10th China LHC Physics Conference

Measurements of vector mesons spin alignment with ALICE at the LHC

Xiaozhi Bai (白晓智)

University of Science and Technology of China

Qingdao, Nov. 16, 2024

Introduction to heavy-ion collisions

- \succ In non-central heavy-ion collisions, short-lived magnetic fields (**B**) and very strong orbital momentum (L) are expected to be produced
- The magnetic fields and orbital momentum can influence the global polarization 16/11/24

Strong magnetic field and orbital momentum

- The most intense magnetic field in nature [STAR, Nature 548, 62 (2017)]
- Angular momentum strongly depends on impact parameter (b)

Vector mesons spin alignment in heavy-ion collision

Z.-T. Liang, X.-N. Wang, PRL 94, 102301 (2005) STAR, Nature 548 62 (2017) Z.-T. Liang, X.-N. Wang, PLB 629 (2005) 20-26 STAR, Nature 614 244 (2023)

The global spin alignment of the vector meson ϕ exhibits a surprisingly larger than the contributions from the magnetic field and vorticity, a new puzzle

16/11/24

Vector meson spin alignment (is the puzzle solved?)

- Vector meson spin alignment measures field square, which corresponds to the local correlation and fluctuation of the strong force field
- The vector field is induced during the hadronization process
- ➤This mechanism will open a new window for the strong force field study once it is confirmed!

X.-L. Sheng, L. Oliva, Z.-T Liang et al, PRL131 (2023)4,042304 X.-L. Sheng, L. Oliva, Z.-T Liang et al, PRD109 (2024)3, 036004

Introduction to spin alignment measurements

Polarization axis:

- ► Helicity (HX): direction of vector meson in the collision center of mass frame
- Collins-Soper (CS): the bisector of the angle between the beam and the opposite of the other beam, in the vector meson rest frame
- Event Plane based frame (EP): axis orthogonal to the reaction plane in the collision center of mass frame

The vector mesons polarization measurements

Quarkonia measurements:

$$W(\cos heta,\phi) \propto rac{1}{3+\lambda_ heta} \cdot ig(1+\lambda_ heta\cos^2 heta+\cdotsig)$$

$$W(\cos heta) \propto (1-
ho_{00}) + (3
ho_{00}-1)\cos^2 heta$$

 $egin{aligned} \lambda_{ heta} &= ext{ polarization parameter} \ \lambda_{ heta} &= 0 ext{ no spin alignment} \end{aligned}$

$$\lambda_{ heta} = rac{1-3
ho_{00}}{1+
ho_{00}} \quad egin{cases} \lambda_{ heta} > 0 o
ho_{00} < 1/3 \ \lambda_{ heta} < 0 o
ho_{00} > 1/3 \end{cases}$$

- > pp collisions: Important to constrain quarkonium production mechanisms in hadronic collisions
- AA collisions: Polarization measurements gives access to different time scales and mechanisms, like the early-produced magnetic field, angular momentum, and hadronization mechanisms.

Polarization measurements with ALICE detector

- Time Projection Chamber Tracking, particle identification
- Inner Tracking System Tracking, vertex reconstruction, event plane determination

> V0 Detector

Centrality determination, triggering, event plane determination

> Muon spectrometer

Trigger and tracking for muons

> Maximum deviation of ρ_{00} in semicentral collisions and low $p_{\rm T}$

> Deviation w.r.t 1/3 are 2.6 σ and 1.9 σ for K^{*0} and ϕ , respectively

ALICE, PRL 125(2020) 012301

16/11/24

 $\triangleright \rho_{00}$ for K⁰_s (spin=0) consistent with 1/3

ALICE, PRL 125(2020) 012301

⇒ First measurement of quarkonium spin alignment with respect to the event plane ⇒ The significance of the spin alignment reaches $\sim 3.9\sigma$ at the semi-central collisions ⇒ Interpretation of results requires inputs from theoretical models

16/11/24

J/ ψ spin alignment vs $p_{\rm T}$

> Significant J/ ψ spin alignment observed at low p_{T_i} are they from (re)generated contribution?

