

ALICE upgrade

Zhongbao Yin (for the ALICE China Team) Central China Normal University

The 10th China LHC Physics Workshop, Nov. 14-17, 2024, Qingdao

ALICE upgrade programs

LS4: ALICE3

FoCal – Forward Calorimeter

Main goal:

- measurement of direct photon production at forward rapidity in pp and pPb to probe gluon density at small x
- constrain gluon nuclear PDF at small Bjorken-x (x<10⁻⁴): structure of protons and nuclei not well constrained experimentally

Q (GeV)

60

p₋ (GeV/c)

70

≁p-Pb

p-Pb

p-Pb

FoCal detector

FoCal-E

Si-W calorimeter with effective granularity $\approx 1 \text{mm}^2$

FoCal-E module

- 20 layers: W(3.5 mm ≈ 1X₀) + silicon sensors
- Two types: Pads (LG 1x1 cm²) and Pixels (HG, 27x29 μm²)
- Pad layers provide shower profile
- Pixel layers provide position resolution to resolve shower overlaps
- 22 FoCal-E modules stacked vertically to form FoCal-E

FoCal-H

Hadronic spaghetti calorimeter

- Copper capillary tubes, length 110 cm $\sim 7\lambda_1$
- 1 mm scintillating fibers inside
 2.5 mm Cu tubes
- Bundle fibers readout with SiPM

FoCal–H prototype, 9 x (6.5 x 6.5 x 110 cm³)

- full area coverage with 2 x 3 strings of 15 ALPIDE sensors
- 90 ALPIDE sensors per pixel layer
- 44 pixel layers, 3960 ALPIDE sensors

Assembly procedure of pixel half layer

See Jun Liu's talk, Friday 14:00-14:15₆

The 10th China LHC Physics Workshop

Pixel Layer Readout Chain

See Poster by Shoulong Lin

Data rate (2 pixel layers): 65 - 320 Gbps

- The Radiation tolerant FPGA readout system
 - SRAM-based main Xilinx FPGA for readout
 - FLASH-based aux IGLOO2 FPGA for radiation mitigation
 - Triple Modular Redundancy and scrubbing at SRAM FPGA

- Pixel layers have ALPIDE in IB (high data rate) mode and OB (low data rate) mode
- Similar readout structure to ITS2 readout system but different detector layout

FoCal beam test results

FoCal prototype

Pixel layer prototype

• Shower width of 1 mm achieved

JINST 19 (2024) P07006

80

Ē

FWHM

width

Showel

2024/11/17

ITS3

- 7 layers (3 IB + 4 OB) of pixel layers
 - ALPIDE MAPS
 - 12.5G pixels
 - 10 cm²

- 3 truly cylindrical pixel layers
 - 6 ultra-thin wafer-size curved sensors
 - Supported by carbon foam ribs
 - Air cooling
- Material budget reduced to 0.09% X₀ instead of 0.36% X₀ per layer
- Smaller radius of the innermost layer: 19 mm instead of 23 mm

10

 Pointing resolution improved by a factor of two compared to ITS2 at p_T up to 5 GeV/c

Status of R&D on ITS3

Stitched wafer-scale MAPS — Engineering Run 1 (ER-1)

- First MAPS for HEP using stitching
- one order of magnitude larger than previous chips
- based on TPSCo 65 nm technique
- "MOSS": 14 x 259 mm², 6.72M Pixels (22.5 x 22.5 and 18 x 18 μm²)
- conservative design, different pitches
- "MOST": 2.5 x 259 mm², 0.9 M Pixels (18 x 18 μm²)
- more dense design, different power granularity
- Baby-MOSS (single stitch ~ reticle-sized)
- Plenty of small chips (like MLR1)

2024/11/17

Engineering Run 1 wafer with various dies

MOSS characterization Yten, Yten, Yten, Yten, Yten, Yten, Yten, Yten, Yten, Yten, H501948-01E HOSS-2

