QCD Energy Correlator at Colliders

Xiaohui Liu Beijing Normal University

> Nov 17, 2024 @ QingDao CLHCP2024

Outline **O** Review of the Energy Correlators **o** Collider Phenomenology **O** Features $\circ \alpha_s$ extraction **O** Top mass measurement O Heavy quark hadronization **O** Conclusions

Energy-Energy-Correlator (EEC)

Sterman, 1975 Bashman, et al. 1978

Energy-Energy-Correlator (EEC)

Sterman, 1975 Bashman, et al. 1978

- Construction of the second s
- **O** Energy weight suppresses the soft contamination
- **O** Infrared-collinear safe, perturbatively understandable
- Can be measured within jet, can use tracks to improve angular resolution Li et al., PRL 22

Energy-Correlators (ENC)

• Can be generalized to multiple pt correlation, a Collider CMB • Long/short wave physics \iff smaller/larger angular separations

Energy-Correlators (ENC)

 $\mathsf{ENC} = \frac{1}{\sigma} \left[d\sigma \sum \frac{E_1 E_2 \dots E_N}{O^N} \mathcal{M}(\{\theta_{ij}\}) \right]$

 $\propto \frac{1}{Q^N} \langle \mathscr{E}(n_1) \dots \mathscr{E}(n_N) \rangle_J$

$$\mathscr{E}(n) = \int_0^\infty dt \lim_{r \to \infty} T_{0\vec{n}}(t, \vec{n}r)r^2$$

detector represented by the light-ray operator

O A Dual description

• Measuring a "fundamental" quantity in QFT

Collider Phenomenology

Conformal collider physics: Energy and charge correlations

Diego M. Hofman^a and Juan Maldacena^b

^a Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544, USA ^bSchool of Natural Sciences, Institute for Advanced Study Princeton, NJ 08540, USA

$\mathscr{E}(n_1)\mathscr{E}(n_2) \sim \theta^{-1+\gamma}\mathcal{O}, \theta \ll 1, Q\theta \gg \Lambda_{OCD}$

Universal Scaling rule by conformal theory

Hofman, Maldecena, 2008

7

Derived using factorization for QCD by Dixon, Moult, Zhu, 2019

Collider Phenomenology

When Conformal meets Collider

Confirmed by Collider experiments, across a large range of energies

Collider Phenomenology **The Full Spectrum and Properties** 10 E

O Tracks for good angular resolution

• Different angles probe different physics@ $Q\theta$

Collider Phenomenology

d(Sum E

The Full Spectrum and Properties

- Can be understood by Dixon, et al., 2019 pQCD $\gamma = \int dx x^{3-1} P(x) dx$
- Striking phase transition from parton to free hadron

 $d\cos\theta \sim \theta d\theta \Longrightarrow \Sigma \propto \theta d\sigma$

Hofman, Maldecena, 2008 Komiske, Moult, Thaler, Zhu, PRL 23

O Intrinsic scale imprinted in the spectrum

Collider Phenomenology

Scaling behavior $\implies \alpha_s$ extraction

Revealing scales \implies top mass determination

Extension \implies **Heavy quark hadronization**

See An-Ping Chen's talk

Scaling behavior ENC $\propto \theta^{-1+\gamma(N+1)}$

$$\gamma(N+1) = \int_0^1 dx x^N P(x) dx$$
 Chen et al., 2020

 $\Delta/$

 $\propto \theta^{\gamma(4)-\gamma(3)} \sim \alpha_s(Q) \ln \theta + \dots$

- The ratio probes directly the quantum effect
- Slope is directly related to α_s

 Δ

$$\propto \theta^{\gamma(4)-\gamma(3)} \sim \alpha_s(Q) \ln \theta +$$

- **O** The ratio probes directly the quantum effect
- Slope is directly related to α_s

14

 Δ

$$\propto \theta^{\gamma(4)-\gamma(3)} \sim \alpha_s(Q) \ln \theta +$$

- **O** The ratio probes directly the quantum effect
- Slope is directly related to α_s

<u>ос</u> 201.6 201.6 201.6

CP5

00.95

0.9

<u>сс</u> 201.6 201.6 201.6

CP5

0.6

Ē1.05

6.0 **Bat**

 10^{-3}

1.2

0.8

Scaling behavior ENC $\propto \theta^{-1+\gamma(N+1)}$

$$\gamma(N+1) = \int_0^1 dx x^N P(x) dx$$
 Chen et al., 2020

 $\Delta / 2$

 $\propto \theta^{\gamma(4)-\gamma(3)} \sim \alpha_s(Q) \ln \theta + \dots$

- **O** The ratio probes directly the quantum effect
- Slope is directly related to α_s

