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Higgs Physics



What are we doing,  
and going to do for a long time?



Higgs Potential
• Higgs pair 

productions.


• Test the mass 
generation mechanism 
in the SM.


• From two Higgs to 
multi-Higgs?



Other Important Topics
• Yukawa interactions with light fermions.


• Gauge interactions in Higgs pair processes.


• Inclusive measurement of the width of the Higgs boson.


• CP property of the Higgs boson.


• …



New Physics with Higgs Boson
• For experimentalists: model independent methods, popular models.
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New Physics with Higgs Boson
• For experimentalists: model independent methods, popular models.


SMEFT, HEFT, 2HDM, 3HDM, XHDM, MSSM, Composite Higgs model…

• For phenomenologists: new observables, physical meanings, what do we miss?


UNDERSTAND physics without AI, faked SM signals…

• For theorists: new physical motivations, accurate calculations.



More Ideas?



Higgs boson in medium?

σ(Pb Pb → h + X) | sNN=5.5TeV ∼ 0.5nb

2.2~2.8nb-1/month 
for Run3 and Run4 
for ATLAS, CMS 
and ALICE.



From Higgs particle to Higgs Field?



From Higgs particle to Higgs Field?

SM B+L violation process 
and sphaleron? 

Mass of the sphaleron? 

Typical signals? 

Production rate? 

Galaxies 2022, 10, 116 7 of 21

Figure 3. Representation in the scalar field space of the two vacua solutions |0i, |1i and also the
solution connecting them, known as the sphaleron, which has an unstable direction. The sphaleron
and the vacua appear as a mapping between the real space and a circle in the field space. The
homotopy class associated will be non trivial p1(S1) = Z, where this number is often known as the
winding number.
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Figure 4. Visualization of the sphaleron configuration between two degenerate vacua. It corresponds
to an unstable structure of the half integer Chern–Simons number. If the temperature is large enough,
the sphaleron can be created and its instability can make it decay into one of the two vacua with
n = 0 or n = 1 in our particular case.
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with mH = v
p

l the mass of the “Higgs” field (scalar field f). Notice that, at the quantum
level, we can have quantum tunnelling between two vacua, known as instanton, but which

qL + qL → e−μ−τ−bbbcccddduu + X
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Quantum Reality?

Albert Einstein 
(1879/03/14-1955/04/18)

Boris Yakovlevich 
Podolsky 

(1896/06/29-1966/11/28)

Nathan Rosen 
(1909/03/22-1995/12/18)



Quantum Entanglement
• Non-factorizable state.

| ↑ ↓ ⟩ − | ↓ ↑ ⟩

2
≠ (a1 | ↑ ⟩ + b1 | ↓ ⟩) ⊗ (a2 | ↑ ⟩ + b2 | ↓ ⟩)



Quantum Entanglement
• Non-factorizable state.

| ↑ ↓ ⟩ − | ↓ ↑ ⟩

2

≠ ↑ ↓ or ↓ ↑

≠ (a1 | ↑ ⟩ + b1 | ↓ ⟩) ⊗ (a2 | ↑ ⟩ + b2 | ↓ ⟩)



Quantum Entanglement
• Non-factorizable state.

| ↑ ↓ ⟩ − | ↓ ↑ ⟩

2

≠ ↑ ↓ or ↓ ↑

≠ (a1 | ↑ ⟩ + b1 | ↓ ⟩) ⊗ (a2 | ↑ ⟩ + b2 | ↓ ⟩)

=
| ← → ⟩ − | → ← ⟩

2



Quantum Entanglement
• From pure state to mixed state.

        “Finally, we prove that the weak membership problem 
for the convex set of separable normalized bipartite density 
matrices is NP-HARD. ” 

——Leonid Gurvits

“A quantitatively characterization of the degree of the entanglement 
between the subsystems of a system in a mixed state, is not unique! ”

ρAB =
N

∑
i=1

piρ(i)
A ⊗ ρ(i)

B , (
N

∑
i

pi = 1, pi > 0)?



Quantum Entanglement
• For  and  system, it is solved by Peres, and Horodeckis 1996 

(Peres-Horodecki criterion, concurrence).
2 × 2 2 × 3

Ryszard Horodecki 
(1943/09/30-)

Paweł Horodecki 
(1971-)

Michał Horodecki 
(1973-)

Asher Peres 
(1934/01/30-2005/01/01) 



Quantum Entanglement
• Testing quantum entanglement at TeV scale (for more details, see Prof. 

