Speed of Sound in QGP and ATLAS/CMS Heavy Ion Summary

Zaochen Ye (叶早晨) South China Normal University (华南师范大学)

Chinese Heavy Ion Teams at CMS and ATLAS

Chinese PI at CMS HI:

- Zhenyu Chen (SDU) L3 Convener of Flow/Corr PInG
- Shuai Yang (SCNU) L3 Convener of Dilepton PInG
- Zaochen Ye (SCNU) L3 Convener of Fwd/UPC PInG
- Wangmei Zha (USTC)
- Jinlong Zhang (SDU)

Chinese PI at ATLAS HI:

- Xin Chen (**Tshinghua**)
- Qipeng Hu (USTC) L2 Convener of HI
- Haifeng Li (SDU)
- Lei Zhang (NJU)

(sorted by last name)

Roughly 30-50 active members in each HIN groups

Heavy Ion Publications of CMS and ATLAS

Since CLHCP 2023:

Published/accepted papers:

- CMS: 11 (3 Phys. Rev. Lett., 2 Rep. Prog. Phys.)
- ATLAS: 5 (3 Phys. Rev. Lett.)

□ Under journal review:

- CMS: 7 (2 Phys. Rev. Lett., 1 Phys. Rep., 1 Nat. Com.)
- ATLAS: 3 (1 Phys. Rev. Lett.)

CMS: ROPP 87 077801 (2024) CMS: ROPP 87 107801 (2024) CMS: PRL 133 142301 (2024) CMS: PRL 133 022302 (2024) CMS: PRL 131 262301 (2023)

. . . .

....

ATLAS: arXiv:2407.06413 (accepted by PRL) ATLAS: PRL 132 202301 (2024) ATLAS: PRL 132 102301 (2024)

This talk present selected results from recent publications and preliminary

QCD Phase Diagram and Heavy Ion Collisions

QCD phase diagram:

- Describes phases of matter under various conditions of temperature (T) and chemical potential (μ_B)
- Heavy-ion collisions create extreme conditions:
 - Explore QCD diagram with different trajectories

• Open questions:

- What's the d.o.f of the created QCD matter
- What's the nature of phase transition?
 - 1st-order? Critical end point?
- What is the equation of state (EoS) of QGP?

EoS and Thermodynamics

An EoS is a thermodynamic equation relating state variables (p, E, S, V, T)

General form:
$$f(p, V, T) = 0$$

Idea gas:
$$f(p, V, T) = pV - nRT = 0$$

Ultra-relativistic fluid: $f(p, V, T) = p - \varepsilon c_s^2 = 0$

Number of independent variables depends on the substrances and phases of the system

November 16, 2024

Constrain EoS via Speed of Sound Measurement

Sensitive to substance, stiffness, density and temperature

Precision measurement of speed of sound directly constrain the EoS

November 16, 2024

5000

4000

3000

2000

1000

0

Air

Constrain EoS via Speed of Sound Measurement

November 16, 2024

Zaochen Ye (叶早晨) at CLHCP 2024

Check for undate

Normalized " $< p_T > vs. N_{ch}$ "

CMS: Rep. Prog. Phys. 87 077801 (2024)

- Data shows very clear rising trend in UCC
- TRAJECTUM model calculation with (EoS from IQCD, Hydrodynamic simulations) perfectly predicted the data

Extraction of Speed of Sound of QGP

Constrain EoS in UCC

Study Geometric/Intrinsic Fluctuations in UCC

Initial conditions of heavy ion collisions vary event-by-event due to fluctuations

Geometric fluctuations:

Transverse size R

At fixed N_{ch}, R (b) fluctuates

Intrinsic fluctuations: Nucleon and parton positions, energy density, entropy

At fixed R(b), N_{ch} fluctuates

In UCC (b \rightarrow 0), R and N_{part} reach maximum values, geometric fluctuations are suppressed \rightarrow excellent environment to study the intrinsic fluctuations.

1

$$\langle [p_{\rm T}] \rangle \qquad \qquad k_2 = \frac{\langle c_2 \rangle}{\langle [p_{\rm T}] \rangle^2} \qquad \qquad k_3 = \frac{\langle c_3 \rangle}{\langle [p_{\rm T}] \rangle^3}$$
Avg Mean Norm. Variance Norm. Skewness

Study mean, variance and skewness of $[p_T]$ in UCC can explore the intial-state variations.

