The On-Shell Method of Effective Field Theory

Ming-Lei Xiao 肖明磊

Sun Yat-Sen University 中山大学 · 深圳

The 10th China LHC Physics Conference, November 2024

当明石 /	(SVSII Shonzhon)	
日明菇!	(3130, Shelizhen)	

<ロト < 同ト < ヨト < ヨト

- 1 New Physics from Effective Field Theory
- 2 On-Shell View of Effective Operators
- 3 Construction of Operator Basis
- Partial Waves and UV Resonances

Conclusion

Outline

1 New Physics from Effective Field Theory

2 On-Shell View of Effective Operators

3 Construction of Operator Basis

4 Partial Waves and UV Resonances

5 Conclusion

(日) (四) (三) (三)

New Physics Beyond the Standard Model

(日) (四) (三) (三)

The Approach of Effective Field Theory

(日) (四) (三) (三)

The Approach of Effective Field Theory

$$\mathcal{L}_{\rm EFT}(\Lambda) = \mathcal{L}_{\rm SM} + \sum_{d>4} \frac{c_i}{\Lambda^{d-4}} \mathcal{O}_i^{(d)}$$

æ

<ロ> (日) (日) (日) (日) (日)

SMEFT Phenomenology

The Dim-6 operators in SMEFT are well studied in phenomenology for a long time.

 \Rightarrow need wide combination of measurement

[Ellis, Madigan, Mimasu, Sanz, You, 2021]

<ロト < 同ト < ヨト < ヨト

肖明磊 (SYSU,Shenzhen)
-------	----------------

LHC Global Fit

LHC Global Fit

- No significant deviation from SM yet!
- Future colliders will improve the precision

8/32

Dim> 6 effective operators in **SMEFT**

Linear v.s. Linear+Quadratic model Why not include $\mathcal{O}^{(8)}$?

Wilson	Includes	95% confidence	95% confidence interval [TeV-2]	
coefficient	$ M_{d6} ^2$	Expected	Observed	
c_W/Λ^2	no	[-0.30, 0.30]	[-0.19, 0.41]	45.9%
	yes	[-0.31, 0.29]	[-0.19, 0.41]	43.2%
\tilde{c}_W/Λ^2	no	[-0.12, 0.12]	[-0.11, 0.14]	82.0%
	yes	[-0.12, 0.12]	[-0.11, 0.14]	81.8%
c_{HWB}/Λ^2	no	[-2.45, 2.45]	[-3.78, 1.13]	29.0%
	yes	[-3.11, 2.10]	[-6.31, 1.01]	25.0%
$\tilde{c}_{HWB}/\Lambda^2$	no	[-1.06, 1.06]	[0.23, 2.34]	1.7%
	yes	[-1.06, 1.06]	[0.23, 2.35]	1.6%

(日) (日) (日) (日) (日)

[ATLAS, 2006.15458]

9/32

Dim > 6 effective operators in SMEFT

• Non-interference processes:

When the phase space integration vanishes/suppressed:

- helicity selection
- 2 angular momentum selection
- other symmetry (gauge group, CP, etc.)

<ロト < 同ト < ヨト < ヨト

Dim> 6 effective operators in **SMEFT**

- Non-interference processes:
- Processes that dim-6 does not contribute: e.g. nTGC

[Ellis, He, Xiao, 2020]

イロト イボト イヨト イヨト

Dim> 6 effective operators in **SMEFT**

- Non-interference processes:
- Processes that dim-6 does not contribute: e.g. nTGC
- Positivity Bound: theoretical constraints on Wilson coefficients from unitarity and locality of S-matrix, starting from dim-8

[Zhang,Zhou,1808.00010]

• For theorists: unitarity bound from RG running

<ロト < 同ト < ヨト < ヨト

• For experimentalists: Bayesian priors in fits

Outline

New Physics from Effective Field Theory

2 On-Shell View of Effective Operators

3 Construction of Operator Basis

4 Partial Waves and UV Resonances

5 Conclusion

(日) (日) (日) (日) (日)

Inspiration from Scattering Amplitude

On-shell amplitudes can be constructed from lower-point building blocks:

Lesson Learned: independent parameters \leftrightarrow amplitude building blocks:

- local amplitudes without poles
- all legs are on-shell
- analytic functions of kinematic variables (up to crossing symmetry)
- satisfy all the symmetry (can exist independently)

(日)

Amplitude/Operator Correspondence

- The independent parameters of EFT are the Wilson coefficients of an independent basis of effective operators.
- They correspond to the leading on-shell amplitudes

$$\mathcal{O} = (\psi_1 \gamma^{\mu} \psi_2)(\psi_3 \gamma_{\mu} \psi_4) \simeq \mathcal{B} = (\bar{u}(p_1) \gamma^{\mu} u(p_2))(\bar{u}(p_3) \gamma_{\mu} u(p_4))$$

$$p_1 + p_2 + p_3 + p_4 = 0 ,$$

$$p_i^2 = m_i^2 , \quad \not p_i u(p_i) = m_i u(p_i) .$$

- What's the difference with Feynman vertices?
 - Some vertices are not gauge invariant, which thus do not exist independently.
 - Some vertices have legs that vanish on shell, and hence do not count.

<ロト < 同ト < ヨト < ヨト

Field Redefinition

What if an operator only has vertices that vanish on-shell?

$$\mathcal{O}' = X^a (\Box + m^2) \phi^a \simeq \mathcal{B}'(X, \phi) \sim -p^2 + m^2 = 0.$$

The description of effective operators is redundant due to field redefinition:

$$\begin{split} \phi^a \to \phi^a + X^a &\simeq \mathcal{L} \to \mathcal{L}' = \mathcal{L} + \frac{\partial \mathcal{L}}{\partial \phi^a} X^a + O(X^2) \\ \text{where} \quad \frac{\partial \mathcal{L}}{\partial \phi^a} = -(\Box + m^2) \phi^a + J^a \end{split}$$

The operator \mathcal{O}' can be replaced (usually referred to as EOM at $O(X^1)$)

$$\mathcal{L}' = (\mathcal{L} \supset \mathscr{D}') \mathscr{I} + X^a J^a + O(X^2)$$

The on-shell interpretation: \mathcal{O}' is irrelevant to the field/particle ϕ^a .

イロト イボト イヨト イヨト

On-Shell Types of Effective Operators

Effective operators should be categorized by what on-shell amplitudes they contribute to

$$\mathcal{O}' \notin \operatorname{type}\{X,\phi\} \quad \operatorname{but} \quad \in \operatorname{type}\{X,J\}$$

$$X \left\{ \begin{array}{c} & & \\$$

When complete sets of operators are considered in those types, O_W should NOT be considered again!

Independent Operator Basis of an On-Shell Type

An independent basis of effective operators is crucial in the global analysis of EFT.

- Global fit with experiment
- Matching with UV theory
- Renormalization Group equations
- \Rightarrow To find the independent basis of the corresponding amplitudes \mathcal{B} type by type!
 - In no redundancy from field redefinition
 - Ø directly connected with on-shell physical observables

Recent developments on operator basis (Warsaw, Hilbert Series, Young tensor *etc.*) are all (whether explicitly or not) based on this philosophy!

Outline

New Physics from Effective Field Theory

2 On-Shell View of Effective Operators

3 Construction of Operator Basis

Partial Waves and UV Resonances

5 Conclusion

(日) (日) (日) (日) (日)

Progress of Operator Basis Enumeration

- Field Redefinition (on-shell condition)
- IBP (momentum conservation)
- D = 4 (Fierz, Schouten, Gram Det...)
- other Group Identities
- Repeated Fields (flavor relations)

- Preferred Basis for NP Search
- Reduction of Operators
- Conversion between Operator Bases

・ロト ・ 一 ト ・ ヨト ・

Young Tensor Basis

On-shell amplitudes and the corresponding effective operators (in $SU(2)_l \times SU(2)_r$ form):

$$\mathcal{B}_{N}(\{h_{i}\}) \sim \epsilon^{\otimes n} \tilde{\epsilon}^{\otimes \tilde{n}} \prod_{i=1}^{N} \lambda_{i}^{r_{i}-h_{i}} \tilde{\lambda}_{i}^{r_{i}+h_{i}} \simeq \epsilon^{\otimes n} \tilde{\epsilon}^{\otimes \tilde{n}} \prod_{i=1}^{N} (D^{\lfloor r_{i} \rfloor} \Psi_{i}) \sim \mathcal{O}_{N}(\{\Psi_{h_{i}}\})$$

Young Tensor Method

The independent set of operators forms primary irrep. of SU(N):

$$\epsilon^{\alpha_i \alpha_j} \to \mathcal{U}^i_{\ k} \mathcal{U}^j_{\ l} \epsilon^{\alpha_k \alpha_l} \ , \quad \tilde{\epsilon}_{\dot{\alpha}_i \dot{\alpha}_j} \to \mathcal{U}^\dagger_{\ i}{}^k \mathcal{U}^\dagger_{\ j}{}^l \tilde{\epsilon}_{\dot{\alpha}_k \dot{\alpha}_l}$$

[Henning, Melia, 1902.06754; Li, Ren, Shu, Xiao, Yu, Zheng, 2005.00008]

n n	0	1	2	3	4
0	0 ⁸	$\psi^2 \phi^5$	$\psi^4 \phi^2$, $F_L \psi^2 \phi^3$, $F_L^2 \phi^4$	$F_L \psi^4$, $F_L^2 \psi^2 \phi$, $F_L^3 \phi^2$	$F_{\rm L}^4$
1	$\psi^{\dagger 2} \phi^5$	$\psi^{\dagger 2}\psi^2\phi^2, \psi^{\dagger}\psi\phi^4 D,$ $\phi^6 D^2$	$F_L \psi^{12} \psi^2$, $F_L^2 \psi^{12} \phi$, $\psi^{\dagger} \psi^3 \phi D$, $F_L \psi^{\dagger} \psi \phi^2 D$, $\psi^2 \phi^3 D^2$, $F_L \phi^4 D^2$	$\begin{split} F_L^2 \psi^\dagger \psi D, \psi^4 D^2, \\ F_L \psi^2 \phi D^2, F_L^2 \phi^2 D^2 \end{split}$	
2	$\psi^{\dagger 4} \phi^2$, $F_{\rm R} \psi^{\dagger 2} \phi^3$, $F_{\rm R}^2 \phi^4$	$\begin{array}{l} F_{\rm R}\psi^{\dagger2}\psi^2,F_{\rm R}^2\psi^2\phi,\\ \psi^{\dagger3}\psi\phi D,F_{\rm R}\psi^{\dagger}\psi\phi^2 D,\\ \psi^{\dagger2}\phi^3 D^2,F_{\rm R}\phi^4 D^2 \end{array}$	$\begin{split} F_{\rm R}^2 F_{\rm L}^2, \; F_{\rm R} F_{\rm L} \psi^\dagger \psi D, \\ \psi^{\dagger 2} \psi^2 D^2, \; F_{\rm R} \psi^2 \phi D^2, \\ F_{\rm L} \psi^{\dagger 2} \phi D^2, \; F_{\rm R} F_L \phi^2 D^2, \\ \phi^4 D^4, \; \psi^\dagger \psi \phi^2 D^3 \end{split}$		
3	$F_{\rm R}\psi^{\dagger 4}, F_{\rm R}^2\psi^{\dagger 2}\phi, \\ F_{\rm R}^3\phi^2$	$F_R^2 \psi^{\dagger} \psi D$, $\psi^{\dagger 4} D^2$, $F_R \psi^{\dagger 2} \phi D^2$, $F_R^2 \phi^2 D^2$			
4	F_R^4				

[Li, Ren, Xiao, Yu, Zheng, 2201.04639]

当明磊(SYSU,Shenzhen

Reduction of Effective Operators

It is common to get operators different from the constructed basis in matching or RGE.