Hongbo Liao’s talk).
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Figure 2: (a): Calibration curve for the dependence between the particle-level value of ⇡ and the detector-level value
of ⇡, in the signal region. The yellow band represents the statistical uncertainty, while the grey band represents
the total uncertainty obtained by adding the statistical and systematic uncertainties in quadrature. The measured
values and expected values from Powheg + Pythia8 (hvq) are marked with black and red circles, respectively, and the
entanglement limit is shown as a dashed line. (b): The particle-level ⇡ results in the signal and validation regions
compared with various MC models. The entanglement limit shown is a conversion from its parton-level value of
⇡ = �1/3 to the corresponding value at particle level, and the uncertainties which are considered for the band are
described in the text.

absence of these effects in the MC simulation used to derive the calibration curve is expected to be minimal.
Additionally, the impact of the enhancement of the cross-section due to pseudo-bound-state effects on the
calibration curve and particle-level measurement has been assessed in a stress test, and found to be small
compared to the modelling uncertainties already included in the measurement.

In the signal region the P�����+P����� and P�����+H����� generators yield different predictions. The
size of the observed difference is consistent with changing the method of shower ordering and is discussed
in detail in Methods A.6.

In the signal region, the observed and expected significances with respect to the entanglement limit are
well beyond five standard deviations, independently of the MC model used to correct the entanglement
limit to account for the fiducial phase space of the measurement. This is illustrated in Figure 2(b), where
the hypothesis of no entanglement is shown. The observed result in the region with 340 < <

C C̄
< 380 GeV

establishes the formation of entangled CC̄ states. This constitutes the first observation of entanglement in a
quark–antiquark pair.

Apart from the fundamental interest in testing quantum entanglement in a new environment, this
measurement in top quarks paves the way to use high-energy colliders, such as the LHC, as a laboratory to
study quantum information and foundational problems in quantum mechanics. From a quantum information
perspective, high energy colliders are particularly interesting due to their relativistic nature, and the richness
of the interactions and symmetries that can be probed there. Furthermore, highly demanding measurements,
such as measuring quantum discord and reconstructing the steering ellipsoid, can be naturally implemented
at the LHC due to the vast number of available CC̄ events [45]. From a high-energy physics perspective,
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Quantum Entanglement
• Beyond “simple” repetition of the measurement of entanglement did by our 

condensed matter colleagues?


• Entanglement in Quantum Field Theory?


• A lot of works need to be done.



STAYING TRUE  
TO OUR ORIGINAL ASPIRATION 

AND FOUNDING MISSION



Quantum Non-Locality
• The different correlations.

Quantum correlations

“Alice” “Bob”

No-signaling correlationsLocal correlations



Quantum Non-Locality

Local correlations

straightforward (see also Secs. II.D and VI for results specific
to the multipartite case).

A. General definitions

As in the Introduction, we consider two distant observers,
Alice and Bob, performing measurements on a shared
physical system, for instance, a pair of entangled particles.
Each observer has a choice of m different measurements to
perform on his system. Each measurement can yield Δ
possible outcomes. Abstractly we describe the situation by
saying that Alice and Bob have access to a “black box.” Each
party locally selects an input (a measurement setting) and the
box produces an output (a measurement outcome). We refer to
this scenario as a Bell scenario.
We label the inputs of Alice and Bob x; y ∈ f1; :::::; mg and

their outputs a; b ∈ f1; :::::;Δg, respectively. The labels
attributed to the inputs and outputs are purely conventional,
and the results presented here are independent of this choice.
Some parts of this review might use other notations for
convenience. In particular, when the outputs are binary, it
is customary to write a; b ∈ f−1; 1g or a; b ∈ f0; 1g.
Let pðabjxyÞ denote the joint probability to obtain the

output pair ða; bÞ given the input pair ðx; yÞ. A Bell scenario is
then completely characterized by Δ2m2 such joint probabil-
ities, one for each possible pair of inputs and outputs.
Following the terminology introduced by Tsirelson (1993),
we refer to the set p ¼ fpðabjxyÞg of all these probabilities as
a behavior. Informally, we simply refer to them as the
correlations characterizing the black box shared by Alice
and Bob. A behavior can be viewed as a point p ∈ RΔ2m2

belonging to the probability space P ⊂ RΔ2m2
defined by

the positivity constraints pðabjxyÞ ≥ 0 and the normalization
constraints

PΔ
a;b¼1 pðabjxyÞ ¼ 1. Due to the normalization

constraints P is a subspace of RΔ2m2
of dimension

dimP ¼ ðΔ2 − 1Þm2.
The existence of a given physical model behind the

correlations obtained in a Bell scenario translates into addi-
tional constraints on the behaviors p. Three main types of
correlations can be distinguished.

