Status and Perspective of The CEPC

Jianchun Wang (IHEP, CAS) For the CEPC Study Group

CLHCP, Nov 14-17, 2024, Qingdao

The Circular Electron Positron Collider (CEPC)

- □ The Higgs boson was discovered in 2012 by ATLAS & CMS, with a mass ~125 GeV.
- □ The CEPC was proposed right after the discovery, as an e⁺e⁻ Higgs / Z factory, aiming to start operation in 2030s.
- To produce Higgs / Z / W / top for high precision Higgs, EW measurements, studies of flavor physics & QCD, and probes of physics BSM.
- □ It is possible to upgrade to a *pp* collider (SppC) of \sqrt{s} ~ 100 TeV in the future.

CEP

Global HEP Consensus on Higgs Factories

The scientific importance and strategical value of e⁺e⁻ Higgs factories is clearly identified.

2013/2016: China Xiangshan Science Conference concluded that **CEPC is the beat approach** and a major historical opportunity for the national development of accelerator-based high energy physics program.

2020: European Strategy for Particle Physics, An electron-positron Higgs factory is the highest priority next collider. For the longer term, the European particle physics community has the ambition to operate a proton-proton collider at the highest achievable energy

2022: ICFA "reconfirmed the international consensus on the importance of **a Higgs factory as the highest priority for realizing the scientific goals of particle physics**", and expressed support for the above-mentioned Higgs factory proposals

Pathways to Innovation and Discovery in Particle Physics

Report of the Particle Physics Project Prioritization Panel 2023

Recommendation 6

Convene a targeted panel with broad membership across particle physics later this decade that makes decisions on the US accelerator-based program at the time when major decisions concerning an off-shore Higgs factory are expected, and/or significant adjustments within the accelerator-based R&D portfolio are likely to be needed. A plan for the Fermilab accelerator complex consistent with the long-term vision in this report should also be reviewed.

The panel would consider the following:

- 1. The level and nature of US contribution in a specific Higgs factory including an evaluation of the associated schedule, budget, and risks once crucial information becomes available.
- 2.Mid- and large-scale test and demonstrator facilities in the accelerator and collider R&D portfolios.
- 3.A plan for the evolution of the **Fermilab accelerator complex** consistent with the longterm vision in this report, which may commence construction in the event of a more favorable budget situation.

US contribution in a specific Higgs factory

P5 report, USA, 2023

Higgs Factory Proposals

CEPC has strong advantages among the mature e⁺e⁻ Higgs factories

Versus FCC-ee

- Earlier data: (~ 5-10 years)
- Better quality, flexible for ee / pp
- Lower construction cost

	are		
<u>`</u>	$\mathbf{\nabla}$	UO	U

- Higher luminosity ~ ×(5-10)
- Operate at Z energy
- Upgradable to pp collider

Luminosity / IP (CEPC vs FCC-ee)

	CEPC	FCC	ILC	CLIC
Constr. starts	2027	2032	2030	2035
L / IP (10 ³⁴ cm ⁻² s ⁻¹)	5-8	8	~1	~1
Cost (GCNY)	36	150	50	522

CEPC Operation Plan

CEPC accelerator TDR (Xiv:2312.14363)

(Operation mode	ZH	Z	W+M-	tī
	\sqrt{s} [GeV]	~240	~91	~160	~360
	Run Time [years]	10	2	1	5
	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	5.0	115	16	0.5
30 MW	∫ <i>L dt</i> [ab ⁻¹ , 2 IPs]	13	60	4.2	0.65
	Event yields [2 IPs]	2.6×10 ⁶	2.5×10 ¹²	1.3×10 ⁸	4×10 ⁵
	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	8.3	192	26.7	0.8
50 MW	∫ <i>L dt</i> [ab ⁻¹ , 2 IPs]	21.6	100	6.9	1
	Event yields [2 IPs]	4.3×10 ⁶	4.1×10 ¹²	2.1×10 ⁸	6×10 ⁵

The first 10 years will be Higgs production

+ Low-Luminosity Z (for calibration and physics)

Opportunity for Precision Measurements and Discoveries

Higgs: Precisions exceed HL-LHC by ~ 1 order of magnitude

Sensitive to NP of 10 TeV or even higher

CEPC Design Reports

CEPC Layout and Design Essentials

Key Components and Prototype R&D

Benefit from BEPC II, HEPS, and accelerator key technology R&D platform Key technology R&D spans over all components listed in the CEPC CDR