Step 1 Label the constituting fields in order and put the operator in the standard form with spinor indices (fermions and gauge bosons in chiral basis);

Step 2 Move derivatives backward with IBP as much as possible;

Step 3 Apply Schouten Identities to the Lorentz contractions

 $\epsilon^{\alpha_i \alpha_l} \epsilon^{\alpha_k \alpha_j} \to \epsilon^{\alpha_i \alpha_j} \epsilon^{\alpha_k \alpha_l} + \epsilon^{\alpha_i \alpha_k} \epsilon^{\alpha_l \alpha_j} , \qquad i < j < k < l \ .$

Step 4 When repeated fields are present, check the independence of various irreducible tensors (flavor relation) under the permutation group.

Step 5 Retain the "off-shell" pieces in each of the above steps (Green's Basis), and perform field redefinition to convert them to the other on-shell types in the end.

[Li, Ren, Xiao, Yu, Zheng, 2201.04639; work in progress]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Non-Linear Symmetry and Adler Zero Condition

How about Goldstone bosons with non-linear constraints?

<ロト < 同ト < ヨト < ヨト

Non-Linear Symmetry and Adler Zero Condition

Systematic construction of NL σ M corrections at $O(p^6)$ and $O(p^8)$, P-even and odd

S	$U(N_f)$	Operator Basis	Amplitude Basis		
		$O_1 = \langle \nabla^{\mu} \nabla^{\nu} u^{\rho} u^{\sigma} u_{\mu} u_{\nu} u_{\rho} u_{\sigma} \rangle$	$B_1 = \mathcal{Y} \circ tr[123456]s_{13}s_{14}s_{15}s_{26}$		
		$O_2 = \langle \nabla^{\mu} \nabla^{\nu} u^{\rho} u^{\sigma} u_{\mu} u_{\nu} u_{\sigma} u_{\rho} \rangle$	$B_2 = \mathcal{Y} \circ tr[123456]s_{13}s_{14}s_{16}s_{25}$		
		$O_3 = \langle \nabla^{\mu} \nabla^{\nu} u^{\rho} u_{\mu} u^{\sigma} u_{\nu} u_{\sigma} u_{\rho} \rangle$	$B_3 = \mathcal{Y} \circ tr[123456]s_{12}s_{14}s_{16}s_{35}$	-	
		$O_4 = \langle \nabla^{\mu} u^{\nu} \nabla^{\rho} u^{\sigma} u_{\mu} u_{\nu} u_{\mu} u_{\sigma} \rangle$	$B_4 = \mathcal{Y} \circ tr[123456]s_{13}s_{14}s_{25}s_{26}$	L	$SU(N_f)$
	SU(2)	$O_5 = \langle \nabla^{\mu} u^{\nu} \nabla^{\rho} u^{\sigma} u_{\mu} u_{\rho} u_{\rho} u_{\sigma} \rangle$	$B_5 = \mathcal{Y} \circ tr[123456]s_{13}s_{15}s_{24}s_{26}$	ſ	
		$O_6 = \langle \nabla^{\mu} u^{\nu} \nabla^{\rho} u^{\sigma} u_{\mu} u_{\mu} u_{\sigma} u_{\nu} \rangle$	$B_6 = \mathcal{Y} \circ tr[123456]s_{14}s_{16}s_{23}s_{25}$		
		$O_7 = \langle \nabla^{\mu} u^{\nu} \nabla_{\mu} u^{\rho} u^{\sigma} u_{\mu} u_{\mu} u_{\sigma} \rangle$	$B_7 = \mathcal{Y} \circ tr[123456]s_{12}s_{14}s_{25}s_{36}$		
		$O_8 = \langle \nabla^{\mu} u^{\nu} \nabla_{\mu} u^{\rho} u^{\sigma} u_{\nu} u_{\sigma} u_{\rho} \rangle$	$B_8 = \mathcal{Y} \circ tr[123456]s_{12}s_{14}s_{26}s_{35}$		
		$O_9 = \langle \nabla^{\mu} u^{\nu} \nabla_{\mu} u^{\rho} u^{\sigma} u_{\rho} u_{\rho} u_{\sigma} \rangle$	$B_9 = \mathcal{Y} \circ tr[123456]s_{12}s_{15}s_{24}s_{36}$		
		$O_{10} = \langle \nabla^{\mu}\nabla^{\nu}u^{\rho}u^{\sigma}u_{\sigma}u_{\mu}u_{\nu}u_{\mu}\rangle$	$B_{10} = \mathcal{Y} \circ tr[123456]s_{14}s_{15}s_{16}s_{23}$		
		$O_{11} = \langle \nabla^{\mu} \nabla^{\nu} u^{\rho} u^{\sigma} u_{\mu} u_{\sigma} u_{\nu} u_{\rho} \rangle$	$B_{11} = \mathcal{Y} \circ tr[123456]s_{13}s_{15}s_{16}s_{24}$		
		$O_{12} = \langle \nabla^{\mu} u^{\nu} \nabla^{\rho} u^{\sigma} u_{\rho} u_{\sigma} u_{\mu} u_{\sigma} \rangle$	$B_{12} = \mathcal{Y} \circ tr[123456]s_{15}s_{16}s_{23}s_{24}$		
		$O_{13} = \langle \nabla^{\mu} u^{\nu} \nabla^{\rho} u^{\sigma} u_{\mu} u_{\mu} u_{\sigma} u_{\nu} \rangle$	$B_{13} = \mathcal{Y} \circ tr[123456]s_{13}s_{16}s_{24}s_{25}$		
		$O_{14} = \langle \nabla^{\mu} u^{\nu} \nabla^{\rho} u^{\sigma} u_{\mu} u_{\mu} u_{\nu} u_{\sigma} \rangle$	$B_{14} = \mathcal{Y} \circ tr[123456]s_{14}s_{15}s_{23}s_{26}$		
		$O_{15} = \langle \nabla^{\mu} \nabla^{\nu} u^{\rho} u_{\mu} u^{\sigma} u_{\sigma} u_{\nu} u_{\rho} \rangle$	$B_{15} = \mathcal{Y} \circ tr[123456]s_{12}s_{15}s_{16}s_{34}$		
		$O_{16} = \langle \nabla^{\mu} u^{\nu} u^{\rho} u^{\sigma} \nabla_{\mu} u_{\sigma} u_{\mu} u_{\nu} \rangle$	$B_{16} = \mathcal{Y} \circ tr[123456]s_{15}s_{16}s_{24}s_{34}$		
		$O_{17} = \langle \nabla^{\mu} u^{\nu} \nabla_{\mu} u^{\rho} u^{\sigma} u_{\sigma} u_{\rho} u_{\nu} \rangle$	$B_{17} = \mathcal{Y} \circ tr[123456]s_{12}s_{16}s_{25}s_{34}$		
		$O_{18} = \langle \nabla^{\mu} u^{\nu} \nabla_{\mu} u^{\rho} u^{\sigma} u_{\sigma} u_{\nu} u_{\mu} \rangle$	$\mathcal{B}_{18} = \mathcal{Y} \circ \mathrm{tr} [123456] s_{12} s_{15} s_{26} s_{34}$		SU(4)
		$O_{19} = \langle \nabla^{\mu} u^{\nu} u^{\mu} \nabla_{\mu} u^{\sigma} u_{\sigma} u_{\nu} u_{\mu} \rangle$	$B_{19} = \mathcal{Y} \circ tr[123456]s_{13}s_{15}s_{26}s_{34}$		
		$O_{20} = \langle \nabla^{\mu} u^{\nu} u^{\rho} u^{\sigma} u_{\sigma} \nabla_{\mu} u_{\nu} u_{\rho} \rangle$	$B_{20} = \mathcal{Y} \circ tr[123456]s_{13}^2s_{25}s_{34}$		
		$O_{21} = \langle \nabla^{\mu} u^{\nu} \nabla_{\mu} u^{\rho} u^{\sigma} u_{\rho} u_{\sigma} u_{\sigma} \rangle$	$B_{21} = \mathcal{Y} \circ tr[123456]s_{12}s_{16}s_{24}s_{35}$		
		$O_{22} = \langle \nabla^{\mu} u^{\nu} u^{\rho} \nabla_{\mu} u^{\sigma} u_{\nu} u_{\sigma} u_{\rho} \rangle$	$B_{22} = \mathcal{Y} \circ tr[123456]s_{13}s_{14}s_{26}s_{35}$		
		$O_{23} = \langle \nabla^{\mu} u^{\nu} u^{\rho} u^{\sigma} \nabla_{\mu} u_{\nu} u_{\sigma} u_{\rho} \rangle$	$B_{23} = \mathcal{Y} \circ tr[123456]s_{14}^2s_{25}s_{35}$		
		$O_{24} = \langle \nabla^{\mu} \nabla^{\nu} u^{\mu} u_{\mu} u^{\sigma} u_{\mu} u_{\mu} u_{\sigma} \rangle$	$B_{24} = \mathcal{Y} \circ tr[123456]s_{12}s_{14}s_{15}s_{36}$		
	SU(3)	$O_{25} = \langle \nabla^{\mu} u^{\nu} u^{\rho} \nabla_{\mu} u^{\sigma} u_{\rho} u_{\nu} u_{\sigma} \rangle$	$B_{25} = \mathcal{Y} \circ tr[123456]s_{13}s_{15}s_{24}s_{36}$		
		$O_{26} = \langle \nabla^{\mu}u^{\nu}u^{\rho}\nabla_{\mu}u^{\sigma}u_{\mu}u_{\rho}u_{\sigma} \rangle$	$B_{26} = \mathcal{Y} \circ tr[123456]s_{13}s_{14}s_{25}s_{36}$		
		$O_{27} = \langle \nabla^{\mu} u^{\nu} \nabla_{\mu} u^{\mu} u_{\mu} u^{\sigma} u_{\sigma} u_{\nu} \rangle$	$B_{27} = \mathcal{Y} \circ tr[123456]s_{12}s_{16}s_{23}s_{45}$		
		$O_{28} = \langle \nabla^{\mu} \nabla^{\nu} u^{\rho} u_{\mu} u_{\sigma} u^{\sigma} u_{\mu} u_{\sigma} \rangle$	$B_{28} = Y \circ tr[123456]s_{12}s_{13}s_{15}s_{46}$		
		$O_{29} = \langle \nabla^{\mu} \nabla^{\nu} u^{\rho} u_{\mu} u_{\mu} u_{\mu} u_{\sigma} u_{\sigma} \rangle$	$B_{29} = Y \circ tr[123456]s_{12}s_{13}s_{14}s_{56}$		
		$O_{30} = \langle \nabla^{\mu} \nabla^{\nu} u^{\mu} u^{\sigma} u_{\mu} u_{\sigma} \rangle \langle u_{\nu} u_{\mu} \rangle$	$B_{30} = \mathcal{Y} \circ tr[1234 56]s_{13}s_{15}s_{16}s_{24}$		
		$O_{31} = \langle \nabla^{\mu} u^{\nu} \nabla^{\rho} u^{\sigma} u_{\rho} u_{\sigma} \rangle \langle u_{\mu} u_{\nu} \rangle$	$\mathcal{B}_{31} = \mathcal{Y} \circ \mathrm{tr}[1234[56]s_{15}s_{16}s_{23}s_{24}$		
		$O_{32} = \langle \nabla^{\mu} \nabla^{\nu} u^{\mu} u^{\sigma} u_{\mu} u_{\nu} \rangle \langle u_{\mu} u_{\sigma} \rangle$	$B_{32} = Y \circ tr[1234 56]s_{13}s_{14}s_{15}s_{26}$		
		$O_{33} = \langle \nabla^{\mu} u^{\nu} \nabla^{\rho} u^{\sigma} u_{\mu} u_{\mu} \rangle \langle u_{\nu} u_{\sigma} \rangle$	$B_{33} = \mathcal{Y} \circ tr[1234 56]s_{13}s_{15}s_{24}s_{26}$		
		$O_{34} = \langle \nabla^{\mu} u^{\nu} \nabla^{\rho} u^{\sigma} u_{\mu} u_{\nu} \rangle \langle u_{\rho} u_{\sigma} \rangle$	$B_{34} = \mathcal{Y} \circ tr[1234 56]s_{13}s_{14}s_{25}s_{26}$		
		$O_{35} = \langle \nabla^{\mu} u^{\nu} \nabla_{\mu} u^{\rho} u^{\sigma} u_{\sigma} \rangle \langle u_{\nu} u_{\mu} \rangle$	$B_{35} = \mathcal{Y} \circ tr[1234 56]s_{12}s_{15}s_{26}s_{34}$		SU(5)
		$O_{35} = \langle \nabla^{\mu} u^{\nu} \nabla_{\mu} u^{\rho} u^{\sigma} u_{\mu} \rangle \langle u_{\nu} u_{\sigma} \rangle$	$B_{36} = \mathcal{Y} \circ tr[1234 56]s_{12}s_{15}s_{24}s_{36}$		
		$O_{37} = \langle \nabla^{\mu} u^{\nu} u^{\rho} \nabla_{\mu} u^{\sigma} u_{\rho} \rangle \langle u_{\nu} u_{\sigma} \rangle$	$B_{37} = \mathcal{Y} \circ tr[1234 56]s_{13}s_{15}s_{24}s_{36}$		
		$O_{38} = \langle \nabla^{\mu} u^{\nu} \nabla_{\mu} u^{\rho} u^{\sigma} u_{\nu} \rangle \langle u_{\rho} u_{\sigma} \rangle$	$B_{38} = Y \circ tr[1234 56]s_{12}s_{14}s_{25}s_{36}$		
		$O_{33} = \langle \nabla^{\mu}u^{\nu}u^{\rho}\nabla_{\mu}u^{\sigma}u_{\nu}\rangle\langle u_{\rho}u_{\sigma}\rangle$	$\mathcal{B}_{39} = \mathcal{Y} \circ \mathrm{tr}[1234 56] s_{13} s_{14} s_{25} s_{36}$		$SU(N_{\ell} >)$
		$O_{40} = \langle \nabla^{\mu} \nabla^{\nu} u^{\mu} u_{\mu} u^{\nu} u^{\rho} \rangle \langle u^{\sigma} u_{\mu} \rangle$	$B_{40} = \mathcal{Y} \circ tr[1234 56]s_{12}s_{13}s_{14}s_{56}$	- 13	

