} < 3.8 \times 10^{-5} , \mathcal{R}_{B^{*0}_s(\mu^+\mu^-)\pi^+/J/\psi\pi^+} < 5.0 \times 10^{-5} ,$$

Arxiv:2409.17209v1

Measurement of the $\Lambda_b^0 \rightarrow p K^- \mu^+ \mu^-$ differential branching fraction

- > Measured branching fractions and angular moments in bins of q^2 and m_{pK}
- $> \Lambda_b \rightarrow pK^-J/\psi(\rightarrow \mu^+\mu^-)$ as normalization channel

$d^2 \mathcal{B}(\Lambda_b^0 \to p K^- \mu^+ \mu^-)$	$N_{\Lambda^0_b \to pK^-\mu^+\mu^-}$	$\mathcal{B}(\Lambda_b^0 \to J/\psi p K^-) \mathcal{B}(J/\psi \to \mu^+ \mu^-)$
$dq^2 dm_{pK}^2$	$\overline{N_{\Lambda^0_b \to J/\psi pK^-}}$	$\Delta(q^2, m_{pK}^2)$

q^2 m_{pK}	[1.4359, 1.5900]	[1.59, 1.75]	[1.75, 2.20]	[2.20, 5.41]	N: 2400 12620
[0.10, 0.98]	$5.22 \pm 1.21 \pm 0.43 \pm 0.98$	$8.22 \pm 1.69 \pm 0.38 \pm 1.54$	$7.24 \pm 0.92 \pm 0.52 \pm 1.36$	$0.46 \pm 0.13 \pm 0.14 \pm 0.09$	arXIV:2409.12629
[1.1, 2.0]	$3.05 \pm 1.45 \pm 0.51 \pm 0.57$	$6.27 \pm 1.71 \pm 0.40 \pm 1.18$	$4.24 \pm 0.78 \pm 0.16 \pm 0.80$	$0.16 \pm 0.09 \pm 0.02 \pm 0.03$	
[2.0, 4.0]	$4.56 \pm 0.90 \pm 0.26 \pm 0.86$	$4.50 \pm 0.86 \pm 0.21 \pm 0.84$	$3.44 \pm 0.47 \pm 0.08 \pm 0.64$	$0.12\pm 0.05\pm 0.02\pm 0.02$	
[4.0, 6.0]	$4.72 \pm 0.76 \pm 0.15 \pm 0.89$	$4.29 \pm 0.73 \pm 0.20 \pm 0.81$	$3.36 \pm 0.41 \pm 0.07 \pm 0.63$	$0.11 \pm 0.03 \pm 0.02 \pm 0.02$	
[6.0, 8.0]	$5.08 \pm 0.76 \pm 0.12 \pm 0.95$	$4.65 \pm 0.79 \pm 0.34 \pm 0.87$	$2.56 \pm 0.36 \pm 0.05 \pm 0.48$	$0.04 \pm 0.02 \pm 0.01 \pm 0.01$	
[11, 12.5]	$5.32 \pm 0.86 \pm 0.20 \pm 1.00$	$4.53 \pm 0.80 \pm 0.16 \pm 0.85$	$1.67 \pm 0.28 \pm 0.03 \pm 0.31$		
[15.0, 17.5]	$0.59 \pm 0.19 \pm$	$\pm 0.07 \pm 0.11$			

Decay rate described by 46 angular moments:

$$\frac{d\Gamma^5}{d\vec{\Phi}} = \frac{3}{8\pi} \sum_{i=0}^{46} K_i(q^2, m_{pK}^2) f(\cos\theta_\mu, \cos\theta_p, \phi)$$

Measurement of the $\Lambda_b^0 \rightarrow p K^- \mu^+ \mu^-$ differential branching fraction

- > Forward-background asymmetry (A_{FB}) of $\mu + \mu -$ sensitive to $C_{9,10}$
- > Large A_{FB} observed in hadron is the effect of interference of resonances with different parity
- > The pattern of measurements appears consistent with SM expectations

Data-driven approaches for $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

- Non-local (charm loop) hadronic contributions bring in large theoretical uncertainties, and can mimic BSM effects
- Data-driven approaches are needed

Data-driven approaches for $B^0 \to K^{*0} \mu^+ \mu^-$

- > First time employ a model of both one-particle and two-particle nonlocal amplitudes
- > Without any veto regions in $\mu^+\mu^-$ mass JHEP 09 (2024) 026

