

Open heavy-flavour and quarkonia physics with ALICE

Institute of Modern Physics, Fudan University, China

10th China LHC Physics Conference, Qingdao, Shandong, China November 16, 2024

Jianhui Zhu (朱剑辉)

Why open heavy-flavour (HF)

Hadroproduction described by factorisation approach:

$$\frac{\mathrm{d}\sigma^{\mathrm{D}}}{\mathrm{d}p_{\mathrm{T}}^{\mathrm{D}}}(p_{\mathrm{T}};\mu_{\mathrm{F}};\mu_{\mathrm{R}}) = PDF(x_{\mathrm{a}},\mu_{\mathrm{F}})PDF(x_{\mathrm{b}},\mu_{\mathrm{F}}) \otimes \frac{\mathrm{d}\sigma^{\mathrm{c}}}{\mathrm{d}p_{\mathrm{T}}^{\mathrm{c}}}(x_{\mathrm{a}},x_{\mathrm{b}},\mu_{\mathrm{R}},\mu_{\mathrm{F}})$$

parton distribution function (PDF) (non-perturbative)

partonic cross section (perturbative)

Fragmentation functions assumed to be universal

Charm:

Beauty: $m_{\rm b} \approx 4.2 \ {\rm GeV}/c^2$

• $m_Q \gg \Lambda_{QCD}$

Enable the evaluation of their production cross sections within pQCD

• $m_Q \gg T_{QGP}$

• Produced mainly in initial hard scatterings (high Q^2) at early stage of heavy-ion collisions

$$\tau_{\rm prob} \approx \frac{1}{2m_{\rm q}} \approx 0.1_{\rm q=c} (0.03)_{\rm q=b} \, {\rm fm}/c \, < \tau_{\rm QGP} (\approx 0.3 - 1.5 \, {\rm fm}/c)$$

Experience the full evolution of the QGP

$$\otimes D_{c \to D}(z = p_D/p_c, \mu_F)$$

hadronisation by fragmentation (non-perturbative)

HF production in small system

arXiv:2405.14571 (accepted by EPJC)

Charm fragmentation fractions in small system

ALI-PUB-570972

Consistent with system size: pp and p–Pb collisions

Jianhui Zhu (朱剑辉) | Open HF and quarkonia physics with ALICE

Significant enhancement for charm baryons in pp and p–Pb w.r.t. e⁺e⁻ and e⁻p collisions

Modeling hadronization

PYTHIA 8

Hadronization via **fragmentation**, color reconnection between partons from different multiparton interactions

SHM + RQM

- Complexity of hadronization process replaced by **statistical weights** governed by hadron mass
- Feed-down from largely augmented set of charm baryon stated beyond the ones currently listed in the PDG, as predicted by Relativistic Quark Model

EPOS4HQ fragmentation + coalescence + resonance + UrQMD

Hadronisation: HF particle ratios in small system

- Catania works better
 - Coalescence in pp collisions
 - Assume a thermalised QGP-like system

Hadronisation: HF particle ratios in small system

- Models cannot describe $\Xi_{\rm c}^{0,+}/D^0$ and $\Omega_{\rm c}^0/D^0$
- The role of strangeness in HF hadronisation might be a challenge to theory

Hadronisation: higher mass particles decay

Hadronisation: resonances decay

- D_{s1}^+/D_s^+ and D_{s2}^{*+}/D_s^+ ratios flat vs. charged-particle multiplicity, as ground-state D-meson ratios
- Multiplicity trend described by SHM, SHMc, EPOS4HQ models and by PYTHIA 8 calculations

Hadronisation: large system

• D_s^+/D^0 and Λ_c^+/D^0 ratios enhanced at intermediate p_T in Pb-Pb w.r.t pp collisions Described by models based on coalescence and radial flow mechanisms

Eur.Phys.J.C 84 (2024) 813

Hadronisation: system scan (by multiplicity)

- No modification of overall production
- Difference between collision systems is due to momentum redistribution

Hadronisation: system scan (by multiplicity)

Jianhui Zhu (朱剑辉) | Open HF and quarkonia physics with ALICE

- No significant multiplicity dependence for Ξ_c^0/D^0 and Ξ_c^0/Λ_c^+ within large uncertainties
- PYTHIA 8 CR largely underestimates the measurements

Tao Fang's talk on Friday at 15:50 Parallel 3

Hadronisation: rapidity dependence (more challenges)

- Rapidity dependence in both meson and baryon, in both charm and beauty sectors
 - Models do not expect rapidity dependence

Collectivity: strange and non-strange D-mesons elliptic flow

- About x4 larger statistics more than Run 2, x5 more statistics will come soon
- No significant difference between strange and non-strange D mesons
- Strange D-meson elliptic flow reproduced by transport models

Collectivity: non-prompt D⁰ elliptic flow

- Non-zero open beauty flow signal \rightarrow possible partial thermalisation of beauty quark
- Described by models including collisional energy loss and hadronisation by coalescence

Energy loss: $D^{0} R_{AA}$

Jet

- Prompt D⁰ suppression in wide kinematics
 - Charm lose energy in QGP by collisions at low $p_{\rm T}$ and radiations at high $p_{\rm T}$

910 20 30 • $R_{R_{TA}}$ (Geodripable:

- Advantage: BR unc. cancelled
- Disadvantage: pp reference not well understood (QGP-like system in pp?)