	$SU(N_f)$	Operator Basis	Amplitude Basis
		$O_{41} = \langle \nabla^{\mu} \nabla^{\nu} u^{\rho} u^{\sigma} u_{\sigma} u_{\mu} \rangle \langle u_{\nu} u_{\rho} \rangle$	$\mathcal{B}_{41} = \mathcal{Y} \circ tr[1234 56]s_{14}s_{15}s_{16}s_{23}$
		$O_{32} = \langle \nabla^{\mu} u^{\nu} \nabla^{\mu} u^{\sigma} u_{\mu} u_{\mu} \rangle \langle u_{\nu} u_{\sigma} \rangle$	$\mathcal{B}_{32} = \mathcal{Y} \circ tr[1234 56]s_{14}s_{15}s_{23}s_{26}$
		$O_{43} = \langle \nabla^{\mu} \nabla^{\nu} u^{\mu} u_{\mu} u^{\sigma} u_{\sigma} \rangle \langle u_{\nu} u_{\mu} \rangle$	$B_{43} = \mathcal{Y} \circ tr[1234 56]s_{12}s_{15}s_{16}s_{36}$
		$O_{44} = \langle \nabla^{\mu}u^{\nu}u^{\rho}\nabla_{\mu}u^{\sigma}u_{\sigma} \rangle \langle u_{\nu}u_{\rho} \rangle$	$\mathcal{B}_{44}=\mathcal{Y}\circ {\rm tr}[1234 56]s_{13}s_{15}s_{26}s_{34}$
		$O_{45} = (\nabla^{\mu}u^{\nu}u^{\rho}u^{\sigma}u_{\sigma})\langle\nabla_{\mu}u_{\nu}u_{\rho}\rangle$	$B_{45} = \mathcal{Y} \circ tr[1234 56 s_{15}^2s_{26}s_{34}$
		$O_{45} = \langle \nabla^{\mu} \nabla^{\nu} u^{\mu} u_{\mu} u^{\sigma} u_{\nu} \rangle \langle u_{\mu} u_{\sigma} \rangle$	$\mathcal{B}_{46} = \mathcal{Y} \circ tr[1234 56]s_{12}s_{14}s_{15}s_{36}$
		$O_{47} = \langle \nabla^{\mu} u^{\nu} u^{\rho} \nabla_{\rho} u^{\sigma} u_{\mu} \rangle \langle u_{\nu} u_{\sigma} \rangle$	$B_{47} = \mathcal{Y} \circ tr[1234 56]s_{14}s_{15}s_{23}s_{36}$
		$O_{48} = \langle \nabla^{\mu} u^{\nu} u^{\rho} u^{\sigma} \nabla_{\mu} u_{\mu} \rangle \langle u_{\nu} u_{\sigma} \rangle$	$B_{48} = \mathcal{Y} \circ tr[1234 56]s_{14}s_{15}s_{24}s_{36}$
		$O_{49} = \langle \nabla^{\mu} u^{\nu} u^{\rho} u^{\sigma} \nabla_{\mu} u_{\nu} \rangle \langle u_{\rho} u_{\sigma} \rangle$	$B_{49} = \mathcal{Y} \circ tr[1234 56]s_{14}^2s_{25}s_{36}$
		$O_{50} = \langle \nabla^{\mu} \nabla^{\nu} u^{\rho} u_{\mu} u_{\sigma} u^{\sigma} \rangle \langle u_{\mu} u_{\sigma} \rangle$	$\mathcal{B}_{50} = \mathcal{Y} \circ tr[1234 56]s_{12}s_{13}s_{15}s_{66}$
		$O_{51} = \langle \nabla^{\mu} u^{\nu} \nabla_{\mu} u^{\rho} u_{\mu} u^{\sigma} \rangle \langle u^{\nu} u_{\sigma} \rangle$	$B_{51} = \mathcal{Y} \circ tr[1234 56]s_{12}s_{15}s_{23}s_{46}$
		$O_{32} = \langle \nabla^{\mu} u^{\nu} u^{\rho} \nabla_{\mu} u_{\sigma} u^{\sigma} \rangle \langle u_{\rho} u_{\sigma} \rangle$	$B_{32} = Y \circ tr[1234 56]s_{13}^2s_{25}s_{44}$
		$O_{S3} = \langle u^{\mu}u^{\nu}u^{\mu}u^{\sigma}\rangle \langle \nabla_{\mu}\nabla_{\nu}u_{\mu}u_{\sigma}\rangle$	$B_{33} = \mathcal{Y} \circ tr[1234 56]s_{15}s_{25}s_{35}s_{66}$
	SU(4)	$O_{54} = \langle \nabla^{\mu} u^{\nu} \nabla_{\mu} u^{\rho} u_{\rho} u_{\rho} \rangle \langle u^{\sigma} u_{\sigma} \rangle$	$B_{54} = \mathcal{Y} \circ tr[1234 56]s_{12}s_{13}s_{24}s_{56}$
		$O_{35} = \langle \nabla^{\mu} \nabla^{\nu} u^{\rho} u^{\sigma} u_{\sigma} \rangle \langle u_{\mu} u_{\nu} u_{\rho} \rangle$	$B_{35} = Y \circ tr[123]456]s_{14}s_{15}s_{14}s_{23}$
		$O_{56} = \langle \nabla^{\mu} \nabla^{\nu} u^{\mu} u^{\sigma} u_{\mu} \rangle \langle u_{\nu} u_{\mu} u_{\sigma} \rangle$	$B_{56} = \mathcal{Y} \circ tr[123 456]s_{13}s_{14}s_{15}s_{26}$
		$O_{57} = \langle \nabla^{\mu} u^{\nu} \nabla^{\rho} u^{\sigma} u_{\rho} \rangle \langle u_{\mu} u_{\nu} u_{\sigma} \rangle$	$B_{57} = \mathcal{Y} \circ tr[123 456]s_{14}s_{15}s_{23}s_{26}$
		$O_{38} = \langle \nabla^{\mu} u^{\nu} \nabla^{\rho} u^{\sigma} u_{\rho} \rangle \langle u_{\nu} u_{\rho} u_{\sigma} \rangle$	$B_{58} = Y \circ tr[123]456]s_{13}s_{14}s_{25}s_{26}$
		$O_{52} = \langle \nabla^{\mu} u^{\nu} \nabla_{\mu} u^{\rho} u^{\sigma} \rangle \langle u_{\nu} u_{\rho} u_{\rho} \rangle$	$B_{59} = \mathcal{Y} \circ tr[123 456]s_{12}s_{14}s_{26}s_{35}$
		$O_{90} = \langle \nabla^{\mu} u^{\nu} u^{\rho} u^{\sigma} \rangle \langle \nabla_{\mu} u_{\nu} u_{\sigma} u_{\rho} \rangle$	$B_{60} = \mathcal{Y} \circ tr[123 456]s_{14}^2s_{26}s_{35}$
		$O_{61} = \langle \nabla^{\mu} u^{\nu} \nabla_{\mu} u^{\mu} u^{\sigma} \rangle \langle u_{\nu} u_{\mu} u_{\sigma} \rangle$	$B_{61} = Y \circ tr[123 456]s_{12}s_{14}s_{25}s_{36}$
		$O_{62} = \langle \nabla^{\mu} u^{\nu} u^{\rho} a^{\sigma} \rangle \langle \nabla_{\mu} u_{\nu} u_{\rho} u_{\sigma} \rangle$	$B_{62} = \mathcal{Y} \circ tr[123 456]s_{14}^2s_{25}s_{36}$
		$O_{83} = \langle \nabla^{\mu} \nabla^{\nu} u^{\rho} u_{\mu} u_{\sigma} \rangle \langle u^{\sigma} u_{\rho} u_{\sigma} \rangle$	$B_{63} = \mathcal{Y} \circ tr[123 456]s_{12}s_{13}s_{15}s_{46}$
		$O_{64} = \langle \nabla^{\mu} u^{\nu} \nabla_{\mu} u^{\mu} u_{\mu} \rangle \langle u^{\sigma} u_{\nu} u_{\sigma} \rangle$	$B_{64} = Y \circ tr[123 456]s_{12}s_{13}s_{23}s_{66}$
		$O_{65} = \langle \nabla^{\mu} u^{\nu} \nabla_{\mu} u^{\rho} u_{\nu} \rangle \langle u^{\sigma} u_{\rho} u_{\sigma} \rangle$	$B_{65} = \mathcal{Y} \circ tr[123 456]s_{12}s_{13}s_{25}s_{46}$
		$O_{66} = \langle \nabla^{\mu} u^{\nu} u^{\rho} u_{\mu} \rangle \langle \nabla_{\nu} u^{\sigma} u_{\rho} u_{\sigma} \rangle$	$B_{66} = \mathcal{Y} \circ tr[123 456]s_{13}s_{14}s_{25}s_{66}$
		$O_{67} = \langle \nabla^{\mu} u^{\nu} \nabla^{\mu} u^{\sigma} \rangle \langle u_{\mu} u_{\nu} \rangle \langle u_{\mu} u_{\sigma} \rangle$	$B_{67} = \mathcal{Y} \circ tr[12 34 56 s_{13}s_{14}s_{25}s_{26}$
		$O_{68} = \langle \nabla^{\mu} u^{\nu} \nabla_{\mu} u^{\nu} \rangle \langle u^{\sigma} u_{\nu} \rangle \langle u_{\mu} u_{\sigma} \rangle$	$B_{68} = \mathcal{Y} \circ tr[12 34 56 s_{12}s_{14}s_{25}s_{36}]$
		$O_{09} = \langle \nabla^{\mu} \nabla^{\nu} u^{\mu} u_{\mu} u^{\sigma} \rangle \langle u_{\nu} u_{\mu} u_{\sigma} \rangle$	$B_{69} = \mathcal{Y} \circ tr[123 456]s_{12}s_{14}s_{15}s_{36}$
		$O_{70} = \langle \nabla^{\mu} \nabla^{\nu} u^{\mu} u^{\alpha} \rangle \langle u_{\mu} u_{\nu} \rangle \langle u_{\mu} u_{\sigma} \rangle$	$B_{10} = \mathcal{Y} \circ tr[12 34 56 s_{13}s_{14}s_{15}s_{26}]$
	SU(5)	$O_{71} = \langle \nabla^{\mu} u^{\nu} \nabla^{\rho} u^{\sigma} \rangle \langle u_{\mu} u_{\rho} \rangle \langle u_{\mu} u_{\sigma} \rangle$	$B_{71} = \mathcal{Y} \circ tr[12]34[56]s_{13}s_{15}s_{24}s_{26}$
		$O_{72} = \langle \nabla^{\mu} u^{\nu} \nabla_{\mu} u^{\rho} \rangle \langle u^{\sigma} u_{\sigma} \rangle \langle u_{\nu} u_{\rho} \rangle$	$B_{22} = Y \circ tr[12 34 56 s_{12}s_{15}s_{26}s_{34}]$
		$O_{73} = \langle \nabla^{\mu} \nabla^{\nu} u^{\rho} u_{\mu} \rangle \langle u^{\sigma} u_{\nu} \rangle \langle u_{\mu} u_{\sigma} \rangle$	$B_{73} = \mathcal{Y} \circ tr[12]34[56]s_{12}s_{14}s_{15}s_{36}$
		$O_{74} = \langle \nabla^{\mu} u^{\nu} u^{\rho} \rangle \langle \nabla_{\mu} u^{\sigma} u_{\nu} \rangle \langle u_{\mu} u_{\sigma} \rangle$	$B_{74} = \mathcal{Y} \circ tr[12 34 56 s_{13}s_{14}s_{25}s_{36}]$
1	$J(N_\ell \ge 6)$	$O_{75} = \langle \nabla^{\mu} \nabla^{\nu} u^{\rho} u_{\mu} \rangle \langle u^{\sigma} u_{\sigma} \rangle \langle u_{\nu} u_{\rho} \rangle$	$B_{75} = \mathcal{Y} \circ tr[12 34 56 s_{12}s_{15}s_{16}s_{34}]$
		$ O_{76} = \langle \nabla^{\mu} u^{\nu} u^{\rho} \rangle \langle \nabla_{\mu} u^{\sigma} u_{\rho} \rangle \langle u_{\nu} u_{\sigma} \rangle$	$B_{76} = Y \circ tr[12]34[56]s_{13}s_{15}s_{24}s_{3}$