Data-driven approaches for $B^0 \to K^{*0} \mu^+ \mu^-$

LFU of $B_{(s)}^0 \rightarrow \phi l^+ l^-$ (Run 1&2 data)

> In low- q^2 : 1.1~6.0 GeV²/ c^4 3.6 σ standard deviations with SM

LFU can provide powerful probes of the SM

Phys. Rev. Lett. 127 (2021) 151801

LFU of $B_{(s)}^0 \rightarrow \phi l^+ l^-$ (Run 1&2 data)

 $b \rightarrow s\gamma$

Other rare decays

- \succ *B* → *D*µ⁺µ⁻ [JHEP 02 (2024) 032]
- $\geq B_s^0 \rightarrow \phi \mu^{\pm} \tau^{\mp}$ [arXiv:2405.13103]
- $\succ D^0 \rightarrow hhe^+e^-$ [LHCb-PAPER-2024-047, prelim.]
- $\succ \Lambda_c^+ \rightarrow p \mu^+ \mu^-$ [PRD 110 (2024) 052007]
- $\succ \Sigma^+ \rightarrow p \mu^+ \mu^-$ [LHCb-CONF-2024-002]

Search for $B_s^0 \rightarrow \phi \mu^{\pm} \tau^{\mp}$ with Run 1&2 data

- Forbidden or strongly suppressed in the SM
- Sensitive to new heavy particles beyond the SM
- $\succ \tau^- \rightarrow \pi^- \pi^+ \pi^- \nu_\tau$ or $\tau^- \rightarrow \pi^- \pi^+ \pi^- \pi^0 \nu_\tau$
- $\succ B^0 \rightarrow \psi(2S)(\rightarrow \mu^+\mu^-)\phi$ as normalization channel
- No significant signals are observed

 $\mathcal{B}(B_s^0 \to \phi \mu^+ \tau^-) < 1.0 \times 10^{-5} \text{ at } 90\% \text{ CL},$ $\mathcal{B}(B_s^0 \to \phi \mu^+ \tau^-) < 1.1 \times 10^{-5} \text{ at } 95\% \text{ CL}.$

arXiv:2405.13103v1

Search for $\Lambda_c^+ \rightarrow p \mu^+ \mu^-$ with Run 2 data

- $\succ \Lambda_{c}^{+} \rightarrow p \mu^{+} \mu^{-}$ is heavily suppressed in SM \square BF~10⁻⁸ with short-distance contributions \square BF~10⁻⁶ with long-distance processes
- $\succ \Lambda_c^+ \rightarrow p\phi(\rightarrow \mu^+\mu^-)$ as normalization channel

	Region	$\Lambda_c^+ \to p \mu^+ \mu^-$	$\Lambda_c^+ \to p \pi^+ \pi^-$	Combinatorial	Significance
		yield	yield	yield	$\Lambda_c^+ \to p \mu^+ \mu^-$
_	signal	18 ± 10	3 ± 7	681 ± 28	2.0σ
	low- m	1 ± 5	4 ± 4	241 ± 17	0.3σ
	high-m	21 ± 8	4 ± 4	432 ± 22	2.8σ
	η	12 ± 5	2.2 ± 1.6	84 ± 10	3.0σ
	ρ	43 ± 10	20 ± 6	382 ± 22	5.6σ
	ω	81 ± 10	4.8 ± 2.1	101 ± 11	$>7\sigma$
	ϕ	423 ± 22	3.8 ± 2.4	173 ± 15	$> 7\sigma$

 $\mathcal{B}(\Lambda_c^+ \to p\omega) = (9.82 \pm 1.23 \text{ (stat.)} \pm 0.73 \text{ (syst.)} \pm 2.79 \text{ (ext.)}) \times 10^{-4},$ $\mathcal{B}(\Lambda_c^+ \to p\rho) = (1.52 \pm 0.34 \text{ (stat.)} \pm 0.14 \text{ (syst.)} \pm 0.24 \text{ (ext.)}) \times 10^{-3},$ $\mathcal{B}(\Lambda_c^+ \to p\eta) = (1.67 \pm 0.69 \text{ (stat.)} \pm 0.23 \text{ (syst.)} \pm 0.34 \text{ (ext.)}) \times 10^{-3},$