Energy loss: mass dependence

In central collisions at $4 < p_T < 8 \text{ GeV}/c$

• A hint of hierarchy $R_{AA}(D) < R_{AA}(D_s^+) < R_{AA}(\Lambda_c^+)$

Branching-fraction ratio: Ξ_c^0 and Ω_c^0

- Consistent with Belle result in 0.54σ
- Models overestimate ALICE and Belle results

- 2.3 σ lower than Belle result
- Consistent with theory calculations

Jianhui Zhu (朱剑辉) | Open HF and quarkonia physics with ALICE

Quarkonia

Quarkonia as probes of QGP

- Suppression of the direct charmonium due to colour screening and dynamic dissociation
- (Re)generation enhanced charmonium production close to transition at LHC energies

 $\psi(2S)$ -to-J/ ψ ratio in Pb–Pb collisions has strong discriminating power between regeneration scenarios

Inclusive J/ψ production vs. centrality

ALI-PUB-568059

compared to forward rapidity

Evidence for J/ ψ (re)generation in central collisions, with larger contribution at midrapidity

Prompt J/w production in Pb–Pb collisions

- compatible with the measured prompt J/ ψ R_{AA} at low p_{T}
- BT model exhibits a similar trend to the data from peripheral to central collisions

SHMc and transport microscopic calculations that include a contribution from regeneration are

Hadronisation: J/ψ -to-D⁰ ratio in Pb–Pb collisions

ALI-PUB-568129

Jianhui Zhu (朱剑辉) | Open HF and quarkonia physics with ALICE

Centrality

PLB 849 (2024) 138451

Sensitive to hadronisation for open and hidden charm hadrons

The centrality-dependent trend of the J/ ψ to D⁰ can be explained by the increase of charm fugacity towards most central collisions according to SHMc prediction

$\psi(2S)$ production: sequential melting

$\psi(2S)$ -to-J/ ψ ratio in pp collisions

The CGC+NRQCD and ICEM can describe the data at low $p_{\rm T}$

- ICEM: using the kt-factorisation approach to improve color evaporation model (CEM)

NRQCD: non-relativistic QCD approach, long-distance matrix elements (LDME) fitted to experimental data CGC+NRQCD: color glass condensate effective theory coupled to leading order NRQCD calculations

$\psi(2S)$ -to-J/ ψ ratio in Pb–Pb collisions

ALI-PUB-568299

- Flat centrality dependence at the LHC
- Stronger centrality dependence at lower energy
- TAMU describes data slightly better than SHMc in central collisions

ALI-PUB-568354

- Increase for both pp and Pb–Pb
- Pb–Pb tends to show a slower rise
- Double ratio decrease, indicating possible increase of relative suppression of ψ(2S)

Collectivity: J/ψ elliptic flow in Run 3

- R_{AA} integrated over p_T : hint at a decreasing trend towards more central collisions

Described within uncertainties by models implementing collisional and radiative energy loss POWLANG including only collisional contributions overestimate R_{AA} at intermediate and high p_{T}

Summary

<u>Open heavy-flavour</u>

- Assumption of universal parton-to-hadron fragmentation fractions not valid at LHC energies HF hadronisation mechanisms in small collision systems at LHC need further investigations
- Resonance decay? Coalescence? Radial flow?
- Heavy quarks are thermalised and have mass-dependent energy loss in large collisions systems

Quarkonia

- Dominant contribution from (re)generation in central collisions and low $p_{\rm T}$ for inclusive and prompt J/ ψ
- Larger suppression of $\psi(2S)$ w.r.t. J/ ψ is observed
- Significant $J/\psi v_2$ is observed, consistent with charm quark thermalisation

Jianhui Zhu (朱剑辉) | Open HF and quarkonia physics with ALICE

Backup

Charm spatial diffusion coefficient D_{s}

Jianhui Zhu (朱剑辉) | Open HF and quarkonia physics with ALICE

31

D-meson production in p–Pb collisions

- (Prompt D^+ or D_s^+) / (prompt D^0) in p–Pb is compatible with pp results
- (Non-prompt D^+) / (non-prompt D^0) in p–Pb is compatible with pp results

$\Lambda_c^+(udc)$ in pp collisions

- Monash based on FFs from e^+e^- collisions

Jianhui Zhu (朱剑辉) | Open HF and quarkonia physics with ALICE

a similar $p_{\rm T}$ trend

Ω

$\Lambda_c^+(udc)$ in p–Pb collisions

Prompt Λ_c^+/D^0 in p–Pb collisions

- First measurement down to $p_{\rm T} = 0$
- Shift of peak towards higher $p_{\rm T}$ could be due to quark recombination or collective effects (e.g. radial flow)
- Well described by quark (re)combination model (QCM)

Non-prompt Λ_c^+/D^0 in p–Pb collisions

Similarity between prompt and non-prompt Λ_{c}^{+}/D^{0} within uncertainties

$\Xi_c^0(dsc)$ and $\Xi_c^+(usc)$ in pp and p–Pb collisions

- Hint of enhancement at high $p_{\rm T}$ in p–Pb w.r.t. pp collisions
- Underestimated by QCM for both pp and p–Pb collisions
- LHCb results systematically less than ALICE measurements -> rapidity dependence?

