

ATLAS Detector Upgrade

Mei Zhao Institute of high energy physics, CAS

ON BEHALF OF THE ATLAS CHINESE CLUSTERS

2024.11.13-17, QINGDAO

HL-LHC Upgrade

HL-LHC upgrade:

- Instantaneous luminosity will be up to 7.5×10^{34} cm⁻²s⁻¹ which increases by a factor of 7.
- Average interactions per bunch crossing ~1.6 vertex/mm will increase from 50 to 200.
- Particle density and radiation levels increase by an order of magnitude (radiation >10¹⁵n_{eq}/cm²).

> Higher Requirement of detectors:

- Increased hit density : high granularity
- ✓ Increased data rate: improved readout and triggering
- ✓ Increased radiation levels: higher radiation tolerance
- ✓ Pile-up issues: quick response of hits

ATLAS Phase-2 Upgrade

- All silicon with at least 9 layers up to |n| = 4
- Less material, finer segmentation

Upgraded Trigger and Data Acquisition System

- Single Level Trigger with 1 MHz output
- Improved 10 kHz Event Farm

HGTD detector: High Granularity Timing Detector LGAD detector, high granularity and precise timing

information

Electronics Upgrades

- On-/off-detector electronics
 upgrades of LAr Calorimeter, Tile
 Calorimeter & Muon Detectors
- 40 MHz continuous readout with finer segmentation to trigger

Other upgrades

New Muon system

RPCs, sMDTs, and TGCs

Inner barrel region with new

- Luminosity detectors (1% precision)
- HL-ZDC (Heavy Ion physics)

ATLAS Phase-2 Upgrade

Chinese Clusters: IHEP, USTC, NJU, SDU, Tsinghua, SJTU

Contributions:

ITK: IHEP, Tsinghua

10% strip barrel modules
(> 1000 modules, ~10m² of sensor surface)
500@IHEP / 500@RAL (UK)

HGTD: IHEP, USTC, NJU, SDU, SJTU

100% LGAD sensor (90% IHEP + 10% USTC) LGAD sensor testing(IHEP, USTC, SJTU)
50% ASIC testing (IHEP)
~33% flex tail (SDU)
44% detector assembly (34% IHEP + 10% USTC)
100% front-end electronics board (IHEP +NJU)
>16% high-voltage electronic systems (IHEP+ SDU)
Software and performance (USTC, IHEP) Muon: USTC, SDU, SJTU ~900 readout panels 72 gas gaps 360 singlets ~5000 FEE production and test

ATLAS Inner Tracker (ITk) Upgrade

ATLAS Inner Tracker (ITk) Upgrade

China ITk Strip Detector Contribution

China contribution(IHEP-Tsinghua)

- China (IHEP/Tsinghua) deliver 10% strip barrel modules (> 1000 modules, ~10m² of sensor surface)
 - 500@IHEP / 500@RAL (UK)

Recent activities

- High performance strip detector module production
- Radiation hard sensor and readout ASIC study
- Complex silicon detector system integration

ATLAS DETECTOR UPPGRADE, MEI ZHAO

IHEP as Module Production Site

ITk Strip Module Production Procedure

Calibration of glue amount

Glue Robot

> Well defined module production steps to ensure High Quality Modules

Standard Operating Procedure system be developed at IHEP for local production http://atlasitk.ihep.ac.cn

- Accessible to PC and Tablets with internal network
- All SQ 29 steps have been implemented in SOP

Step Number Qualification Ster **Review End Date** Sensor Storage abod: 2021_06_1 PB Reception PB E tests 6.3 PB Vis Insp PB Storage 8.2 Storage + shipping of glue 8.3 Assembling hybrid 84 Glue weight measurements Bonding procedures: hybrids Thermal Cycling Single Module Electrical Test Shipping modules Cleanroom standards ASIC Compliance & Handling Bond Pulling Procedures hed: 2021-12-03 Module Reception shed: 2022-01-25 **ATLAS**

Metrology of glue thickness

ul teste

Pull force test

Wire bonding

ITK Module production

>10 prototype modules, be assembled and shipped to CERN

PPA x3 (1LS + 2SS)

PPB x5 (LS)

ATLAS

ATLAS DETECTOR UBGRADE, MEI ZHAO

ITK Module production

China-UK cluster, Shi Xin coordinated the development of 50% of the barrel track detectors

Two FTEs from IHEP/Tsinghua based at RAL(UK)

•Contributed to RAL site module production and stave loading

- Assembled and tested over 20 prototype modules at RAL
- •Lead effort for Cold Noise investigation
- Participate in module test beam results analysis
- •Module stencil design and distribution
- •Coordinate ASIC and power board distribution