→ J/ ψ (re)generation from uncorrelated charms quarks contributions are found to be the dominate production mechanism at low $p_{\rm T}$ in the LHC energies

D^{*+} spin alignment $p_{\rm T}$ dependence

 \succ 0 − 10% : $ρ_{00}$ compatible with 1/3 , 30 − 50% : $ρ_{00}$ > 1/3 at high $p_{\rm T}$

*p*₀₀ < 1/3 quark recombination at low *p*_T while *p*₀₀ > 1/3 quark fragmentation at high *p*_T
 ➤ Theory guidance needed!

Spin alignment rapidity dependence

- D*+ spin alignment deviation is stronger at larger rapidity than at midrapidity, similar behaviour is observed at RHIC energies
- > How about the J/ ψ spin alignment rapidity dependence? —> Run 3

J/ψ and $\Upsilon(1S)$ spin alignment in pp collisions

No significant spin alignment is observed for J/ψ and $\Upsilon(1S)$ in pp collisions by ALICE in Helicity and Collins-Soper reference frames

16/11/24

Measurements of vector meson spin alignment with ALICE (X.Bai)

16/11/24

- New measurement in pp collisions provides an important baseline for Pb-Pb collisions

New Muon Forward Tracker

Upgraded Inner Tracking System

- Monolithic Active Pixel Sensor technology
- > Spatial resolution: $5 \mu m$
- Pixel size: 27 μm x 29 μm

- ➤ 3 layers in inner barrel (IB), 4 in outer barrel (OB)
- Reduced material budget: from 1.14% X₀ to 0.36% X₀ per layer
- \blacktriangleright Reduced pixel size: from 50 x 425 μ m² to 29 x 27 μ m²

Improved pointing resolution at midrapidity

already now by factors of 2 and 6 in the transverse plane and beam-line direction, respectively Secondary vertex reconstruction enabled at forward rapidity separation of J/ψ contributions from beauty-hadron decays

16/11/24

Measurements of vector meson spin alignment with ALICE (X.Bai)

Detector upgrades with ALICE in Run 3 (TPC)

Upgraded Time Projection Chamber -> GEM, continuous readout

- ➢ pp data taking at 500 kHz
- ▶ Pb-Pb data taking at 50 kHz

Run 3 data taking

- ➢ Pb−Pb data taking at 50 kHz
- ≻ Collected approx. 12B MB events

- > pp data taking at 500 kHz
- ➢ 75 pb⁻¹ MB events are currently recorded

16/11/24

Measurements of vector meson spin alignment with ALICE (X.Bai)

	K*0	ф	D *+	J/ψ	Υ(1S)
рр	$\rho_{00} \sim 1/3$ low p _T production plane	$\rho_{00} \sim 1/3$ low p _T production plane	ρ₀₀ ~ 1/3 (HX)	ρ ₀₀ ~ 1/3 (HX and CS)	ρ ₀₀ ~ 1/3 HX and CS
Pb-Pb	ρ₀₀ < 1/3 low p _T (RP)	ρ₀₀ < 1/3 low p _T (RP)	$ ho_{00} > 1/3$ high p _T (RP)	ρ₀₀ < 1/3 low p _T (RP)	ρ ₀₀ ~ 1/3 HX and CS

> pp collisions:

Measured J/ ψ , Y(1S) , D*+ , K^{*0} and ϕ , do not exhibit strong polarization

Pb-Pb collisions

The significant J/ ψ spin alignment (~3.9 σ) observed w.r.t the reaction plane

The measured ρ_{00} of light flavor vector meson K^{*0} and ϕ are less than 1/3 at low $p_{\rm T}$

Prospect of Run 3

More precise measurements can be expected

The J/ψ spin alignment will be measured via dielectron decay channel at midrapidity

Thanks

16/11/24

Measurements of vector meson spin alignment with ALICE (X.Bai)