1. No-signaling correlations

The first natural limitation on behaviors p are the no-
signaling constraints (Cirel'son, 1980; Popescu and Rohrlich,
1994), formally expressed as

XΔ

b¼1

pðabjxyÞ ¼
XΔ

b¼1

pðabjxy0Þ; for all a; x; y; y0;

XΔ

a¼1

pðabjxyÞ ¼
XΔ

a¼1

pðabjx0yÞ; for all b; y; x; x0: (7)

These constraints have a clear physical interpretation: they
imply that the local marginal probabilities of Alice pðajxÞ≡
pðajxyÞ ¼

PΔ
b¼1 pðabjxyÞ are independent of Bob's meas-

urement setting y, and thus Bob cannot signal to Alice by his
choice of input (and the other way around). In particular, if
Alice and Bob are spacelike separated, the no-signaling
constraints (7) guarantee that Alice and Bob cannot use their

black box for instantaneous signaling, preventing a direct
conflict with relativity.
Let NS denote the set of behaviors satisfying the no-

signaling constraints (7). It is not difficult to see thatNS is an
affine subspace of RΔ2m2

of dimension

dimNS ¼ 2ðΔ − 1Þmþ ðΔ − 1Þ2m2 ¼ ∶t; (8)

see, e.g., Pironio (2005). One can thus parametrize points in
NS using t numbers rather than the Δ2m2 numbers [or ðΔ2 −
1Þm2 taking into account normalization] necessary to specify
a point in the general probability space P. A possible
parametrization is given by the set of probabilities
fpðajxÞ; pðbjyÞ; pðabjxyÞg, where a; b ¼ 1;…;Δ − 1 and
x; y ¼ 1;…; m. There are indeed t such probabilities and
their knowledge is sufficient to reconstruct the full list of
pðabjxyÞ for any a, b, x, and y. Seen as a subset of Rt, the
no-signaling set is thus uniquely constrained by the
Δ2m2 positivity constraints pðabjxyÞ ≥ 0 (which have to
be reexpressed in terms of the chosen parametrization).
In the case of binary outcome (Δ ¼ 2), an alternative

parametrization is provided by the 2mþm2 correlators
fhAxi; hByi; hAxByig, where

hAxi ¼
X

a∈f%1g
apðajxÞ; hByi ¼

X

b∈f%1g
bpðbjyÞ; (9)

hAxByi ¼
X

a;b∈f%1g
abpðabjxyÞ; (10)

and we assumed a; b ∈ f−1; 1g. Joint probabilities and
correlators are related as pðabjxyÞ ¼ ½1þ ahAxiþ bhByiþ
abhAxByi'=4. Thus an arbitrary no-signaling behavior must
satisfy 1þ ahAxiþ bhByiþ abhAxByi ≥ 0 for all a, b, x, and
y. See Bancal, Gisin, and Pironio (2010) for a more general
definition of correlators for the Δ > 2 case.
A particular subset of interest of NS in the Δ ¼ 2 case is

the one for which hAxi ¼ hByi ¼ 0. We refer to this set as the
correlation space C. In terms of the m2 correlators (10), an
arbitrary point in C is constrained only by the inequalities
−1 ≤ hAxByi ≤ 1. Bell inequalities that involve only the
quantities hAxByi, such as the CHSH inequality, are called
correlation inequalities.