MOSS bonded to carrier board

- 10 Repeated Sensor Units (RSUs) stitched together: 259 mm x 14 mm per sensor
- 2 pixel pitches (18 μ m and 22.5 μ m) and 5 front-end variants, a total of 6.72 M Pixels per chip
- Chip is operational and reaches full efficiency .
- Yield currently being studied in detail, main failure • mechanism expected to be mitigated in the next submission

Test system

There is an operational margin after irradiation

Stitched Wafer-Scale MAPS — MOSAIX

Design of the final **full size**, **full** functionality sensor called MOSAIX is

ongoing

- Modular design:
 - Sensor divided into 5 segments (allowing to use 3, 4 or 5 segments for layers 0, 1 and 2, respectively)
 - Each segment is constituted of **12** Repeated Sensor Units (RSUs)
 - Each RSU is divided in turn into **12** fully independent tiles (powering, control and readout)
- Interfacing from the Left End Cap (LEC) and Right End Cap (REC)
 - Powering from both sides
 - Control and readout from the LEC only
- Yield target: >98% of pixels active
- Submission to foundry planned for the end of ۲ 2024

TILE TILE TILE

TILE | TILE | TILE

21.666 mm

4.5 mm

TILE TILE TILE

TILE TILE TILE

 $\langle \rangle$

1.5 mm

Rφ (azimuthal direction) olded around beam-pipe

SUPPLIES-

I/Os SUPPLIES

I/Os

1/0s +

SUPPLIES:

Unique Physics goals of ALICE3

 $rac{1}{N_{D^0}}rac{d\Delta\phi}{d\Delta\phi}$ (rad⁻¹)

ounts/(5 MeV/c²)

The 1(

2000-

1800

1600

1400

1200

• Access to temperature as function of time

- → high-precision di-electron mass spectra, p_{T} dependence, elliptic flow
- Understanding thermalization in the QGP
- → direct access to charm diffusion: D-Dbar azimuthal correlations
- → degree of thermalization of beauty: high-precision beauty measurements
- → approach to chemical equilibrium: multi-charm hadrons
- Fundamental aspects of the QCD phase transition
- → net-baryon and net-charm fluctuations
- → mechanism of chiral symmetry restoration in the QGP: di-electron mass spectrum
- Laboratory for hadron physics
- → hadron-hadron interaction potentials
 → explore nature of exotic hadrons (tetraquarks)

ALICE3 strategy and detector concept

- •Novel and innovative detector concept
- Compact and lightweight allsilicon tracker
- Retractable vertex detector
- Extensive particle identification system (TOF, RICH, MID)
- Large acceptance
- Fast read-out and online processing

14

Tracker - Vertex detector

Close

25

mm

45 mm

Radiation hardness: 10¹⁶ 1 MeV n_{eq}/cm²

wafer-size, ultra-thin, curved, MAPS sensor

• 5 mm radial distance from interaction point (inside beam pipe, retractable configuration)

• unprecedented spatial resolution: $\sigma_{pos} \approx 2.5 \ \mu m$

... and material budget ~ 0.1% X₀ / layer

Vertex Detector R&D:

- Sensor design (China involvement)
- services integration
- study of protection between primary and secondary vacuum
- impact of vacuum on components, wire bonding, glued parts

Open

15 mm

45 mm

Middle Layers of Inner Tracker

	Layer	Material	Intrinsic	Barrel layers		Forward disks			
		thickness $(\%X_0)$	resolution (µm)	$\frac{\text{Length }\Delta z}{(\text{cm})}$	Radius (r) (cm)	$\frac{\text{Position } (z)}{(\text{cm})}$	<i>R</i> _{in} (cm)	R _{out} (cm)	
	0	0.1	2.5	50	0.50	26	0.50	2.5	
VD	1	0.1	2.5	50	1.20	30	0.50	2.5	
	2	0.1	2.5	50	2.50	34	0.50	2.5	
·	3	1	10	124	3.75	77	5	35	
ML	4	1	10	124	7	100	5	35	
	5	1	10	124	12	122	5	35	
	6	1	10	124	20				

R&D on Middle Layers:

- studying various options for ultra-light layers, leveraging on ITS3 technology
- benefits on tracking of soft electrons and of charged hyperons (\mathcal{Z} -, Ω -)