ATLAS DETECTOR UPGRADE, MEI ZHAO

ITK Sensor Irradiation Study

Sensor characterization at IHEP

- I-V, C-V, to check if any early breakdown
- CCE (Charge Collection Efficiency)

Proton irradiation of strip mini-sensor be carried out at CSNS for quality assurance (QA) site

- 80 MeV proton fluence up to $1.6 \times 10^{15} n_{eq}/cm^2$
- Developed temperature and humidity control chamber

Promote CSNS as a collaborative group certified sensor/ASIC radiation research site

ITK ASICs Design and Study

Contributed to design and verification of ABCStar

- Design of several digital blocks
- Build up the UVM setup for chip verification
- Completed ABCStarV0 single chip test
- ASICs TID with X-ray machine at IHEP

Irradiation test of ASICs at CSNS

- SEE test of ABCStarV1, HCCStarV1
- SEE test of module level chip set, BETSEE

ATLAS DETECTOR UPGRADE, MEI ZHAO

ATLAS High Granularity Timing Detector (HGTD) Upgrade

The High Granularity Timing Detector (HGTD) be placed in front of the Liquid Argon end-cap calorimeters , will add precision timing in the very forward region (2.4 < $|\eta|$ < 4.2) to complement the ITk and to further enhance the pile-up mitigation at the HL-LHC.

HGTD detector

> The High Granularity Timing Detector (HGTD) is designed to provide precise timing information due to increased pile-up in HL-LHC.

- ~3.6 million 1.3×1.3 mm² pixels(channels)
 - 6.4 m² active area, 8032 modules
- Time resolution target
 - **30-50 ps /track**
 - 35-70 ps/hit up to 4000fb⁻¹
- Luminosity measurement
 - Count number of hits at 40 MHz (bunch by bunch)
 - Goal for HL-LHC: 1% luminosity uncertainty

Active region

- z $\approx \pm 3.5$ m from the nominal interaction point
- Total radius: 11cm < r < 100 cm
- Active detector region: $2.4 < |\eta| < 4.0$

High Granularity Timing Detector (HGTD)

China contribution

- 100% LGAD sensor (90% IHEP + 10% USTC)
- 44% detector assembly (34% IHEP + 10% USTC)
- **100%** front-end electronics board (IHEP +NJU)
- ~33% flex tail (SDU)
- 50% ASIC testing (IHEP)
- >16% high-voltage electronic systems (IHEP+ SDU)
- Software and performance (USTC, IHEP)

Recent activities

- LGAD sensor pre-production and performance testing
- ASIC testing system build and testing
- Sensor/ASIC hybridization and thermal cycle testing
- Module flex and flex tail design, fabrication, testing
- Module assembly and loading
- Demonstrator build and testing
- PEB 1F design and testing
- Test beam testing and data analysis

ATLAS HGTD sensor

➤LGAD sensors for HGTD project: ~21000

•IHEP design:90%	Pre-production	Wafers		Sensors		
•USTC design:10%		IHEP-IME	USTC-IME	IHEP-IME	USTC-IME	Total
Sensor pre-productions finished in 2024 – IHEP and USTC produced	Fabricated	90	27	4680	1404	6084
 comfortably enough sensors for HGTD needs. Sensors be delivered to HGTD group and Data be uploaded to DB. 	Passing preproduction requirements	52	13	1702	208	1910
 HGTD group(CERN, JSI, IHEP, USTC, USP) testing results show that the sensors properties fulfill HGTD specification. Production Readiness Review passed on July 25, 2024, and final production start. 	Pre-production with UBM, diced and tested by HGTD	23	5	789	118	907

IHEP-IME

HGTD Sensor testing

Sensor measurements by IHEP and USTC group addressed key questions in preparation of the sensor PRR (pre-/post- irradiation)

- 15x15 probe card and automatic testing of large array sensors to assess uniformity, sensor quality control
- Charge collection and time resolution with beta source
- Test beam data-taking and analysis
- QC-TS massive test: system development and tests at IHEP and USTC

Manual probe station w/ needle probe card

Semi-auto probe station for production QC

HGTD sensor performance

The 15x15 array sensors(IHEP+USTC) have good IV performance and uniformity

Breakdown voltage deviation for 225 pads is less than 5% :

 $\mathsf{RMS}(\mathsf{V}_{\mathsf{bd},\mathsf{pad}})/\!\!<\!\!\mathsf{V}_{\mathsf{bd},\mathsf{pad}}\!\!>\!<5\%$

The ratio of the maximum and minimum leakage current is less than $3(Pad leakage current spread at 0.8V_{bd})$, peak to peak within a factor of 3X.