SUNA	Onerator Basis	Amplitude Basis
00(14)		P 31 + [10047c] + (0.4.7.0)
SU(2)	$O_1 = (\nabla^{\mu} a^{\nu} \nabla_{\mu} b^{\mu} a_{\nu} a^{\nu} a^{\mu} a^{\nu}) \epsilon_{\rho\sigma\eta\lambda}$	$D_1 = \mathcal{Y} \circ \text{tr}[123430]s_{12}s_{13}t(2, 4, 5, 6)$
	$O_2 = (\nabla^{\mu}u^{\nu}\nabla^{\nu}u^{\nu}u_{\nu}u_{\mu}u^{\mu}u^{\nu}u^{\nu})\epsilon_{\mu\nu\mu\lambda}$	$B_2 = F \circ tr[123436]s_{14}s_{23}c(1, 2, 5, 6)$
	$O_3 = (\nabla^{\mu}\nabla^{\nu}u^{\mu}u^{\nu}u_{\mu}u^{\eta}u_{\mu}u^{\eta}u_{\nu}u^{\eta})\epsilon_{\rho\sigma\eta\lambda}$	$B_3 = Y \circ tr [123456] s_{13} s_{15} \epsilon (1, 2, 4, 6)$
	$O_4 = (\nabla^{\mu}\nabla^{\nu}u^{\mu}u^{\nu}u_{\mu}u_{\nu}u^{\eta}u^{\eta})\epsilon_{\mu\nu\eta\lambda}$	$B_4 = Y \circ tr[123456]s_{13}s_{14}\epsilon(1, 2, 5, 6)$
	$O_5 = (\nabla^{\mu}\nabla^{\nu}u^{\mu}u_{\mu}u^{\sigma}u^{\eta}u_{\nu}u^{\alpha})\epsilon_{\rho\sigma\eta\lambda}$	$B_5 = \mathcal{Y} \circ tr[123456 s_{12}s_{15}\epsilon(1, 3, 4, 6)]$
	$O_6 = (\nabla^{\mu}\nabla^{\nu}u^{\rho}u_{\mu}u^{\sigma}u_{\nu}u^{\eta}u^{\lambda})\epsilon_{\rho\sigma\eta\lambda}$	$B_6 = \mathcal{Y} \circ tr[123456]s_{12}s_{14}\epsilon(1, 3, 5, 6)$
	$O_7 = \langle \nabla^{\mu} u^{\rho} u^{\nu} \nabla_{\mu} u^{\sigma} u_{\nu} u^{\eta} u^{\lambda} \rangle \epsilon_{\rho\sigma\eta\lambda}$	$B_7 = \mathcal{Y} \circ tr[123456]s_{13}s_{24}\epsilon(1, 3, 5, 6)$
	$O_8 = \langle \nabla^{\mu} \nabla^{\nu} u^{\rho} u_{\mu} u_{\rho} u^{\sigma} u^{\eta} u^{\lambda} \rangle \epsilon_{\rho\sigma\eta\lambda}$	$B_8 = Y \circ tr[123456 s_{12}s_{13}\epsilon(1, 4, 5, 6)]$
	$O_9 = \langle \nabla^{\mu} u^{\nu} \nabla_{\mu} u^{\rho} u^{\sigma} u^{q} u_{\nu} u^{\lambda} \rangle \epsilon_{\rho\sigma\eta\lambda}$	$B_9 = \mathcal{Y} \circ tr[123456]s_{12}s_{15}\epsilon(2, 3, 4, 6)$
	$O_{10} = \langle \nabla^{\mu} u^{\nu} u^{\rho} \nabla_{\mu} u^{\sigma} u^{\eta} u_{\nu} u^{\lambda} \rangle \epsilon_{\rho \sigma \eta \lambda}$	$B_{10} = \mathcal{Y} \circ tr[123456]s_{13}s_{15}\epsilon(2, 3, 4, 6)$
SU(2)	$O_{11} = \langle \nabla^{\mu} u^{\nu} \nabla_{\mu} u^{\sigma} u^{\sigma} u_{\nu} u^{\eta} u^{\lambda} \rangle \epsilon_{\rho r \eta \lambda}$	$B_{11} = \mathcal{Y} \circ tr[123456]s_{12}s_{14}\epsilon(2, 3, 5, 6)$
50(0)	$O_{12} = \langle \nabla^{\mu} u^{\nu} u^{\rho} \nabla_{\mu} u^{\sigma} u_{\nu} u^{\eta} u^{\lambda} \rangle \epsilon_{\rho\sigma\eta\lambda}$	$B_{12} = \mathcal{Y} \circ tr[123456]s_{13}s_{14}\epsilon(2, 3, 5, 6)$
	$O_{13} = \langle \nabla^{\mu} u^{\nu} u^{\rho} u^{\sigma} \nabla_{\mu} u_{\rho} u^{\eta} u^{\lambda} \rangle \epsilon_{\rho \tau n \lambda}$	$B_{13} = Y \circ tr [123456] s_{13}^2 \epsilon(2, 3, 5, 6)$
	$O_{14} = \langle \nabla^{\mu} u^{\nu} u^{\rho} \nabla_{\mu} u_{\nu} u^{\sigma} u^{\eta} u^{\lambda} \rangle \epsilon_{arm\lambda}$	$B_{14} = \mathcal{Y} \circ tr[123456]s_{12}^2\epsilon(2, 4, 5, 6)$
	$O_{15} = \langle \nabla^{\mu} u^{\nu} \nabla_{\mu} u_{\sigma} u^{\sigma} u^{\sigma} u^{\eta} u^{\lambda} \rangle \epsilon_{\rho \sigma \eta \lambda}$	$B_{15} = \mathcal{Y} \circ tr[123456]s_{12}^2\epsilon(3, 4, 5, 6)$
	$O_{16} = \langle \nabla^{\mu} \nabla^{\nu} u^{\rho} u^{\sigma} u^{\eta} u_{\mu} u_{\nu} u^{\lambda} \rangle \epsilon_{\text{orm}\lambda}$	$B_{16} = Y \circ tr [123456] s_{14} s_{15} \epsilon (1, 2, 3, 6)$
	$O_{17} = \langle \nabla^{\mu} u^{\rho} \nabla^{\nu} u^{\sigma} u_{\alpha} u^{\eta} \rangle \langle u_{\alpha} u^{\lambda} \rangle \epsilon_{\alpha m \lambda}$	$B_{17} = \mathcal{Y} \circ tr[1234 56 s_{13}s_{20}\epsilon(1, 2, 4, 6)]$
	$O_{18} = \langle \nabla^{\mu} \nabla^{\nu} u^{\rho} u_{\mu} u^{\sigma} u^{\eta} \rangle \langle u_{\nu} u^{\lambda} \rangle \epsilon_{\rho\sigma\eta\lambda}$	$B_{18} = Y \circ tr 1234 56 s_{12}s_{15}t(1, 3, 4, 6)$
	$O_{19} = \langle \nabla^{\mu} u^{\nu} \nabla_{\mu} u^{\sigma} u^{\sigma} u^{\eta} \rangle \langle u_{\mu} u^{\lambda} \rangle \epsilon_{am\lambda}$	$B_{19} = Y \circ tr[1234]56]s_{12}s_{15}\epsilon(2, 3, 4, 6)$
	$O_{20} = \langle \nabla^{\mu} u^{\nu} u^{\rho} \nabla_{\mu} u^{\sigma} u^{\eta} \rangle \langle u_{\rho} u^{\lambda} \rangle \epsilon_{\rho\sigma\eta\lambda}$	$B_{20} = \mathcal{Y} \circ tr[1234 56 s_{13}s_{15}t(2, 3, 4, 6)]$
	$O_{21} = \langle \nabla^{\mu} \nabla^{\nu} u^{\rho} u^{\sigma} u^{\eta} u_{\mu} \rangle \langle u_{\mu} u^{\lambda} \rangle \epsilon_{\alpha \sigma \lambda}$	$B_{21} = Y \circ tr [1234] 56 s_{14} s_{15} \epsilon (1, 2, 3, 6)$
	$O_{22} = \langle \nabla^{\mu} u^{\rho} \nabla^{\nu} u^{\sigma} u^{\eta} u_{\mu} \rangle \langle u_{\mu} u^{\lambda} \rangle \epsilon_{\mu\nu\lambda}$	$B_{22} = \mathcal{Y} \circ tr[1234 56 s_{14}s_{26}t(1, 2, 3, 6)]$
	$O_{23} = \langle \nabla^{\mu} \nabla^{\nu} u^{\rho} u^{\sigma} u_{\mu} u^{\eta} \rangle \langle u_{\nu} u^{\lambda} \rangle \epsilon_{\alpha \sigma n \lambda}$	$B_{21} = Y \circ tr 1234 56 s_{11}s_{15}\epsilon(1, 2, 4, 6)$
	$O_{24} = \langle \nabla^{\mu} u^{\rho} u^{s} \nabla_{\mu} u^{\sigma} u^{\eta} \rangle \langle u_{\mu} u^{\lambda} \rangle \epsilon_{am\lambda}$	$B_{24} = \mathcal{Y} \circ tr[1234]56]s_{13}s_{20}\epsilon(1, 3, 4, 6)$
	$\mathcal{O}_{\infty} = \langle \nabla^{\mu} u^{\rho} u^{\nu} u^{\sigma} \nabla_{\alpha} u^{\eta} \rangle \langle u_{\alpha} u^{\lambda} \rangle \epsilon_{\alpha m \lambda}$	$B_{\rm H} = \mathcal{Y} \circ tr [1234 56 s_{14}s_{\rm H}t(1, 3, 4, 6)]$
	$O_{26} = \langle \nabla^{\mu} u^{\nu} u^{\rho} u^{\sigma} \nabla_{\mu} u^{\eta} \rangle \langle u_{\mu} u^{\lambda} \rangle \epsilon_{aen\lambda}$	$B_{26} = \mathcal{Y} \circ tr[1234 56 s_{14}s_{15}\epsilon(2, 3, 4, 6)]$
SU(4)	$O_{27} = \langle u^{\mu} \nabla^{\nu} u^{\rho} u^{\sigma} \nabla_{\alpha} u^{\eta} \rangle \langle u_{\alpha} u^{\lambda} \rangle \epsilon_{\alpha m \lambda}$	$B_{77} = \mathcal{Y} \circ tr[1234 56 s_{14}s_{27}t(2, 3, 4, 6)]$
	$\mathcal{O}_{\infty} = \langle \nabla^{\mu} u^{\rho} u^{\nu} u^{\sigma} \nabla_{\nu} \rangle \langle u^{\eta} u_{\nu} u^{\lambda} \rangle \epsilon_{\alpha \gamma \gamma}$	$B_{10} = Y \circ tr [123]456 sussed (1, 3, 4, 6)$
	$O_{20} = \langle \nabla^{\mu} \nabla^{\nu} u^{\rho} u_{\nu} u_{\nu} \rangle \langle u^{\sigma} u^{\eta} u^{\lambda} \rangle \epsilon_{am\lambda}$	$B_{29} = \mathcal{Y} \circ tr[123]456 s_{12}s_{13}t(1, 4, 5, 6)$
	$\mathcal{O}_{m} = \langle \nabla^{\mu} u^{\nu} u^{\rho} u^{\sigma} \nabla_{\mu} \rangle \langle u_{\mu} u^{\eta} u^{\lambda} \rangle \epsilon_{\mu\nu\nu}$	$B_{30} = Y \circ tr 123 456 s_{+}^{2} \epsilon(2, 3, 5, 6)$
	$O_{31} = \langle \nabla^{\mu} u^{\nu} \nabla_{\mu} u^{a} u_{\nu} \rangle \langle u^{a} u^{\eta} u^{\lambda} \rangle \epsilon_{am\lambda}$	$B_{11} = Y \circ tr[123]456[s_{12}s_{13}(2, 4, 5, 6)]$
	$\mathcal{O}_{22} = \langle \nabla^{\mu} u^{\nu} \nabla_{\mu} u_{\mu} u^{\rho} \rangle \langle u^{\sigma} u^{\eta} u^{\lambda} \rangle \epsilon_{\alpha m \lambda}$	$B_{12} = \mathcal{Y} \circ tr[123]456[s_{-1}^2\epsilon(3, 4, 5, 6)]$
	$O_{33} = \langle \nabla^{\mu} u^{\nu} u^{\rho} \nabla_{\mu} \rangle \langle u^{\sigma} u^{\eta} \rangle \langle u_{\mu} u^{\lambda} \rangle \epsilon_{ave\lambda}$	$B_{33} = \mathcal{Y} \circ tr[12 34 56]s_{13}s_{15}\epsilon(2, 3, 4, 6)$
arrest a se	$O_{44} = \langle \nabla^{\mu} \nabla^{\nu} u^{\rho} u^{\sigma} u^{\sigma} u^{\eta} \rangle \langle u_{\alpha} u_{\alpha} u^{\lambda} \rangle \epsilon_{\alpha m \lambda}$	$B_{14} = Y \circ tr [123]456 s_{14}s_{15t}(1, 2, 3, 6)$
$ an(n) \leq p$	$Q_{25} = \langle \nabla^{\mu} u^{\rho} \nabla^{\nu} u^{\sigma} \rangle \langle u_{\nu} u^{\eta} \rangle \langle u_{\nu} u^{\lambda} \rangle \epsilon_{\mu\nu\nu\lambda}$	$B_{15} = Y \circ tr [12 34 56 s_{11}s_{15}(1, 2, 4, 6)]$