2. Local correlations

A more restrictive constraint than the no-signaling con-
dition is the locality condition discussed in the Introduction.
Formally, the set L of local behaviors is defined by the
elements of P that can be written in the form

pðabjxyÞ ¼
Z

Λ
dλqðλÞpðajx; λÞpðbjy; λÞ; (11)

where the (hidden) variables λ are arbitrary variables taking
value in a space Λ and distributed according to the probability
density qðλÞ and where pðajx; λÞ and pðbjy; λÞ are local
probability response functions for Alice and Bob, respectively.
Operationally, one can also think about λ as shared random-
ness; that is, some shared classical random bits, where Alice

424 Brunner et al.: Bell nonlocality
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Quantum Non-Locality

Local correlations

straightforward (see also Secs. II.D and VI for results specific
to the multipartite case).
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arbitrary point in C is constrained only by the inequalities
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dition is the locality condition discussed in the Introduction.
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elements of P that can be written in the form
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Quantum correlations-I

will choose an outcome a depending on both her measurement
setting x and λ and similarly for Bob.
Whereas any local behavior satisfies the no-signaling

constraint, the converse does not hold. There exist no-signal-
ing behaviors which do not satisfy the locality conditions.
Hence the set of local correlations is strictly smaller than the
set of no-signaling correlations; that is, L ⊂ NS.
Correlations that cannot be written in the above form are

said to be nonlocal. Note that this can happen only if Δ ≥ 2
and m ≥ 2 (otherwise it is always possible to build a local
model for any behavior inP). In the following, we thus always
assume Δ ≥ 2, m ≥ 2.

3. Quantum correlations

Finally, we consider the set of behaviors achievable in
quantum mechanics. Formally, the set Q of quantum behav-
iors corresponds to the elements of P that can be written as

pðabjxyÞ ¼ tr ðρABMajx ⊗ MbjyÞ; (12)

where ρAB is a quantum state in a joint Hilbert space
HA ⊗ HB of arbitrary dimension, Majx are measurement
operators [positive operator valued measure (POVM)
elements] on HA characterizing Alice's measurements (thus
Majx ≥ 0 and

PΔ
a¼1 Majx ¼ 1), and similarly Mbjy are

operators on HB characterizing Bob's measurements.
Note that, without loss of generality, we can always assume

the state to be pure and the measurement operators to be
orthogonal projectors, if necessary by increasing the dimen-
sion of the Hilbert space. That is, we can equivalently write a
quantum behavior as

pðabjxyÞ ¼ hψ jMajx ⊗ Mbjyjψi; (13)

where MajxMa0 jx ¼ δaa0Majx,
P

aMajx ¼ 1A and similarly for
the operators Mbjy.
A different definition of quantum behaviors is also possible,

where instead of imposing a tensor product structure between
Alice's and Bob's systems, we merely require that their local
operators commute (Tsirelson, 1993). We call the correspond-
ing set Q0, i.e., a behavior p belongs to Q0 if

pðabjxyÞ ¼ hψ jMajxMbjyjψi; (14)

where jψi is a state in a Hilbert space H, and Majx and Mbjy
are orthogonal projectors on H defining proper measurements
and satisfying ½Majx;Mbjy% ¼ 0. The former definition (13) is
standard in nonrelativistic quantum theory, while the second
one (14) is natural in relativistic quantum field theory. Since
½Majx ⊗ 1B; 1A ⊗ Mbjy% ¼ 0 it is immediate that Q⊆Q0. It is
an open question, known as Tsirelson's problem, whether the
inclusion is strict, i.e., Q ≠ Q0 (Scholz and Werner, 2008;
Tsirelson, 1993; Junge et al., 2011; Fritz, 2012a). In the case
where the Hilbert spacesH,HA, andHB are finite, it is known
that Eqs. (13) and (14) coincide (Tsirelson, 1993; Doherty et
al., 2008; Navascues et al., 2011). It is also known that Q ¼
Q0 if Alice has a binary choice of inputs with two outputs
each, independently of Bob's number of inputs and outputs
(Navascues et al., 2011). More precisely, in this case any

element of Q0 can be approximated arbitrarily well by an
element of Q. For many applications and results, it does not
matter whether we consider the quantum sets Q or Q0. In the
following, we drop the distinction and use the notation Q to
refer to both sets, except when results are specific to only one
definition.
It can easily be shown that any local behavior admits a

description of Eq. (12) and thus belongs to Q (Pitowsky,
1986). Moreover, any quantum behavior satisfies the no-
signaling constraints. However, there are quantum correlations
that do not belong to the local set (this follows from the
violation of Bell inequalities) and, as we will see, there are no-
signaling correlations that do not belong to the quantum set
(Khalfin and Tsirelson, 1985; Rastall, 1985; Popescu and
Rohrlich, 1994). In general, we thus have the strict inclusions
L ⊂ Q ⊂ NS (see Fig. 2). Furthermore, it can be shown that
dimL ¼ dimQ ¼ dimNS ¼ t (Pironio, 2005), where t is
defined in Eq. (8).
In the following sections, we discuss the properties of L,Q,

andNS in more detail. In particular, we see how it is possible
to decide if a given behavior belongs or not to one of these
sets. We show how each set can be characterized in terms of
Bell-type inequalities and discuss how to compute bounds for
Bell-type expression for behaviors in L, Q, and NS.