16

$\alpha_{\rm s}$ extraction by the scaling behavior

			Summary of $\alpha_s(M_7)$		
NLO	•	NNLL		NNLO	O LO
Reference	√s (TeV)	Observable			CMS/
JHEP 06:018 (2020)	7, 8	W/Z cross sec.		-	
PLB 728:496 (2014)	7	tī cross sec.			- P
EPJC 79:368 (2019)	13	tī cross sec.			
EPJC 80:658 (2020)	13	tt differential			
PRD 98:092014 (2018)	13	tī _ substructure			
EPJC 73:2604 (2013)	7	R ₃₂			-
EPJC 75:288 (2015)	7	Inclusive jet		_	<u> </u>
EPJC 75:186 (2015)	7	3-jet mass			<u> </u>
JHEP 03:156 (2017)	8	Inclusive jet			-
EPJC 77:746 (2017)	8	Dijets (3D)		-	e
JHEP 02:142 (2022)	13	Inclusive jet			ى
arxiv:2312.16669 (2024)	13	Dijets (2D/3D)			-
CMS-PAS-SMP-22-015 (2024)	13	Energy correlator	S		—
CMS-PAS-SMP-22-005 (2024)	13	$\mathbf{R}_{\Delta\phi}$	-		
Prog. Theor. Exp. Phys. 083C	01 (2023 upd	ate) : World average	•	-	-
0.07 0.08	6 0	.09 0.1	0.1	1	0.12 0.13
					$\alpha_{s}(M_{z})$

NNLL from Chen et al. arXiv:2307.07510.

 $\alpha_s(m_Z) = 0.1229^{+0.0014(\text{stat.})+0.0030(\text{theo.})+0.0023(\text{exp.})}_{-0.0012(\text{stat.})-0.0033(\text{theo.})-0.0036(\text{exp.})}$

- Scaling vs NNLL (no NNLO yet)
- 4% error, already the most precise α_s extraction using jet substructures (~10%)

Top mass

- etc

Collider Phenomenology: weighing tops

Top mass scale in the E3C spectrum

Holguin et al, 2023 Xiao et al., 2024

Collider Phenomenology: weighing tops

 $m_t \sim m_W \sqrt{\zeta_t / \zeta_W}$

- Clean field definition, MS mass
- Call for precision calculation of E3C in top decay

Quarkonium Physics

- O regarded as an excellent place to study nonpert phenomenon for a long time
- How $c\bar{c} \rightarrow J/\psi$?
 - **ONRQCD:** encoded in $\langle \mathcal{O}_1 \rangle$, $\langle \mathcal{O}_8 \rangle$
 - O remains largely unknown: amount of energy released? Energy Distribution?

Quarkonium Physics

Probing Quarkonium Production Mechanisms with Jet Substructure

Matthew Baumgart^a,¹ Adam K. Leibovich^b,² Thomas Mehen^c,³ and Ira Z. Rothstein^{d1} ¹Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 ²Pittsburgh Particle Physics Astrophysics and Cosmology Center (PITT PACC) Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 ³Department of Physics, Duke University, Durham, NC 27708 (Dated: June 27, 2018)

Unlike light hadron fragmentation, $D_{q \rightarrow J/\psi}(z)$ dominated by perturbative radiation

Quarkonium Energy Correlator Chen, XL, Ma, PRL 2024, See An-Ping Chen's talk

 $\Sigma_{QEC}(\chi) \propto \frac{1}{\sigma_{J/\psi}} \int d\sigma_{J/\psi} \frac{E_i}{M} \delta(\chi - \chi_i)$

~ average energy at the angle χ

- Perturbative radiations depleted in the neighbor of J/ψ , due to the boost and dead cone effects
- An ideal place to look for hadronization energy

10⁰

(χ 202) 2

Quarkonium Energy Correlator Chen, XL, Ma, PRL 2024, See An-Ping Chen's talk

 10^{-2} $\Sigma_{QEC}(\chi) \propto \frac{1}{\sigma_{J/\psi}} \int d\sigma_{J/\psi} \frac{E_i}{M} \delta(\chi - \chi_i)$

 J/ψ

~ average energy at the angle χ

Sizable hadronization effect!! "See" the hadronization energy distribution

Conclusions

Chen, Monni, Xu, Zhu, PRL 2024 Lee, et al., PRL 2024

Hadronization in light quark **ENC** using QFT

XL, Vogelsang, Yuan, Zhu, 2410.16371

Understanding the NP transition in Energy Correlator, and its possible relation to the TMD.

Liu, XL, Pan, Yuan, Zhu, PRL 2023

 $x_B = 3 \times 10^{-3}, Q^2 = 25 \text{GeV}^2, \sqrt{s} = 105 \text{GeV}$ PROTON MV rcBK — GOLD MV rcBK ---- GOLD GBW -- PROTON GBW $\theta^2 \Sigma(Q^2,$ ---- PROTON Coll. — GOLD Coll. .5 🗕 🔟 PROTON PYTHIA82 🔟 GOLD FULL CGC 🗕 Normalized 0.5 $0.5 \quad 0.7 \quad 0.9 \quad 1.3$ 0.10.3

A Different Angle on the Color Glass Condensate

Physics

promising probe of the gluon saturation

Conclusions

$T(\zeta,\zeta_S,\zeta_A=m_t^2/p_{T,\,{ m jet}}^2)$ $p_{T,\, m jet}\in[500,525]\,{ m GeV}$ Pythia8. -0.25-0.50 ζ_S $\log_{10} \zeta$

Can motivate new pheno. applications/ for TeV and QCD/hadron physics

Scaling behavior $\implies \alpha_s$ extraction Revealing scales \implies top mass determination **Observables Extension** \implies **Heavy quark hadronization**

Thanks