M-to-M event multiplicity dependence (LHCb)

- Observed clear indications of strangeness enhancement in both charm and beauty sectors
- Final state effects such as coalescence are important at low $p_{\rm T}$ and high multiplicity

B-to-M event multiplicity dependence (ALICE)

B-to-M event multiplicity dependence (CMS)

B-to-M event multiplicity dependence (LHCb)

Charm-hadron reconstruction

Hadronic decays

•
$$D^0(\bar{u}c) \rightarrow K^-\pi^+, BR \approx 3.95\%$$

 $D^+(\bar{d}c) \rightarrow K^-\pi^+\pi^+, BR \approx 9.38\%$

•
$$D^{*+}(\bar{d}c) \to D^0 \pi^+, BR \approx 67.7 \%$$

•
$$D_s^+(\bar{s}c) \rightarrow \phi \pi^+ \rightarrow K^+ K^- \pi^+, BR \approx 2.22 \%$$

- ► $D_{s1}^+(\bar{s}c) \rightarrow D^{*+}K_s^0$, BR unknown
- ► $D_{s2}^{*+}(\bar{s}c) \rightarrow D^+K_s^0$, BR unknown
- $\Lambda_c^+(udc) \rightarrow pK^-\pi^+, BR \approx 6.28\%$
- $\Lambda_c^+(udc) \rightarrow pK_s^0$, BR $\approx 1.59\%$
- $\Sigma_c^0(ddc) \rightarrow \Lambda_c^+ \pi^-, BR \approx 100\%$
- $\Sigma_c^{++}(uuc) \rightarrow \Lambda_c^+ \pi^+, BR \approx 100\%$
- $\bullet \quad \Xi_{\rm c}^+({\rm usc}) \rightarrow \Xi^- \pi^+ \pi^+, \ {\rm BR} \approx 2.9 \ \%$
- $\Xi_{\rm c}^0({\rm dsc}) \rightarrow \Xi^- \pi^+, \ {\rm BR} \approx 1.43 \ \%$
- $\Omega_c^0(ssc) \rightarrow \Omega^- \pi^+$, BR unknown

<u>Semileptonic decays</u>

- $\Lambda_{\rm c}^+({\rm udc}) \rightarrow \Lambda {\rm e}^+ \nu_{\rm e}, \ {\rm BR} \approx 3.6 \%$
- $\Xi_c^0(dsc) \rightarrow \Xi^- e^+ \nu_e, BR \approx 1.04\%$
- $\Omega_c^0(ssc) \rightarrow \Omega^- e^+ \nu_e$, BR unknown

Charge conjugates are included

Prompt

• $c \rightarrow charm hadrons (D^0, \Lambda_c^+, ...)$

ALI-PERF-578571

Non-Prompt

• $b \rightarrow c \rightarrow$ charm hadrons $(D^0, \Lambda_c^+, ...)$

ALICE detector for Run 1 and Run 2

- Inner Tracking System (ITS)
 - $|\eta| < 0.9$
 - Tracking, vertexing, multiplicity
- **V0**
 - ► V0-A: 2.8 < **η** < 5.1
 - V0-C: -3.7 < η < -1.7</p>
 - Triggering, luminosity, multiplicity
- **Time Projection Chamber (TPC)**
 - $|\eta| < 0.9$
 - Tracking, PID
- **Time-Of-Flight (TOF)**
 - $|\eta| < 0.9$
 - Tracking, PID

	System	Year(s)	$\sqrt{s_{NN}}$	L _{int}
	рр	2017	5.02 TeV	~20 nb⁻¹
		2016 – 2018	13 TeV	~32 nb⁻¹
	p–Pb	2016	5.02 TeV	~287 µb⁻
	Pb–Pb (0-10%)	2018	5.02 TeV	~131 µb⁻
	Pb–Pb (30-50%)	2018	5.02 TeV	~56 µb⁻¹
THE ALICE DETECTOR A side				a. ITS SPD (Pix b. ITS SDD (Dr c. ITS SSD (St d. V0 and 10 e. FMD
 18 17 10 10 11TS 11TS<td></td><td></td><td></td><td>C sic</td>				C sic
 10. L3 Magnet 11. Absorber 12. Muon Tracker 13. Muon Wall 14, Muon Trigger 15. Dipole Magnet 16, PMD 17. AD 18. ZDC 19. ACORDE 				Z