[Low, Shu, Xiao, Zheng, 2209.00198]

<ロト < 同ト < ヨト < ヨト

э

Electroweak Chiral Effective Theory

It is also easy to add external sources and construct Chiral Effective Theory (ChEFT)

Classes	$\mathcal{N}_{\mathrm{type}}$	$\mathcal{N}_{\mathrm{term}}$	$\mathcal{N}_{\mathrm{operator}}$
UhD^4	3 + 6 + 0 + 0	15	15
$X^2 Uh$	6 + 4 + 0 + 0	10	10
$XUhD^2$	2+6+0+0	8	8
X^3	4 + 2 + 0 + 0	6	6
$\psi^2 UhD$	4 + 8 + 0 + 0	13(16)	$13n_f^2$ (16 n_f^2)
$\psi^2 UhD^2$	6 + 10 + 0 + 0	60(80)	$60n_f^2$ (80 n_f^2)
$\psi^2 Uh X$	7 + 7 + 0 + 0	22(28)	$22n_f^2$ (28 n_f^2)
ψ^4	12 + 24 + 4 + 8	117(160)	$\frac{1}{4}n_f^2(31 - 6n_f + 335n_f^2) (n_f^2(9 - 2n_f + 125n_f^2))$
Total	123	261(313)	$ \begin{array}{l} \frac{335n_{f}^{-4}}{4}-\frac{3n_{f}^{-3}}{2}+\frac{411n_{f}^{-2}}{4}+39 (39+133n_{f}^{-2}-2n_{f}^{-2}-2n_{f}^{-3}+125n_{f}^{-4}) \\ \mathcal{N}_{\rm operatrs}(n_{f}=1)=224(295), \mathcal{N}_{\rm operatrs}(n_{f}=3)=7704(11307) \end{array} $

Missing operators in previous literature \Rightarrow

- gray operators with right-handed neutrinos
- $\bullet~$ Goldstone matrix ${\bf U}$ and spurion ${\bf T}$
- \bullet Young symmetrizer ${\mathcal Y}$ for repeated fields
- \bullet Coefficient function of higgs $\mathcal{F}(h)$

$$\begin{split} & \mathcal{O}_{33}^{(Inbet)} = (\bar{q}_{L,\gamma_{B}}\tau^{I}\mathbf{T}q_{Lp})(\bar{q}_{R,\gamma}^{\mu}\mathbf{P}^{I}\tau^{I}\mathbf{U}q_{R})\mathcal{F}_{33}^{(Ihbet)}(h), \\ & \mathcal{O}_{34}^{(Inbet)} = (\bar{q}_{L,\gamma_{B}}\lambda^{\lambda_{T}I}\mathbf{T}q_{Lp})(\bar{q}_{R,\gamma}^{\mu}\lambda^{\lambda}\mathbf{U}^{I}\tau^{I}\mathbf{U}q_{R})\mathcal{F}_{34}^{(Ihbet)}(h), \\ & \mathcal{O}_{34}^{(Inbet)} = (\bar{l}_{L,\gamma_{B}}\tau^{I}l_{Lp})(\bar{l}_{L;1}\sigma^{\mu}\tau^{I}\mathbf{U}\tau^{I}\mathbf{U}q_{R})\mathcal{F}_{36}^{(Inbet)}(h), \\ & \mathcal{O}_{13}^{(Inbet)} = (\bar{l}_{L,\gamma_{B}}\tau^{I}\mathbf{T}l_{Rp})(\bar{q}_{R,\gamma}^{\mu}\tau^{I}q_{R})\mathcal{F}_{13}^{(Inbet)}(h), \\ & \mathcal{O}_{13}^{(Inbet)} = (\bar{l}_{L,\gamma_{B}}\tau^{I}\mathbf{T}l_{Rp})(\bar{q}_{L;1}\gamma^{\mu}\tau^{I}q_{R,\gamma})\mathcal{F}_{13}^{(Inbet)}(h), \\ & \mathcal{O}_{13}^{(Inbet)} = (\bar{l}_{L,\gamma_{B}}\tau^{I}\mathbf{T}l_{Rp})(\bar{q}_{R,1}\gamma^{\mu}\tau^{I}q_{R,\gamma})\mathcal{F}_{13}^{(Inbet)}(h), \\ & \mathcal{O}_{14}^{(Inbet)} = (\bar{l}_{L,\gamma_{B}}\tau^{I}\mathbf{T}l_{Rp})(\bar{q}_{R,1}\gamma^{\mu}\tau^{I}q_{R,\gamma})\mathcal{F}_{13}^{(Inbet)}(h), \\ & \mathcal{O}_{14}^{(Inbet)} = (\bar{l}_{L,\gamma_{B}}\tau^{I}\mathbf{T}l_{Rp})(\bar{q}_{R,1}\gamma^{\mu}\tau^{I}q_{R,\gamma})\mathcal{F}_{13}^{(Inbet)}(h), \\ & \mathcal{O}_{14}^{(Inbet)} = (\bar{l}_{L,\gamma_{B}}\tau^{I}\mathbf{T}l_{R})(\bar{q}_{R,1}\gamma^{\mu}\tau^{I}q_{R,\gamma})\mathcal{F}_{13}^{(Inbet)}(h), \\ & \mathcal{O}_{14}^{(Inbet)} = \mathcal{O}_{12}^{(Inbet)}\mathcal{O}_{14}^{(Inbet)}(\mathbf{T}l^{I}\gamma^{Imn}\mathbf{T}l_{R})(\mathbf{R})(\mathbf{R})\mathcal{O}_{14}^{(Inbet)}\mathcal{O}_{14}(\mathbf{R})\mathcal$$

[Sun, Xiao, Yu, 2206.07722, 2210.14939]

SMEFT vs HEFT

The E(lectro)W(eak)ChEFT is also known as the Higgs EFT (HEFT)

- HEFT has more general couplings for Higgs physics
- HEFT has different power counting than SMEFT

当明石 ((SVSII Shonzhon)
日明菇!	(3130, Shenzhen)

э

・ロト ・聞 ト ・ ヨト ・ ヨト …

Dark Matter Effective Field Theory

Direct search of dark matter:

- Non-relativistic DM with arbitrary spin
- Small momentum exchange $t \ll m_\chi$
- Local interaction (effective operator)
- \Rightarrow Heavy Particle Effective Theory (HPET)

Lorentz invariance is "spontaneously broken" by the DM momentum $p_{\chi}^{\mu} \sim m_{\chi} v^{\mu}$:

Reparameterization Invariance (RPI): $\delta B_v = 0 \simeq \mathcal{L}_{HPET}$

	ChPT	HPET
Non-linear symmetry	SU(N)	Lorentz
Constraints on ${\cal B}$	Adler's Zero	RPI

[Li, Low, Xiao, work in progress]

<ロト < 同ト < ヨト < ヨト

Outline

- 1) New Physics from Effective Field Theory
- 2 On-Shell View of Effective Operators
- 3 Construction of Operator Basis
- Partial Waves and UV Resonances

5 Conclusion

(日) (日) (日) (日) (日)

Operators that Produce Partial Wave Amplitudes

The on-shell correspondence is not just useful for basis construction

$$\text{4-fermion couplings} \begin{cases} \mathcal{O}^{(S)} = (\bar{\psi}\psi)(\bar{\chi}\chi) &\simeq \mathcal{B}^{(S)} \sim d_{0,0}^{J=0}(\theta) \\ \mathcal{O}^{(V)} = (\bar{\psi}\gamma^{\mu}\psi)(\bar{\chi}\gamma_{\mu}\chi) &\simeq \mathcal{B}^{(V)} \sim d_{1,\pm 1}^{J=1}(\theta) \\ \mathcal{O}^{(T)} = (\bar{\psi}\sigma^{\mu\nu}\psi)(\bar{\chi}\sigma_{\mu\nu}\chi) &\simeq \mathcal{B}^{(T)} \sim d_{0,0}^{J=1}(\theta) \end{cases}$$

The operators are classified according to the angular momentum in certain channel the same way that the amplitudes are decomposed into partial waves!

> Generalized partial waves: $\mathbf{W}^2 \mathcal{B}^J = -J(J+1)P^2 \mathcal{B}^j \simeq \mathcal{O}^J$ Pauli-Lubanski $\mathbf{W}^\mu = \frac{1}{2} \epsilon^{\mu\nu\rho\lambda} \mathbf{P}_\nu \mathbf{J}_{\rho\lambda}$

Can define partial waves for arbitrary number of particles with arbitrary spins!

[Shu, Xiao, Zheng, 2111.08019]

イロト 不得 トイヨト イヨト 二日

Applications to Pheno Study

Define J-basis operators by fixing angular momentum J and gauge rep \mathbf{R} :

Angular momentum conservation: [Jiang, Shu, Xiao, Zheng, 2001.04481]

• Perturbative Unitarity Bound, Positivity Bound

[Yang, Ren, Yu, 2312.04663]

• Implication of UV physics: $\mathcal{O}^{J,\mathbf{R}} \sim \text{resonance with } (J,\mathbf{R})$

<ロト < 同ト < ヨト < ヨト

Implication of UV Resonances

Analysing J-basis in all channels, get all tree-level UV origin:

Topology	j-basis	Quantum numbers $\{J, \mathbf{R}, Y\}$	Model
	$\mathcal{B}^{J=1/2,\mathbf{R}=1}_{\{13\}}=\mathcal{B}^p_1+\mathcal{B}^p_2.$	$\{rac{1}{2},1,0\}$	Type I
	${\cal B}^{J=1/2,{f R}=3}_{\{13\}}=-{\cal B}^p_1+3{\cal B}^p_2,$	$\{rac{1}{2},3,0\}$	Type III
	${\cal B}^{J=0,{f R}=3}_{\{12\}}=-2{\cal B}^p_1,$	$\{0,3,-1\}$	Туре II
	$\mathcal{B}^{J=0,\mathbf{R}=1}_{\{12\}}=2\mathcal{B}^{p}_{2}.$	$\{0,1,-1\}$	N/A

 \Rightarrow Only three types of seesaw models for $\mathcal{O}^{(5)} = (HL)^T \mathcal{C}(HL) \supset v^2(\nu^T \mathcal{C} \nu)$

- Completely bottom-up search
- Does NOT apply to loop-level origins

くロト (雪下) (ヨト (ヨト))

Implication of UV Resonances

47 UV resonances responsible for Dim-6 SMEFT!

[Li, Ni, Xiao, Yu, 2204.03660]