Options with ultra-light curved sensor layers:

ML:

- Total surface to be covered: ~6.4 m²
- Total sensor surface: ~6 m²
- Baseline module size: ~ 25 cm²
- 3650 modules

Radiation hardness: $2x10^{14}$ 1 MeV n_{eq}/cm^2

Tracker – Outer tracker

Layer	Det.	Material	Intrinsic	Barrel layers		Forward	disks	
		thickness $(\%X_0)$	resolution (µm)	Full length (Δz) (cm)	Radius (r) (cm)	Position ($ z $) (cm)	$\frac{R_{\rm in}-R_{\rm out}}{(\rm cm)}$	
6	IT/OT	1	10	1×124	20	150	5-68	
7	OT	1	10	1×129	30	180	5-68	
8	OT	1	10	2×129	45	220	5-68	
9	OT	1	10	2×129	60	260	5-68	
10	OT	1	10	2×129	80	300	5–68	
11	OT	1	10			350	5-68	

50 m² silicon pixel detector based on MAPS

- large pseudorapidity coverage: ± 4
- compact: $R_{out} \approx 80$ cm, $z_{out} \approx \pm 400$ cm
- high-spatial resolution: $\sigma_{pos} \approx 5 \ \mu m$ (req. < 10 μm)
- very low material budget: $X/X_0 \leq 1\%$ per layer
- low power: ≈ 20 mW/cm²
- Sensor size: ~3.2x2.5 cm²
- Module of 2x4 sensors: 12.88x5.04 cm²
- 8308 modules (10750 modules to be produced)

R&D focuses on

Module, stave and barrel design, air cooling system, module assembly for industrial production

Endcap disks: double-sided layout of sensor modules

Particle identification: TOF

	Inner TOF	Outer TOF	Forward TOF disks
Radius (m)	0.19	0.85	0.15 to 1.0
z range (m)	-0.62 to 0.62	-3.50 to 3.50	±3.70
Area (m ²)	1.5	37	6
Acceptance	$ \eta $ < 1.9	$ \eta < 2$	$2 < \eta < 4$
Granularity (mm ²)	1×1	5×5	1×1 to 5×5
Hit rate (kHz/cm ²)	200	15	280
Material thickness ($\%X_0$)	1 to 3	1 to 3	1 to 3
Power density (mW/cm ²)	50	50	50
Time resolution (ps)	20	20	20

Sensor technologies under study:

- **CMOS LGAD (baseline):**
 - integration of sensor and readout in a single chip
 - easier system integration and significant cost reduction (save 11.5 MCHF)
- **Conventional LGADs (fallback)**: R&D with very thin sensors shows a timing resolution of **22 ps** reachable
- Silicon Photon Avalanche Diodes (SPADs):
 - A timing resolution of 20-25 ps measured
 - Pursued further only for outer TOF layers (radiation reg.)

- First prototype CMOS-LGAD with improved gain (~13), but still "thick" (50 μm)
- Preliminary time resolution of 75 ps, consistent with expectation for this thickness
- Good prospects to reach \sim 20 ps with thinned versions in preparation (25 and 15 μ m)

n-epi

deep

pwel

$\sigma_{\rm TOF} \lesssim 20 \rm ps$

Barrel TOF ($|\eta| < 2$)

- Outer TOF radius = 85 cm surface: 37 m², pitch: 5 mm
- Inner TOF, radius = 19 cm surface: 1.5 m², pitch: 1 mm Forward TOF (2 < $|\eta|$ < 4)
- Inner radius = 15 cm •
- Outer radius = 100 cm surface = 6 m^2 , pitch = 1 mm to 5 mm^{2024/11/17}

Plans of China Team for ALICE 3

- Inner Tracker
 - R&D of sensors for VD and ML
 - Design and characterization
 - Mass production of ML HIC modules if it is possible to produce in labs
 - R&D of the readout electronics
- TOF
 - R&D of high timing resolution LGAD
 - Design and characterization
 - Mass production of TOF modules
 - **R&D** of the readout electronics

Summary

- Intermediate upgrade for the LS3 will allow higher precision measurements:
 - ITS3: better pointing resolution, R&D is ongoing according to schedule
 - FoCal: prototypes being tested, very good results from beam test data
- Novel and innovative ALICE3 detector proposed for Run 5 & 6 to give better insight of the microscopic dynamics of the QGP
- China ALICE team will contribute to ALICE3 IT and TOF

Thanks a lot for your attention!