Phys. Rev. D 110 (2024) 052007

Search for $\Lambda_c^+ \rightarrow p \mu^+ \mu^-$ with Run 2 data

Prospects

➢ Upgrade (2025: 14 fb⁻¹ and Upgrade-II: 300 fb⁻¹)

Observable	Current LHCb	LHCb 2025	Belle II	Upgrade II	ATLAS & CMS
EW Penguins	2-3				
$R_K \ (1 < q^2 < 6 { m GeV}^2 c^4)$	0.1 [274]	0.025	0.036	0.007	_
$R_{K^*} \ (1 < q^2 < 6 { m GeV}^2 c^4)$	0.1 [275]	0.031	0.032	0.008	-
R_{ϕ},R_{pK},R_{π}		0.08, 0.06, 0.18	-	0.02, 0.02, 0.05	-
CKM tests					
γ , with $B^0_s \to D^+_s K^-$	$\binom{+17}{-22}^{\circ}$ [136]	4°	-	1°	_
γ , all modes	$(^{+5.0}_{-5.8})^{\circ}$ [167]	1.5°	1.5°	0.35°	-
$\sin 2\beta$, with $B^0 \to J/\psi K_s^0$	0.04 606	0.011	0.005	0.003	-
ϕ_s , with $B_s^0 \to J/\psi\phi$	49 mrad [44]	14 mrad	-	4 mrad	22 mrad [607]
ϕ_s , with $B_s^0 \rightarrow D_s^+ D_s^-$	170 mrad [49]	35 mrad	-	9 mrad	
$\phi_s^{s\bar{s}s}$, with $B_s^0 \to \phi\phi$	154 mrad [94]	39 mrad		11 mrad	Under study [608]
$a_{\rm sl}^s$	33×10^{-4} [211]	$10 imes 10^{-4}$	-	$3 imes 10^{-4}$	
$ \overline{V}_{ub} / \overline{V}_{cb} $	6% [201]	3%	1%	1%	-
$B^0_s, B^0 { ightarrow} \mu^+ \mu^-$					
$\overline{\mathcal{B}(B^0 \to \mu^+ \mu^-)}/\mathcal{B}(B^0_\circ \to \mu^+ \mu^-)$	90% [264]	34%	_	10%	21% 609
$\tau_{R^0 \rightarrow \mu^+ \mu^-}$	22% [264]	8%	_	2%	<u> </u>
$S_{\mu\mu}^{\beta}$		-	-	0.2	-
$b \rightarrow c \ell^- \bar{\nu} LUV$ studies					
$\frac{R(D^*)}{R(D^*)}$	0.026 [215, 217]	0.0072	0.005	0.002	_
$R(J/\psi)$	0.24 220	0.071	_	0.02	-
Charm					
$\overline{\Delta A_{CP}(KK-\pi\pi)}$	8.5×10^{-4} [610]	$1.7 imes10^{-4}$	$5.4 imes10^{-4}$	$3.0 imes 10^{-5}$	_
$A_{\Gamma} (\approx x \sin \phi)$	2.8×10^{-4} 240	$4.3 imes 10^{-5}$	$3.5 imes 10^{-4}$	$1.0 imes 10^{-5}$	-
$x\sin\phi$ from $D^0 \to K^+\pi^-$	13×10^{-4} 228	$3.2 imes 10^{-4}$	$4.6 imes 10^{-4}$	$8.0 imes 10^{-5}$	_
$x\sin\phi$ from multibody decays		$(K3\pi) \ 4.0 \times 10^{-5}$	$(K_{ m S}^{0}\pi\pi)~1.2 imes10^{-4}$	$(K3\pi)$ 8.0×10^{-6}	_

CERN-LHCC-2018-027, 2021-012

Summary

> There is no sign of beyond the SM source yet

- Many first searches, LFU tests, and angular analyses, esp. with electron channels
- \square Data-driven approaches improve our understanding of non-local effects in $B^0 \to K^{*0} \mu^+ \mu^-$

> Opportunities in future

□ Higher precision in rare decay measurements: B⁰_{s/d} → μ⁺μ⁻, angular distributions and LFU tests in b → sl⁺l⁻ decays, ...
 □ Wider scope for exploitation: LFU tests in b → dl⁺l⁻ decays, CPV in baryon decays, CPV in rare decays,...