Timing resolution: The timing resolution is better than 35ps(50ps) before(after) irradiation(fluence 2.5e15 n_{eq}/cm²)

- **Efficiency : 95%~100% for sensors before and after irradiation**
- fulfill HGTD project requirement.

V_{BD} Map

HGTD module

- Sensor/ASIC hybridization and thermal cycle testing
- Module flex and flex tail design, fabrication, testing
- Module assembly , testing and loading to Support unit
- Module FDR passed, green light to pre-production

HGTD Module

> Hybridization be done with pre-production sensors and ASIC(Altiroc3 and AltirocA).

> Module assembly(hybrids with module flex)

- IHEP: >50 modules, USTC: 5 modules
- Thermal cycling testing be done on many modules(IHEP, USTC).
- Simulation about thermal cycling issues be done to check the module assembly process.
- The work make it clear that thick sensors(775um,un-thinned) is good for thermal cycle issues. The problem is overcome.

		Туре	Sensor	Flip chip bonding	Metrology	WB	Charge scan validation	Radioactive source test	Thermal cycling
	DM001	Digital	-	-	Assembled Manually	USTC	Done	-	Done
USTC	DM002	Digital	-	-	-	USTC	Done	-	Not yet
	FM001	Full	IHEP-IME pre-production	NCAP	Done	USTC	Done	Done	60->75 cycles
	FM002	Full	USTC-IME Pre-production	IFAE	Done	USTC	Done	Not yet	Not yet
A Maria	FM003	Full	USTC-IME Pre-production	IFAE	Not yet	USTC	Done	Not yet	Not yet

HGTD

	Thermal Cycle Performance of Unthinned Hybrids with no initial problems									
Assembly Lab	Module	Hybrid	Disconnected bumps up to 30 TC	Number of cycles for first disconnect	Bumps first disconnected	Total # cycles survived				
IHEP	FM028	0	0	75	1	60				
		1	0	120	1	105				
IHEP	FM029	0	0			180				
		1	0	75	4	60				
IHEP	FM031	0	0			180				
		1	0	120	1	105				
IHEP	FM033	0	0	75	1	60				
		1	0			180				
IHEP	FM034	0	0	60	1	30				
		1	0			180				
IHEP	FM035	0	0			150				
		1	0			150				
IHEP	FM036	0	0			150				
		1	х	х	x	x				

IHEP

HGTD Module Flex and Flex tail

Module Flex: (IHEP, NJU)

• Module flex be designed, fabricated and distributed to HGTD groups for module assembly

Flex tail: (SDU)

- Flex tail prototypes production & tests: width\length\impedance\voltage drop; Solve the thickness issue.
- First 16 Flex tails with longer lengths are produced, tested and had been sent to CERN. Be used in Demonstrator to validate the detector performance

Module Flex

Flex tail

HGTD module assembly and loading

Module loading to support unit

- IHEP:2 detector unit with 15/12 modules, USTC: 1 detector unit with dummy modules
- 2 ALTIROC3 detector unit be loaded by IHEP for HGTD demonstrator
- Delivered to CERN, and passed reception tests
- Module assembly and loading system in IHEP and USTC are ready for module pre-production.

Module assembly and loading @IHEP

Detector unit

Module assembly and loading @USTC

HGTD Electronics

- IHEP and NJU developed 1st Peripheral Electronics Boards at early 2024
 - PEB 1F, support to 52 modules power supply, control and signal readout
- > PEB testing be carried out by IHEP, NJU and CERN, no problem shows
 - IR drop simulation and measurements to make the output of bPol12v satisfy the requirement of ALTIROC,
 - Power integrity analysis, Signal integrity analysis, Reliability testing with full loads, Tests with demonstrator
- High-precision high-voltage power supply be produced and tested(IHEP and SDU)
 - Passed the FDR review and is ready for mass production

HGTD ASIC

Probe station and lab

- ASIC wafers will be 100% sent to China for polyimide layer deposition, 50% UBM/thinning/dicing at China (IHEP/NCAP)
- > ASIC test and multi-chip testing system setup:
- ✓ Together with Chinese company, built the probing testing system for ASIC wafer testing(IHEP)
 50% ASIC to IHEP/Khecwitt for probing. Now probe card is ready, software ongoing
- Build a test system for multi-chip testing, beam testing etc; (SDU)
 Current status: i2c configuration , tot& toa readout, vth &vthc scanning

Probe card for ASIC testing

Joint test with demonstrator at CERN

Build the demonstrator at CERN (IHEP and NJU)

- With full chain from module to DAQ server (PEB 1F + 42 modules in 3 columns + Flex tails + HV + cooling)
- > IHEP and NJU played important role testing demonstrator system at CERN
 - Demonstrator were measured with 42 modules, no major problem
 - 1st time to demonstrate that in system level

HGTD

HGTD Beam Test

- Participate in the sensor and Module level Test beam(DESY, SPS) and data analysis(IHEP, USTC, NJU)
- Results showed that Individual channels can reach ~47ps level timing resolution. The efficiency is larger than 98%.