9

0.4%

0.2%

SC magnets

✓ Damping ring

CEPC Accelerator TDR

Domestic Civil Engineering Cost Review, June 26, 2023 06/17/2024 Endorsed by CEPC IAC Oct 29-31, 2023

CEPC Magnet Automatic Production Line in EDR

CEPC Accelerator SRF Development in EDR

CEPC collider ring 650MHz 2*cell short test module has been completed in TDR phase

node for 30 MW SR power per beam will use 32 units of 11 m-long collider cryomodules will 00 MHz 2-cell cavities, and therefore, a full size 650 MHz cryomodule will be developed in EDR Plan: Technical design review has been done. To be completed in 2025 The International workshop on CEPC, Oct. 26, Hangzhou

CEPC Collider Ring Magnets in EDR

Dual aperture quadrupole: block iron core and new cooling and power line design in EDR

16

Correctors: mechanical design completed

Sextupole magnets under design

18

17

CEPC MDI Development in EDR

(elliter####

CEPC Installation Strategy Study in EDR

CEPC SC Quadrupole Magnet Design with CCT Coil

Magnet name	Qla	Q1b	Q2
Field gradient (T/m)	142.3	85.4	96.7
Magnetic length (mm)	1.21	1.21	1.5
Excitation current (A)	780	650	770
Conductor (HTS or LTS)		0.8 or 0.7mm in d	iameter
Maximum dipole field in aperture (Gs)	226	124	127
Stored energy (KJ)	16.7	15.2	22.9
Peak field in coil (T)	4.3	3.4	4.5
Integrated field harmonics		<2×10 ⁴	
(Single aperture) Coil inner radius (mm)	20	26	31
Single aperture) Coil outer diameter (mm)	30.5	39	44
Magnet mechanical length (m)	1.22	1.23	1.53
Net weight (kg)	25	32	43
Total weight of Ola, Olb, O2 (kg)	100		

Component	Collider Ring	Booster	Linac, DR, TL	Total
Dipole	16258	14866	135	31259
Quadrupole	4148	3458	714	8320
Sextupole	3176	100	72	3348
Corrector	7088	2436	275	9799
BPM 、 PR 、 DCCT 、 kicker	3544	2408	180	6132
Septum Magnet	68	32	2	102
Kicker	8	8	2	18
Cryomodule	32	12		44
Electrostatic separator	32			32
Collimator dump	36		8	44
Superconducting Magnets	4			4
Solenoid			37	37
Accelerating structure			577	577
Cavity			4	4
Electron Source			1	1
Positron Source			1	1
Detector	2			2
Total	34396	23320	2008	59724

60000

CEPC component list and quantities

The International workshop on CEPC, Oct. 26, Hangzhou

22

CEPC Tunnel Mockup for Installation in EDR

CEPC Alignment and Installation Plan

Booster magnets installation

Collider ring magnets supports

A 60 m long tunnel mockup, including parts of arc section and part of RF section

To demonstrate the inside tunnel alignment and installation, especially for booster installation on the roof of the tunnel

Plan: Technical design review has been done. To be completed in 2025

Makoto Tobiyama, KEK

Akira Yamamoto, KEKZhentang Zhao, SINAP

The goal, scope and plan of the CEPC accelerator EDR were reviewed by the IARC on Sept 18-20, 2024

11/17/2023

13

- □ Lifespan: 10 years for Higgs + LowLum Z; It would be better ~18 years of HZ, Z, W⁺W⁻, $t\bar{t}$
- □ The detector system should be able to handle event rates:
 - Higgs mode @ L = 8.3×10^{34} cm⁻²s⁻¹: beam-beam crossing ~ 1.34 MHz, ZH ~16.6 mHz, $q\bar{q}$ ~ 5.0 Hz
 - Z mode @ L = 1.92×10^{36} cm⁻²s⁻¹: beam-beam crossing ~ 39.3 MHz, visible Z ~ 66 kHz
- □ Endure radiation damage and noise hit rates:

Max noise hits ~ 0.6 MHz / cm², Max TID ~2.1 Mrad/year in Higgs mode

Sub-system	Key technology	Key Specifications
Vertex	6-layer CMOS SPD	$\sigma_{r\phi}$ ~ 3 μ m, X/X $_0$ < 0.15% per layer
Tracking	CMOS SPD ITK, AC-LGAD SSD OTK, TPC + Vertex detector	$\sigma\left(\frac{1}{P_T}\right) \sim 2 \times 10^{-5} \oplus \frac{1 \times 10^{-3}}{P \times \sin^{3/2}\theta} (GeV^{-1})$
Particle ID	dN/dx measurements by TPC Time of flight by AC-LGAD SSD	Relative uncertainty ~ 3% σ(t) ~ 30 ps
EM Calorimeter	High granularity crystal bar PFA calorimeter	EM resolution ~ $3\%/\sqrt{E(GeV)}$ Granularity ~ $1 \times 1 \times 2 \text{ cm}^3$
Hadron Calorimeter	Scintillation glass PFA hadron calorimeter	Support PFA jet reconstruction Single hadron $\sigma_E^{had} \sim 40\% / \sqrt{E(GeV)}$ Jet $\sigma_E^{jet} \sim 30\% / \sqrt{E(GeV)}$

Configuration of A Reference CEPC Detector

TDR of A Reference CEPC Detector

9

- Demonstrate readiness and feasibility of detector technologies
- Provide a realistic detector cost estimation
- Assess requirements and availabilities of people power

Sustam	Т	echnologies	
System	Baseline	Backup / Comparison	
BeamPipe	Φ 20 mm		
LumiCal	SiTrk + Crystal		
Vertex	CMOS + Stitching	CMOS Si Pixel	Performance
	CMOS Si Pixel ITK	SSD+RO Chip, CMOS SSD	Cost
Trocker	Pixelated TPC	PID Drift Chamber	
Hacker		SSD / SPD OTK	R&D efforts
	AC-LGAD OTK	LGAD ToF	Tech maturity
ECAL	4D Crystal Bar	Stereo Crystal Bar, GS+SiPM PS+SiPM+W, SiDet+W	
HCAL	GS+SiPM+Fe	PS+SiPM+Fe, RPC+Fe	
Magnet	LTS	HTS	
Muon	PS bar+SiPM	RPC	
TDAQ	Conventional	Software Trigger	
BE electr.	Common	Independent	Contin

TDR of A Reference Detector

(Ready by June 2025)

- 1) Physics Goal and Requirements
- 2) Concept Introduction
- 3) MDI and Luminosity Detectors
- 4) Vertex Detector
- 5) Silicon Trackers
- 6) Gaseous Trackers
- 7) Electromagnetic Calorimeter
- 8) Hadron Calorimeter
- 9) Muon Detector
- 10) Superconducting Solenoid Magnet
- 11) General Electronics
- 12) Trigger and Data Acquisition
- 13) Software and Computing
- 14) Mechanics and Integration
- 15) Physics Performance
- 16) Overall Cost and Project Timeline

Continue pursuing better technologies

Detector R&D (I)

Detector R&D (II)

Geometry and Mechanical Support

Ø8470

Subsystem	Supported By
Barrel Yoke	Base
Magnet	Barrel Yoke
Barrel HCAL	Barrel Yoke
Barrel ECAL	Barrel HCAL
TPC+ Barrel OTK	Barrel ECAL
ІТК	TPC
Beampipe+VTX+LumiCal	ІТК
Endcap Yoke	Base
Endcap HCAL	Barrel HCAL
Endcap ECAL+OTK	Barrel HCAL

Planning: detector installation, order of mechanical support, layout of the experimental hall

Detector Installation Design

11/17/2023

Review By The CEPC IDRC

Ivan Villa Alvarez	IFCA
Daniela Bortoletto (Chair)	U. Oxford
Jim Brau	U. Oregon
Anna Colaleo	INFN/Bari
Paul Colas	CEA Saclay
Cristinel Diaconu	СРРМ
Frank Gaede	DESY
Colin Gay	UBC
Liang Han	USTC
Gregor Kramberger	IJS
Bob Kowalewski	U. Victoria
Roman Poeschl	IJCLab
Burkhard Schmidt	CERN
Maxim Titov	CEA Saclay
Tommaso Tabarelli de Fatis	INFN/Milano-Bicocca
Roberto Tenchini	INFN/Pisa
Christophe De La Taille	OMEGA/CNRS
Hitoshi Yamamoto	Tohoku U.
Akira Yamamoto	KEK

- The CEPC IDRC (International Detector Review Committee) reviewed the status and plan of the Ref-TDR Oct 21-23, 2024 at IHEP
- No showstopper was found. Recommendations to be implemented