(
	Notation	S_1	S_2	S_3	S	4	S_5	S_6	S_7	S_8
	Name	S	S_1	S_2	4	2	Ξ	Ξ_1	Θ_1	Θ_3
	Irrep	$(1, 1)_0$	$(1, 1)_1$	$(1, 1)_2$	(1,	2)1	$(1, 3)_0$	(1, 3)	$)_1 = (1, 4)$	(1,4) ₃
	Notation	S_9	S_{10}	S_{11}	S_{1}	12	S_{13}	S_{14}		
19 scalars (Name	ω_4	ω_1	ω_2	П	1	Π_7	ζ		
	Irrep	$(3,1)_{-\frac{4}{3}}$	$(3,1)_{-\frac{1}{3}}$	$(3,1)_{\frac{2}{5}}$	(3, :	$2)_{\frac{1}{6}}$	$(3, 2)_{\frac{7}{6}}$	(3 , 3)	$-\frac{1}{3}$	
	Notation	S_{15}	S_{16}	S_{17}	S_1	18	S_{19}			
1	Name	Ω_2	Ω_1	Ω_4	Υ	1	Φ			
l	Irrep	$(6, 1)_{-\frac{2}{3}}$	$(6, 1)_{\frac{1}{3}}$	$(6,1)_{\frac{4}{3}}$	(6,	$(3)_{\frac{1}{3}}$	$(8, 2)_{\frac{1}{2}}$			
(Notation	F_1	F_2	F_2		E		F_5	Fe	F ₇
	Name	N	E^c	Δ_{i}^{c}		Δ.		Σ	Σ_{c}^{c}	- /
140 .]	Irrep	(1.1)	(1,1)	(1.2)	5.	(1 2	3 1) 1 (1.3)	$(1 \ 3)_1$	$(1, 4)_1$
14 termions (Natation	(1,1/0 F	(1, 1)1 E	(-,-, E	2	(-,-	72 (F	(1,0/1 E	F
	Notation	<i>F</i> 8	<i>P</i> 9	P ₁₀)	<i>P</i> ₁	1	P ₁₂	P ₁₃	r ₁₄
	Name		0	Q_5		Q		Q_7	11	12
(Irrep	$(3,1)_{-\frac{1}{3}}$	$(3,1)_{\frac{2}{3}}$	(3,2)	$-\frac{5}{6}$	(3,2	$)_{\frac{1}{6}}$ ($(3, 2)_{\frac{7}{6}}$	$(3, 3)_{-\frac{1}{3}}$	$(3,3)_{\frac{2}{3}}$
,										
(Notation	V_1	V_2	V_3		V_4		V_5	V_6	V_7
	Name	\mathcal{B}	\mathcal{B}_1	$\mathcal{L}_{3}^{\dagger}$		W		\mathcal{U}_2	\mathcal{U}_5	Q_5
14 vectors	Irrep	$({\bf 1},{\bf 1})_0$	$(1, 1)_1$	(1 , 2)	3	(1, 3))0 (\$	$(1)_{\frac{2}{3}}$	$(3, 1)_{\frac{5}{2}}$	$(3, 2)_{-\frac{5}{6}}$
1, 100003)	Notation	V_8	V_9	V10		V_{11}		V_{12}	V13	V14
	Name	\mathcal{Q}_1	x	$\mathcal{Y}_{1}^{\dagger}$		$\mathcal{Y}_{5}^{\dagger}$		G	\mathcal{G}_1	\mathcal{H}
l	Irrep	$({\bf 3},{\bf 2})_{rac{1}{2}}$	$(3,3)_{\frac{2}{3}}$	(6, 2)	-1	(6, 2) 5 (8	$(3, 1)_0$	$({\bf 8},{\bf 1})_1$	$({f 8},{f 3})_0$

э

Implication of UV Resonances

7+59 UV tree-level models for Dim-7 seesaw!

[Li, Ni, Xiao, Yu, 2204.03660]