Muon system

Muon system upgrade

> A new generation RPC system with thin-gap RPCs in the barrel inner(BI) region

- Current: doublet gas gaps of $2mm \rightarrow$ HL-LHC: triplet gas gaps of 1mm
- Nine layers instead of six and expected to increase muon trigger acceptance from 70% to about 96%

► BI-RPC:

- Max size of singlets: 1820mm*1096mm
- 9000 front-end boards
- New Front-End Electronics
 - Integrates TDC into an ASIC chip
 - Use Manchester encoding to highly improve data transmit speed
- > New readout design:
- η - η readout for 2D information

With new BI Layer

Singlet= 1 gas gap + 2 readout panels

Muon system upgrade

China contribution(USTC-SDU-SJTU)

- Mass production of 912 readout panels and 72 gas gaps
- Assembly of 360 singlets
- Manufacture and test of about 5000 front-end electronic boards

Recent activities:

- Readout panel production
- RPC gas gap production
- Singlet assembly work
- Data acquisition system

Readout panel production

Components:

- Two PCBs: strips + GND panel (0.4mm thick, size: 1705×1072 mm² or 1705×890 mm²)
- Honeycomb core: 3mm thick
- Glue: Araldite 2011 (~180g /side)

Key technologies and challenges

- How to ensure proper alignment among the ground, strip panel, and paper honeycomb?
 - All layers (2 PCBs + honeycomb) aligned to two reference bars fixed on the marble table
- How to apply sufficient pressure uniformly over such a large area (1705 x 1072 mm²)?
 - Vacuum-bag-based readout panel production method

~300 readout panel prototypes have been assembled

• All satisfied the specifications (Flatness: < 0.1 mm in 7cm x 7cm matrix)

ATLAS DETECTOR UPGRADE, MEI ZHAO

Gas-gap production

Gas gap components:

- High Pressure Laminates plates (HPL)
- Graphite electrodes
- Insulating PET foil
- Frames and spacers
- HV/Ground contact

Key technologies and challenges

- Graphite coating
 - ✓ Surface resistivity shall be 350 \pm 100 kΩ/ \Box
- PET foiling
 - ✓ Absence of bubbles > 2-3 mm² between PET foil and graphite layer
- Closed gas gap with good tightness and flatness
 - \checkmark The flatness of the gas gap is guaranteed by spacers and frames.
- Linseed oiling
 - \checkmark To improve the smoothness of the electrode surface
 - ✓ Ensure that the final linseed oil coating is thin and well polymerized.
- 5 RPC gas gap (130 cm x 68 cm) are built for R&D of the assembly procedure
 - The HV test results are very promising

Gas-gap production

Platform

Spacer pickers Glue syringe

Graphite spraying system

Graphite coating

PET foiling: Mirror-like surfacing

Attach the spacers on the bakelite

Gas gap tightness test

Linseed oiling

ATLAS DETECTOR UPGRADE, MEI ZHAO

Singlet assembly work

- > 3 BIS RPC chambers were assembled at CERN to exercise the assembly procedure
 - Readout panels produced by USTC
 - Gas gaps produced by Italy

Data acquisition system

- New front-end electronics (FEE) with a specialized Manchester encoding for data transmission
- > DAQ functions:
 - Provide 40MHz clock for FEE
 - 144 channels decode
 - Self-trigger & data selection
 - Data package & upload
- Decoder design goals
 - Decode rate: 560Mbps 640Mbps
 - Decode latency:< 100ns
 - BER < 0.1%

Summary

ATLAS upgrade require its detector to cope with the Phase-II operational conditions with an average of up to 200 pile-up events, the corresponding data rates and an unprecedented radiation environment.

China clusters contribute to several sub-detectors of ATLAS

Inner Tracker (ITk) : strip barrel modules assembly

High Granularity Timing Detector (HGTD): sensor, module assembly, PEB, etc.

Muon Resistive-plate Chambers (RPC) : readout panel prototypes, Gas-gap production, Singlet assembly, etc.

People from China clusters take leading roles and participated in many works.

Significant progress be made by us during this year in the ATLAS detectors.