21

International Collaborative Efforts on Detector R&D

- Some detector R&D efforts were within the international detector R&D collaborations, e.g. CALICE, LCTPC, & RD*
- Now much broader participation in the ECFA DRD program

Sub-system	DRD	Sub-system	DRD
Pixel Vertex Detector	3	Electromagnetic Calorimeter	6
Inner Silicon Tracker	3	Hadron Calorimeter	1, 6
Outer Silicon Tracker	3	Machine Detector Interface	(8)
Gas Tracker	1 (TPC/DC)	Mechanical and Integration	(8)
Muon Detector	1 (RPC)	General Electronics	(7)
Electromagnetic Calorimeter	6	Trigger and DAQ	(7)
Hadron Calorimeter	1, 6	Offline Software	
Super Conducting Magnet			

- □ Researchers from ~48 major domestic research institutes actively participate in the CEPC detector R&D projects. More are joining.
- □ Currently, about **90** staff members from IHEP are working on the CEPC detector and physics, and about **200** from other institutes.
- Many of them were key members in building major China-based successful experiments: BES, DayaBay, JUNO, LHAASO, …
- □ Some take fast rising roles in major experiments abroad: ATLAS, CMS, LHCb, ALICE, AMS, ...
- □ JUNO will switch to operation mode soon. More researchers, especially engineers, will shift their focus onto CEPC.
- International participations (~30 institutes) in subdetector R&Ds, e.g. MAPS detector, TPC, PID Drift chamber, …
- □ When CEPC receives official endorsement, these are seeds of the two international collaborations.

International Efforts Towards Collaborative Experiments

- Institution Board: 32 top domestic universities/institutes
- The International Advisory Committee (IAC) started in 2015, and held meeting yearly.
- Two international review committees for R&D: IARC and IDRC started in 2019.
- The CEPC study group consists of ~1/4 international members. We hope to boost up the rate.

	2	
Name	Brief introduction	Role in the CEPC team
Yifang Wang	Academician of the CAS, direc-	The leader of CEPC, chair of the SC
	tor of IHEP	
Xinchou Lou	Professor of IHEP	Project manager, member of the SC
Yuanning Gao	Academician of the CAS, head	Chair of the IB, member of the SC
	of physics school of PKU	
Jie Gao	Professor of IHEP	Convener of accelerator group, vice
		chair of the IB, member of the SC
Haijun Yang	Professor of SJTU	Deputy project manager, member of
		the SC
Jianbei Liu	Professor of USTC	Convener of detector group, mem-
		ber of the SC
Hongjian He	Professor of USTC	Convener of theory group, member
		of the SC
Shan Jin	Professor of NJU	Member of the SC
Nu Xu	Professor of IMP	Member of the SC
Meng Wang	Professor of SDU	Member of the SC
Qinghong Cao	Professor of PKU	Member of the SC
Wei Lu	Professor of THU	Member of the SC
Joao Guimaraes da Costa	Professor of IHEP	Convener of detector group
Jianchun Wang	Professor of IHEP	Convener of detector group
Yuhui Li	Professor of IHEP	Convener of accelerator group
Chenghui Yu	Professor of IHEP	Convener of accelerator group
Jingyu Tang	Professor of IHEP	Convener of accelerator group
Xiaogang He	Professor of SJTU	Convener of theory group
Jianping Ma	Professor of ITP	Convener of theory group

Table 7.2: Team of Leading and core scientists of the CEPC

International Workshops

The 2024 International Workshop on the High Energy Circular Electron Positron Collider October 22-27, 2024, Hangzhou, China

- International workshops (with emphasis on the CEPC):
 - In China: Beijing (2017.11, 2018.11, 2019.11), Shanghai (2020.10 / hybrid), Nanjing (2021.11 / online, 2022.11 / online, 2023.10), Hangzhou (2024.10), xxxxx(2025.10)
 - In Europe: Rome (2018.05), Oxford (2019.04), Edinburgh (2023.07), Marseille (2024.04), Barcelona (2025.05)
 - In USA: Chicago (2019.09), DC (2020.04 / online)
 - Annual IAS program on HEP (HKUST) since 2015. The upcoming one is between Jan 13-17, 2025
- Many topic-specific workshops at various sites

Participating and Potential Collaborating Companies

CEPC Industrial Promotion Consortium (CIPC, established in Nov. 2017)

Potential international collaborating suppliers