Backup

Stitched Wafer-Scale MAPS — MOSAIX — challenges

- Interdependencies and integration: 'stave on a chip'
- Fill factor above 94% 95%
 - No overlap zones (like in 'conventional' detectors)
 - Readout of data needs peripheral circuits, whose area and complexity increase with amount of data to move
- Power distribution
 - IR drops on the metals of the CMOS stack significant even with very low power
 - Complex segmentation in many independent domains that can be maintained off in case of short circuits
 - Switches and cross-domain signaling and protections
- Significant leakage
 - Large variations with process and temperature
 - Needed to devise mitigation techniques, e.g., library of low leakage standard cells
- Data transmission
 - Integrate 144 on-die transmission lines of 25 cm working at 160 Mb/s
 - High speed (10 Gb/s) wireline drivers for off-chip transmission

ALICE

FoCal energy resolution

FoCal timeline

	19	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029
	Q4	Q1 Q2 Q3 Q4	Q1Q2Q3 Q4	Q1Q2Q3Q4							
LHC		LS2		Run-3				LS3			Run-4
Lol											
R&D											
Test beams (SPS, DESY, KEK)											
TDR											
Final design											
Production, construction, test of module											
Pre-assembly, calibration with test beam (KEK)											
Installation and commissioning											
Contingency											
Global commissioning and physics data taking											

• Schedule:

2023: TDR 2023/2024: final design for production 2024-2027: production and calibration in beam 2027: installation

LHC run plan

Shutdown/Technical stop Protons physics Ions (tbc after LS4) Commissioning with beam Hardware commissioning

No LS5 but only EYETS

Particle identification: RICH

	barrel RICH	forward RICH disks
Radius (m)	0.9 to 1.2	0.15 to 1.15
z range (m)	-3.50 to 3.50	3.75 < z < 4.15
Surface (m ²)	28	9
Acceptance	$ \eta < 2$	$2 < \eta < 4$
Granularity (mm ²)	2×2	2×2

RICH specification: Cherenkov angle resolution < 6 mrad

Proximity focusing RICH layout

37 m² SiPM

Projective cylindrical bRICH layout

Ring-Imaging Cherenkov

- Extend PID reach of outer TOF to higher p_{T}
- aerogel radiator to ensure continuous coverage from TOF
- → refractive index n = 1.03 (barrel)
- → refractive index n = 1.006 (forward)
- silicon photon sensors
- R&D on monolithic photon sensors

Cherenkov angle of pions and protons: 5 mrad single photon resolution

2024/11/17

Muon ID detector

MID specification: pion rejection >96%

Absorber: a standard magnetic steel with a thickness varying from 70 cm to 38 cm
Baseline for charged particle detectors: scintillator bars + wave-length shifting fibers + SiPM

Technologies under study:

- scintillators + SiPM
- multi-wire chambers
- resistive plate chambers

	Absorber	MID layer 1	MID layer 2
Inner radius (m)	2.20	3.01	3.11
Outer radius (m)	2.90	3.02	3.12
Total length (m)	10	10	10.5
No. of sectors in z	9	10	10
No. of sectors in φ	1	16	16
Scintillator bar length (cm)	_	99.8	123.5
Scintillator bar width (cm)	_	5.0	5.0
Scintillator bar thickness (cm)	-	1.0	1.0

ALICE3 core cost (without labor and contingency)

- 170.2 MCHF for the baseline
- Fair share for China team with 15 M&O members
 - 2.7% compared to 1.5% core contribution up to now (ALICE1 & ALICE2)
 - 4.5 MCHF (about 36 MCNY)