B. Bell inequalities

The sets L, Q, and NS are closed, bounded, and convex.
That is, if p1 and p2 belong to one of these sets, then the
mixture μp1 þ ð1 − μÞp2 with 0 ≤ μ ≤ 1 also belongs to this
set. The convexity of Q can be established for instance by
following the argument in Pitowsky (1986). By the hyper-
plane separation theorem, it follows that for each behavior
p̂ ∈ Rt that does not belong to one of the sets K ¼ L, Q, or
NS there exists a hyperplane that separates this p̂ from the
corresponding set (see Fig. 2). That is, if p̂∉K, then there
exists an inequality of the form

s · p ¼
X

abxy

sabxypðabjxyÞ ≤ Sk (15)

FIG. 2 (color online). Sketch of the no-signaling (NS), quantum
(Q), and local (L) sets. Notice the strict inclusions L ⊂ Q ⊂ NS.
Moreover, NS and L are polytopes, i.e., they can be defined as
the convex combination of a finite number of extremal points.
The set Q is convex, but not a polytope. The hyperplanes
delimiting the set L correspond to Bell inequalities.
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Quantum correlations-II

p(ab |xy) = ρAB(Ma|xMb|y), [Ma|x, Mb|y] = 0



No-signaling correlations

Quantum Non-Locality and Beyond

“Alice” “Bob”

straightforward (see also Secs. II.D and VI for results specific
to the multipartite case).

A. General definitions

As in the Introduction, we consider two distant observers,
Alice and Bob, performing measurements on a shared
physical system, for instance, a pair of entangled particles.
Each observer has a choice of m different measurements to
perform on his system. Each measurement can yield Δ
possible outcomes. Abstractly we describe the situation by
saying that Alice and Bob have access to a “black box.” Each
party locally selects an input (a measurement setting) and the
box produces an output (a measurement outcome). We refer to
this scenario as a Bell scenario.
We label the inputs of Alice and Bob x; y ∈ f1; :::::; mg and

their outputs a; b ∈ f1; :::::;Δg, respectively. The labels
attributed to the inputs and outputs are purely conventional,
and the results presented here are independent of this choice.
Some parts of this review might use other notations for
convenience. In particular, when the outputs are binary, it
is customary to write a; b ∈ f−1; 1g or a; b ∈ f0; 1g.
Let pðabjxyÞ denote the joint probability to obtain the

output pair ða; bÞ given the input pair ðx; yÞ. A Bell scenario is
then completely characterized by Δ2m2 such joint probabil-
ities, one for each possible pair of inputs and outputs.
Following the terminology introduced by Tsirelson (1993),
we refer to the set p ¼ fpðabjxyÞg of all these probabilities as
a behavior. Informally, we simply refer to them as the
correlations characterizing the black box shared by Alice
and Bob. A behavior can be viewed as a point p ∈ RΔ2m2

belonging to the probability space P ⊂ RΔ2m2
defined by

the positivity constraints pðabjxyÞ ≥ 0 and the normalization
constraints

PΔ
a;b¼1 pðabjxyÞ ¼ 1. Due to the normalization

constraints P is a subspace of RΔ2m2
of dimension

dimP ¼ ðΔ2 − 1Þm2.
The existence of a given physical model behind the

correlations obtained in a Bell scenario translates into addi-
tional constraints on the behaviors p. Three main types of
correlations can be distinguished.