Study Geometric/Intrinsic Fluctuations in UCC

- Similar rising <[pT]> trend for Pb+Pb and Xe+Xe collisions
- Variance (k₂) decrease with multiplicity, model calculations have to include both geometric and intrinsic fluctuations
 - \rightarrow Decreasing variance of geometrical fluctuations at b \rightarrow 0
 - → Rising <[pT]> is driven by intrinsic fluctuations

Ultra-Central Collision (UCC)

Ultra-Peripherial Collision (UPC)

Ultra-Peripheral Collision (UPC)

- Lorentz contracted EM fields \rightarrow flux of quasi-real photons (Q²< \hbar^2/R^2).
- The photon flux $\propto Z^2$.
- Photon kinematics: $p_T < \hbar/R_A \sim 30$ MeV ($E_{max} \sim 80$ GeV) at LHC.

Heavy ion collider is also a Photon-Photon and Photon-Ion collider !!!

- Exam QED at extreme field
- Investigate nuclear structure
- Search for new physics

November 16, 2024

Search for Gluon Saturation in Heavy Nucleus

Gluons are found be increasingly dominant constituents of nucleus and nucleons

Gluon saturation is expected to be more easily reached in heavy nuclei

Vector Meson Photoproduction in UPCs

VM photoproduction is sensitive to the gluonic structure of target nucleus

Coherent photoproduction:

- Photon interact with entire nucleus
- Target nucleus remains intact
- VM <p_T> ~ **50 MeV**
- Probing the averaged gluon density

Incoherent photoproduction:

- Photon interact with individual nucleon or sub-nucleon
- Target nucleus usually breaks
- VM <p_T> ~ **500 MeV**
- Probing the local gluon density and fluctuations

 $\boldsymbol{\sigma} \propto [x \mathbf{G}(x, \mathbf{Q}^2)]^2$

ρ, J/ψ, Υ...

 \vec{B}

Coherent J/ Ψ Photoproduction

November 16, 2024

Incoherent J/ Ψ Photoproduction

First energy-dependent measurement of incoherent J/Ψ Photoproduction

- Strong suppression for all W or x values, is more suppressed than coherent
- Suppression factor decrease toward lower *x*, eventually flattens out

Cross Section Ratio of Incoh/Coh

formation probability are largely canceled.

assumptions on nuclear effects: saturation or nuclear shadowing...

Magnetic Monopole Search in UPCs

Magnetic monopole, postulated by Paul Dirac in 1931, its existence would complete the sysm. btw electricity and magnetism

Advantages in UPCs: Strongest B field (10¹⁶ T), large Z and clean event

ATLAS: arxiv:408.11035 Submitted to PRL November 16, 2024

Expected signals

- Highly ionizing particles, large energy deposits in detectors
- Unique trajectories: bend along the direction of magnetic field

Magnetic Monopole Search in UPCs

Magnetic monopole, postulated by Paul Dirac in 1931, its existence would complete the sysm. btw electricity and magnetism

November 16, 2024

Measurement of Tau g-2 Factor in UPCs

Origin of Hyperon Polarization Along Beam Direction

Simple expectation of vorticity from the anisotropic expansion of QGP?

P_z in Small System?

Features of QGP droplets observed in small but dense systems Can we see hyperon polarization P₇ there? \rightarrow A test of QGP formation & mechanisms for the P₂

P_z in Small System?

- P_z decrease with multiplicity, opposite trend of v₂
- Not captured by hydro. (negative P_z), similar behavior as in AA collisions
 - Other mechanisms are needed

November 16, 2024

Summary

Chinese team are making significant contributions at CMS and ATLAS Heavy Ion Program

More new results from Run3 are coming soon!

November 16, 2024

Backup Slides

Multiplicity Fluctuation in UCC

"Two-way Ambiguity" in A-A UPCs

This ambiguity exists for both coherent and incoherent processes

Solution Based on Forward Neutrons

V. Guzey, M. Strikman, M. Zhalov, EPJC (2014) 72 2942

Coh. J/Psi at ω_1 and ω_2 are solved by making use of neutrons induced by EMD process

Incoh. J/Psi production itself has ~85% chance to induce the forward neutrons → Detecting these neutrons will identify the target nucleus and solve the two-way ambiguity

Example of Signal Extraction (OnXn)

- No correlation between forward neutrons and coh. production
- Strong correlation between forward neutrons and incoh. production

Total InCoh. J/ Ψ Photoproduction Cross Section

Probing Fluctuating Gluonic Structure via γ +p

CGC IPsat considering the **fluctuations** of **geometry** (shape and size), **energy density**, **local saturation scale** and **color charge**, successfully describe the HERA data

CGC Ipsat is impact parameter dependent saturation model under the Color-Glass Condensate framework.