	$(T_{2}T_{1}^{2} + T_{1}^{2})$		Topology	j-basis	Quantum numbers {J, B, Y}			
TV	$pe \{L^{-}H^{-}\} \rightarrow 0$			$O_{(10)MPK(1)} = 2O_1^p - 4O_2^p$	$[0, 3, -1], \{0, 3, 1\}, [0, 3, 0]$		$O_{CORPORATA} = O_1^2 - 4O_2^2 - 4O_2^2$	(1.3.0), [0.4, -1], [0.3.1]
	pe (12 11) ,		1.1	$O_{(12)02043,2} - 2O_2^{\mu} + 4O_3^{\mu}$	$\{0, 3, -1\}, \{0, 1, 1\}, \{0, 3, 0\}$		$O_{1 \text{ minimum}, n} = 3O_1^n + O_2^n + O_1^n - 9O_2^n - 9O_2^n$	(4.3.0), (0.2, -4), (0.3.1)
			- 20	$O_{[12]M(M),3} = 12O_1^{0}$	$\{0, 1, -1\}, \{0, 3, 1\}, \{0, 3, 0\}$		$O_{(100,2561),3} = 2O_1^0 + O_2^0 + O_3^0 + 3O_1^0 + 3O_1^0$	{{1,1,0},{0,2,-{}},{0,3,1}
	(= 2 == 2 = 2)			$O_{(12)MDH} = 4O_4^0 + 4O_2^0$	$\{0, 3, -1\}, \{0, 3, 1\}, \{0, 1, 0\}$		$O_{(12022843),4} = O_4^2 - O_4^2 + 3O_4^2 - 3O_5^2$	{{,3,0},{0,2,-{},0,1,1}
A +1/2	$n_0 \int \int$			$O_{(12)(12)} = 2O_4^0 + 4O_5^0$	$\{0, 1, -1\}, \{0, 1, 1\}, \{0, 1, 0\}$		$O_{D,XI,ZMD1,h} = -O_x^2 + O_x^2 + O_x^2 - O_x^2$	{{,1,0},{0,2,-}},{0,1,1}
υ υγ				$O_{\{13 24 34 ,1} = -O_2^p - 2O_3^p + 3O_4^p$	{{,3,0},{{,2,0},{0,3,0}}		$O_{1001200011} = O_1^0 - 4O_2^0 - 4O_3^0$	{{.3.0}, {0.4, -{}}, [0.3.0]
5	i (j		1.1	$O_{(15)(9)(1,2)} = -O_1^{0} + 3O_2^{0} + 2O_3^{0} + 3O_4^{0}$	{{,3,0},{{,1,0},{0,3,0}}	1.1.1	$O_{111222411} = -O_1^2 + 2O_2^2 - O_1^2 - 9O_2^2$	(1.3.0), (0.2,-1), (0.3.0)
	1		\sim	$O_{(1)(24(26),3} = -O_1^{\mu} + O_2^{\mu} - 2O_3^{\mu} - 3O_4^{\mu}$	{{.1,0},{{.3,0},{0,3,0}}		$O_{1 \text{ minimum}, 1} = -O_1^2 - 2O_2^2 + O_1^2 - 3O_2^2$	(4.1.0), (0.2,-4), (0.3,0)
				$O_{\{13 24 26 ,4} = -O_1^6 - O_2^6 + 3O_4^6 + 9O_3^6$	{{,3,0},{{,3,0},{0,1,0}}		O_{1} = $O_{1}^{2} - O_{1}^{2} - O_{1}^{2} + 9O_{1}^{2} + 3O_{1}^{2}$	(1.3.0), 10.4, -13, (0.1.0)
	*			$O_{(13)28243,5} = O_1^2 + O_2^2 + O_4^2 + 2O_5^2$	$\{\frac{1}{2}, 1, 0\}, \{\frac{1}{2}, 1, 0\}, \{0, 1, 0\}$		$O_{112(2200001,2)} = -O_1^2 - O_3^2 - 2O_4^2 - O_1^2$	{{1,0},{0,2,-}},{0,1,0}
				$O_{(16[20]45],1} = 2O_{1}^{p} - 2O_{2}^{p} - 2O_{3}^{p} + 6O_{4}^{p} + 6O_{5}^{p}$	{{,3,-1},{{,3,0},{0,3,1}}		Openenci - (Of	{ }, 3, -1 }, { 0, 4, - } }, { 0, 3, 1 }
			1.1	$O_{18004432,0} = -3O_1^{\mu} - O_2^{\mu} - O_3^{\mu} + 3O_4^{\mu} + 3O_5^{\mu}$	{{,3,-1},{{,1,0},{0,3,1}}	1.1.1	$O_{\text{Distribute}} = -3O_1^{2} + 9O_2^{2}$	(1.3,-1], [0,4,-2], [0,3,1]
			~~~	$O_{(19(2)(6),3} = 3O_2^{\mu} + 3O_3^{\mu} + 3O_4^{\mu} + 3O_3^{\mu}$	{{,1,-1},{{,3,0},{0,3,1}}		$O_{1142762241} = -3O_1^2 - 3O_2^2$	(1.31), [0.42], [0.3.1]
				$O_{(16)(1635),4} = O_2^{\mu} - O_3^{\mu} - 3O_4^{\mu} + 3O_5^{\mu}$	$\{\frac{1}{2}, 3, -1\}, \{\frac{1}{2}, 3, 0\}, \{0, 1, 1\}$	, ,	Quarmant = -05 - 305 + 305 + 605	$\{4, 3, -1\}, \{0, 4, -3\}, \{0, 3, 1\}$
				$O_{\{y \in p(x)\},y} = O_y^x - O_y^x + O_4^x - O_5^x$	$\{\frac{1}{2}, 1, -1\}, \{\frac{1}{2}, 1, 0\}, \{0, 1, 1\}$		$O_{1 \text{ submatrix}} = O_1^2 + 2O_1^2 + O_1^2 + 2O_2^2$	G.311.10.4D.10.3.11
				$O_{\{12 122 14\},3} = O_1^p + 4O_2^p$	$\{0, 3, -1\}, \{0, 4, -\frac{1}{2}\}, \{0, 3, 1\}$		$O_{CONVERSED A} = O_1^2 - 3O_2^2 + 6O_2^2$	[4,2,09, (4,4,4), (0,2,0)
Topology	i besis	Ouentum numbers [ I P V]	1117	$O_{(12)(12)(14),2} = -8O_1^2 + 4O_2^2$	$\{0, 3, -1\}, \{0, 2, -\frac{1}{2}\}, \{0, 3, 1\}$	1.4.	$O_{1282223811,2} = O_1^2 - 6O_2^2 - 5O_2^2 - 3O_2^2$	[1,3,0], [1,2,1], [0,3,0]
ropology	J-Dasis	Quantum numbers {3, it, 1}	)	$O_{[12]100[00],4} = -1NO_4^{\mu}$	$\{0, 1, -1\}, \{0, 2, -\frac{1}{2}\}, \{0, 3, 1\}$	) <u></u> (	$O_{1000000000,0} = O_1^0 + 2O_2^0 - O_1^0 - 3O_2^0$	[1,1,0], [1,2,1], [0,3,0]
				$O_{(12)(25)(14)} = -2O_1^{\mu} - 4O_2^{\mu}$	$\{0, 3, -1\}, \{0, 2, -\frac{1}{2}\}, \{0, 1, 1\}$		$O_{i \text{maximum}, 4} = -O_1^{\mu} - O_2^{\mu} - 9O_1^{\mu} - 3O_2^{\mu}$	(4.8.0), (4.2, 1), (0, 1, 0)
	$\mathcal{O}_{(12),1} = 3\mathcal{O}_{1}^{p} + 6\mathcal{O}_{2}^{p} - 9\mathcal{O}_{2}^{p} - 2\mathcal{O}_{1}^{p}$	{3,3,0}		$O_{12(125)41,5} = -2O_4^{\mu} - 4O_1^{\mu}$	$\{0, 1, -1\}, \{0, 2, -\frac{1}{2}\}, \{0, 1, 1\}$		$O_{120270000,5} = -O_1^0 - O_2^0 + 2O_3^0 + O_1^0$	(4.1,0), (4.2,4), (0,1,0)
	$e_{\{13\},1} = e_{1} + e_{2} + e_{3} + e_{4}$	[2,0,0]		$O_{(13(13(13(13)),1)} = 3O_1^2$	$\{0, 3, -1\}, \{0, 4, -\frac{3}{2}\}, \{0, 3, 1\}$		$O_{11212010114} = O_1^2 + 2O_2^2 + 2O_3^2 - 6O_4^2 - 6O_5^2$	[4,3,00, [4,4,-4], (0,3,1]
	n	(1.0.0)	1117	$O_{[10]146[14],2} = 72O_T^2$	$\{0, 3, -1\}, \{0, 2, -\frac{1}{2}\}, \{0, 3, 1\}$	1.4.	$O_{11}$ granted $p = 2O_1^p - 5O_2^p - 5O_3^p - 2O_4^p - 2O_4^p$	[1,2,60, [1,2,-1],03,3,1]
<u>``</u>	$O_{\{13\},2} = 3O_2^r - O_4^r$	{ <del>5</del> , 3, 0 }	) mining	$O_{[12] \text{ranges}_{10}} = -12O_{4}^{\mu}$	$\{0, 1, -1\}, \{0, 2, -\frac{1}{2}\}, \{0, 3, 1\}$	) <u></u> (	$O_{1100,061411,0} = 3O_1^2 + O_1^2 + O_1^2 + 3O_2^2 + 3O_2^2$	[1,1,00,(1,2,-1),00,3,1]