1. No-signaling correlations

The first natural limitation on behaviors p are the no-
signaling constraints (Cirel'son, 1980; Popescu and Rohrlich,
1994), formally expressed as

XΔ

b¼1

pðabjxyÞ ¼
XΔ

b¼1

pðabjxy0Þ; for all a; x; y; y0;

XΔ

a¼1

pðabjxyÞ ¼
XΔ

a¼1

pðabjx0yÞ; for all b; y; x; x0: (7)

These constraints have a clear physical interpretation: they
imply that the local marginal probabilities of Alice pðajxÞ≡
pðajxyÞ ¼

PΔ
b¼1 pðabjxyÞ are independent of Bob's meas-

urement setting y, and thus Bob cannot signal to Alice by his
choice of input (and the other way around). In particular, if
Alice and Bob are spacelike separated, the no-signaling
constraints (7) guarantee that Alice and Bob cannot use their

black box for instantaneous signaling, preventing a direct
conflict with relativity.
Let NS denote the set of behaviors satisfying the no-

signaling constraints (7). It is not difficult to see thatNS is an
affine subspace of RΔ2m2

of dimension

dimNS ¼ 2ðΔ − 1Þmþ ðΔ − 1Þ2m2 ¼ ∶t; (8)

see, e.g., Pironio (2005). One can thus parametrize points in
NS using t numbers rather than the Δ2m2 numbers [or ðΔ2 −
1Þm2 taking into account normalization] necessary to specify
a point in the general probability space P. A possible
parametrization is given by the set of probabilities
fpðajxÞ; pðbjyÞ; pðabjxyÞg, where a; b ¼ 1;…;Δ − 1 and
x; y ¼ 1;…; m. There are indeed t such probabilities and
their knowledge is sufficient to reconstruct the full list of
pðabjxyÞ for any a, b, x, and y. Seen as a subset of Rt, the
no-signaling set is thus uniquely constrained by the
Δ2m2 positivity constraints pðabjxyÞ ≥ 0 (which have to
be reexpressed in terms of the chosen parametrization).
In the case of binary outcome (Δ ¼ 2), an alternative

parametrization is provided by the 2mþm2 correlators
fhAxi; hByi; hAxByig, where

hAxi ¼
X

a∈f%1g
apðajxÞ; hByi ¼

X

b∈f%1g
bpðbjyÞ; (9)

hAxByi ¼
X

a;b∈f%1g
abpðabjxyÞ; (10)

and we assumed a; b ∈ f−1; 1g. Joint probabilities and
correlators are related as pðabjxyÞ ¼ ½1þ ahAxiþ bhByiþ
abhAxByi'=4. Thus an arbitrary no-signaling behavior must
satisfy 1þ ahAxiþ bhByiþ abhAxByi ≥ 0 for all a, b, x, and
y. See Bancal, Gisin, and Pironio (2010) for a more general
definition of correlators for the Δ > 2 case.
A particular subset of interest of NS in the Δ ¼ 2 case is

the one for which hAxi ¼ hByi ¼ 0. We refer to this set as the
correlation space C. In terms of the m2 correlators (10), an
arbitrary point in C is constrained only by the inequalities
−1 ≤ hAxByi ≤ 1. Bell inequalities that involve only the
quantities hAxByi, such as the CHSH inequality, are called
correlation inequalities.

2. Local correlations

A more restrictive constraint than the no-signaling con-
dition is the locality condition discussed in the Introduction.
Formally, the set L of local behaviors is defined by the
elements of P that can be written in the form

pðabjxyÞ ¼
Z

Λ
dλqðλÞpðajx; λÞpðbjy; λÞ; (11)

where the (hidden) variables λ are arbitrary variables taking
value in a space Λ and distributed according to the probability
density qðλÞ and where pðajx; λÞ and pðbjy; λÞ are local
probability response functions for Alice and Bob, respectively.
Operationally, one can also think about λ as shared random-
ness; that is, some shared classical random bits, where Alice
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[the inequalities pðabjxyÞ ≥ 0] using the same polytope
algorithms that allow one to list the facets of L given its
vertices. The vertices of L, the local deterministic points dλ,
are clearly also vertices ofNS (since they cannot be written as
a convex combination of any other behavior). All other
vertices of NS are nonlocal.
The geometry of the no-signaling set and its relation to L is

particularly simple for the Δ ¼ 2, m ¼ 2 Bell scenario. In this
case, the no-signaling behaviors form an 8-dimensional sub-
space of the full probability space P. The local polytope
consists of 16 vertices, the local deterministic points, and 24
facets. Sixteen of these facets are positivity inequalities and
eight are different versions, up to relabeling of the inputs and
outputs, of the CHSH inequality. The no-signaling polytope,
on the other hand, consists of 16 facets, the positivity
inequalities, and 24 vertices. Sixteen of these vertices are
the local deterministic ones and eight are nonlocal vertices, all
equivalent up to relabeling of inputs and outputs to the
behavior

pðabjxyÞ ¼
!
1=2; if a⊕b ¼ xy;
0; otherwise;