	()	5 A. 1. 7		$O_{[12](18][4],8} = -2O_1^{\mu} - 4O_1^{\mu}$	$\{0, 3, -1\}, \{0, 2, -\frac{1}{2}\}, \{0, 1, 1\}$		$O_{(100,0005),4} = O_2^{\mu} - O_2^{\mu} + 3O_1^{\mu} - 3O_2^{\mu}$	(3.8.0).(3.23).(0.1.1)
	$\mathcal{O}_{1} = -3\mathcal{O}_{p}^{p} \pm 3\mathcal{O}_{p}^{p} - 3\mathcal{O}_{p}^{p} \pm 3\mathcal{O}_{p}^{p}$	13101		$O_{(1210804),5} = -2O_4^{\mu} - 4O_1^{\mu}$	$\{0, 1, -1\}, \{0, 2, -\frac{3}{2}\}, \{0, 1, 1\}$		$O_{123236013} = -O_2^{0} + O_3^{0} + O_4^{0} - O_3^{0}$	(1.1,0), (1.2,-1), (0.1,1)
	$O_{\{13\},3} = -3O_1 + 2O_2 - 3O_3 + 2O_4$	12,1,01		$O_{(10)24(24),3} = -O_1^p - 4O_3^p$	$\{0, 3, -1\}, \{0, 4, -1\}, \{0, 3, 0\}$		$O_{(1603)6241,4} = 2O_1^2 - 4O_2^2 + 12O_4^2$	{4,3,-1}, {4,4,-1}, {0,3,1}
			1112	$O_{[10](138)6],2} = 2O_1^p + 6O_2^p + 2O_3^p$	$\{0, 3, -1\}, \{0, 2, -\frac{1}{2}\}, \{0, 3, 0\}$	1.1.1	$O_{1301340112} = 4O_1^2 + O_2^2 - 3O_2^2$	{ 1, 3, -1}, { 1, 2, -1}, { 0, 3, 1 }
	$O_{(12),4} = O_{2}^{\mu} + O_{4}^{\mu}$	{ ±.1.0}	- Andrew Contraction (	$O_{\text{[10](10](10](10])}} = -6O_4^p - 6O_5^p$	$\{0, 1, -1\}, \{0, 2, -\frac{1}{2}\}, \{0, 3, 0\}$	) <u></u> (	$O_{\text{DEDEDGA}} = -3O_1^{\mu} - 3O_2^{\mu}$	(4,1,-1), (4,2,-4), (0,3,1)
	- (13),4 - 2 + - 4	(2,-,-)		$O_{(1)(1)(2)} = -2O_1^{\mu} + 2O_2^{\mu} + 2O_2^{\mu}$	$\{0, 3, -1\}, \{0, 2, -\frac{1}{2}\}, \{0, 1, 0\}$		$O_{[10]350[M],A} = -O_2^2 - 3O_3^2 + 3O_4^2 + 6O_5^2$	(3.31), (3.2,-3), (0.1,1)
	(D) 0(D) 1(D)	(1.0.1)		$O_{(1)(10)(0)} = -2O_4^{\mu} + 2O_1^{\mu}$	$\{0, 1, -1\}, \{0, 2, -\frac{1}{2}\}, \{0, 1, 0\}$		$O_{(1005600),5} = O_2^{\mu} + 2O_2^{\mu} + O_1^{\mu} + 2O_2^{\mu}$	$(\frac{1}{2}, 1, -1), (\frac{1}{2}, 2, -\frac{1}{2}), (0, 1, 1)$
	$O_{\{12\},1} = 2O_1 - 4O_4$	$\{1, 3, -1\}$		$O_{(10),20(14),3} - O_1^0 - 2O_3^0 - 6O_3^0$	{{.1,0},{{.4,}},{{.5,0}}		$O_{12412420414} = -O_1^2 + 2O_2^2 + 6O_4^2$	{0,3,1}, {4,4,4}, {0,3,0}
			5112	$O_{(O(120(14)),3} = -O_1^p - 3O_2^p - 4O_3^p + 9O_4^p + 6O_5^p$	{{.1,0},{{.2,}},{{.3,0}}	11.	$O_{DEDEDED,2} = 4O_1^2 - 8O_2^2 + 12O_2^2$	{0,3,1}, [ 1,2, 1 ], [0,3,0]
× /	$\mathcal{O}_{(m)} = -2\mathcal{O}^p$	f0 3 -1		$O_{[13](20](94),3} = O_1^p - O_2^p + 2O_3^p + 3O_4^p$	{{.1,0},{{.2,{.1,{.3,0}}}}	- yuung	$O_{1001000000000000000000000000000000000$	{0,1,1}, { { },2, { }, }, { 0,3,0 }
>/	$O_{\{12\}} = 2O_1$	[0,0, 1]		$O_{(13 12 14),4} - O_1^{\mu} - 3O_2^{\mu} - 3O_3^{\mu} - 3O_4^{\mu}$	{{.3,0},{{.2,{.1,0}}}		$O_{14014043,4} = -4O_1^0 - 4O_2^0$	{0.3.1}. { §.2. § }. {0.1.0]
	and the second second	4		$O_{(1)(1)(2)(1)} = O_1^{\mu} + O_2^{\mu} + O_4^{\mu} + 2O_1^{\mu}$	{\$.1.0}, {\$.2.\$}, {\$.1.0}		$O_{[34]34281,5} = 2O_4^{\mu} + 4O_1^{\mu}$	{0,1,1}, {§,2,§}, {0,1,0}
	$O_{(12)} = 4O_2^{\nu} - 2O_2^{\nu}$	$\{1, 1, -1\}$		$O_{(10)10(22),1} = -2O_1^0 + 4O_3^0 - 12O_5^0$	{ ].31}, [ ].4, -]. [ ].3.0}		$O_{1141201,1} - 6O_1^2$	{4,3,-1}, {0,4,-1}
	- [12] - 2 - 3	0.77	1117	$O_{\{36 1:96 11\},3} - 2O_1^2 - 3O_2^2 - O_3^2 + 9O_4^2 + 3O_5^2$	$\{-,3,-1\},\{-,2,\},\{-,3,0\}$	17	$O_{1}^{0} - O_{1}^{0} - 3O_{1}^{0} + 3O_{1}^{0}$	the street h
	(n) _ n(n)P	(0,1, 1) N/A		$O_{(16(1602)),3} = 3O_1^0 + 3O_1^0 + 3O_4^0 + 3O_5^0$	$\{1, 1, -1\}, \{1, 2, -1\}, \{1, 3, 0\}$	77	$O_{(16(100),3,3)} = (-2O_2^2 - O_3^2 + 6O_1^2 + 3O_3^2)$	$\{1, 2, -1\}, \{0, 2, -1\}$
	$U_{\{12\}} = 2U_3$	[ {0, 1, -1} N/A		$O_{[14]146[22],4} = 2O_1^{\mu} + O_2^{\mu} + O_3^{\mu} - 3O_4^{\mu} - 3O_5^{\mu}$	{{.3,-1},{{.2,-}},{{.1,0}}		-O_2 - 2O_2 - O_4 - 2O_5^2	11
				$O_{(m[1:m]31],5} = -O_2^{\mu} + O_3^{\mu} - O_4^{\mu} + O_5^{\mu}$	{{.1,-1},{{.2,-3},{.3,.4}}		*(10(10),4.5	(1.00.10.21)

0 4-

CLHCP2024

(日) (日) (日) (日) (日)

30 / 32

### Outline

1) New Physics from Effective Field Theory

2 On-Shell View of Effective Operators

3 Construction of Operator Basis

Partial Waves and UV Resonances

#### Conclusion

(日) (日) (日) (日) (日)

#### Conclusion

#### Summary and Outlook

- Effective field theory is an essential constituent for new physics searches.
- The era of precision measurements (HL-LHC, future colliders) calls for the systematic study of higher dimensional effective operators.
- On-shell method provides efficient algorithms to tackle with effective operators.
  - Independent operator bases, operator reduction, EFT in various scenarios...
  - 2 New structures from generalized partial waves J-basis operators.
- Applied to EFT calculations: matching, running...
  - Theoretically interesting, but challenging (on-shell constructibility)
  - Systematic and efficient, but large scale (44807 operators at dim-8)!

#### Thank you for your attention!

省明亮(	SYSU.Shenzhen