(36)

which is usually referred to as a PR box. It is easily verified
that the PR box violates the CHSH inequality (4) up to the
value s · p ¼ 4 > 2, the algebraic maximum. In the language
of games, this means that the CHSH game can be won with
probability pCHSH

win ¼ 1. There exists a one-to-one correspon-
dence between each version of the PR box and of the CHSH

inequality, in the sense that each PR box violates only one of
the CHSH inequalities. The PR box was introduced by
Khalfin and Tsirelson (1985), Rastall (1985), and Popescu
and Rohrlich (1994). Since the maximal quantum violation of
the CHSH inequality is 2

ffiffiffi
2

p
, it provides an example of a no-

signaling behavior that is not quantum, implying that in
general Q ≠ NS. The relation between L, Q, and NS in
the Δ ¼ 2, m ¼ 2 case is represented in Fig. 4.
The complete list of all no-signaling vertices is also known

in the case of two inputs (m ¼ 2) and an arbitrary number of
outputs (Barrett, Linden et al., 2005) and in the case of two
outputs (Δ ¼ 2) and an arbitrary number of inputs (Jones and
Masanes, 2005; Barrett and Pironio, 2005). In both cases, the
corresponding nonlocal vertices can be seen as straightfor-
ward generalizations of the PR box.

D. Multipartite correlations

Although we focused for simplicity in the preceding
sections on Bell scenarios involving n ¼ 2 systems, most
of the above definitions and basic results extend straightfor-
wardly to the case of an arbitrary number n > 2 of systems.
For instance, in the tripartite case a behavior pðabcjxyzÞ is no
signaling when

X

c

pðabcjxyzÞ¼
X

c0
pðabc0jxyz0Þ ∀ a;b;x;y;z;z0 (37)

and similar relations obtained from permutations of the
parties; a behavior is local if it can be written as a convex
combination of a finite number of deterministic behaviors
dλðabcjxyzÞ; Bell inequalities correspond to faces of the
corresponding polytope, and so on. Next we discuss a few
notable results obtained in the multipartite case. Note that
many references cited in the previous sections also contain
results for more than two parties.
As in the bipartite case, one can consider Bell inequalities

that involve only full correlators in the case where all
measurements have binary outcomes. In the n ¼ 3 case, for
instance, such an inequality would involve only terms of the
form hAxByCzi ¼

P
a;b;c¼$1abcpðabcjxyzÞ, and similarly

for more parties. All correlation Bell inequalities with
m ¼ 2 inputs have been derived by Werner and Wolf
(2001b) and Zukowski and Brukner (2002) for an arbitrary
number n of parties. There are 22

n
such inequalities (with

redundancies under relabeling) which can be summarized in a
single, but nonlinear inequality. Notable inequalities that are
part of this family are the inequalities introduced by Mermin
(1990a) and further developed by Ardehali (1992) and
Belinskii and Klyshko (1993). In the case n ¼ 3, the
Mermin inequality takes the form

jhA1B2C2iþ hA2B1C2iþ hA2B2C1i − hA1B1C1ij ≤ 2: (38)

It is associated with the Greenberger-Horne-Zeilinger (GHZ)
paradox (see Sec. II.E) in the sense that correlations that
exhibit the GHZ paradox violate it up to the algebraic bound
of 4. Werner and Wolf (2001b) also investigated the structure
of the quantum region in the full correlation space. In
particular, it was shown that the quantum bound of all

FIG. 4 (color online). A two-dimensional section of the no-
signaling polytope in the CHSH scenario (m ¼ Δ ¼ 2). The
vertical axis represents the CHSH value S, while the horizontal
axis represents the value of a symmetry of the CHSH expression
S0 (where inputs have been relabeled). Local correlations satisfy
jSj ≤ 2 and jS0j ≤ 2. The PR box is the no-signaling behavior
achieving the maximum CHSH value S ¼ 4. Tsirelson's bound
corresponds to the point where S ¼ 2

ffiffiffi
2

p
, i.e., the maximum

CHSH value that a quantum behavior can achieve.
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