

Review of CMS HCAL reconstruction performance

Hui Wang (王徽) Nanjing Normal University CLHCP2024, Qingdao

Outline

- Introduction
- Reconstruction algorithms
- Reconstruction performance
- Reconstruction with ML

HCAL structure

Reconstruction algorithms

HCAL Energy Reconstruction

- Reco input: digitized charge in 8 LHC bunch crossings (BX) in buffer, called time samples
 - Current BX (BX0): 75-100 ns (Time

sample 3) ~60% total charge

- BX+1: ~20% total charge
- First reco algorithm: Method 0
 - Used in Run1 (50 ns bunch spacing)
 - OOT PU almost negligible
 - $(Q_{BX0} + Q_{BX+1})$ x scale factors
- Pulse fitting algorithms
 - In use since Run2 (25 ns bunch spacing)
 - 2016-2017: Method 2 (3) offline (HLT)
 - from 2018: MAHI both offline and HLT

Method 2

- M2 estimates the energy of SOI pulse by minimizing χ^2 using MIGRAD algorithm in Minuit
- Fits up to 3 pulses (SOI 1, SOI and SOI + 1) to QIE digis in 10 TS
- Starts with fitting 1 pulse. If $\chi^2 > 15$ and charge < 100 fC for HPD or 25000 fC for SiPM (both correspond to ~20 GeV), then switches to 3 pulses

 A_i : QIE digi in ith TS μ_i : sum of fitted amplitudes in ith TS $\sigma_{p,i}^2$: quadratic sum of uncertainties (pedestals, QIE granularity, and photostatistics)

 t_j : pulse arrival time

ped: floating baseline

Method 3

- M3 was developed to meet HLT timing requirment
- Compared to M2, M3:
 - Fits 3 pulses (SOI 1, SOI and SOI + 1) to only 3 TS
 - Drops the arrival time term
 - Uses constant baseline term
 - Fitting \rightarrow solving linear equations

$$\begin{bmatrix} A_{\text{SOI}-1} \\ A_{\text{SOI}} \\ A_{\text{SOI}+1} \end{bmatrix} = \begin{bmatrix} f_0 & 0 & 0 \\ f_1 & f_0 & 0 \\ f_2 & f_1 & f_0 \end{bmatrix} \begin{bmatrix} \mu_{\text{SOI}-1} \\ \mu_{\text{SOI}} \\ \mu_{\text{SOI}+1} \end{bmatrix} + \begin{bmatrix} B \\ B \\ B \end{bmatrix}$$

A_i : QIE digi in ith TS

 $f_{0,1,2}$: pre-measured fractions of the pulse template in +0, +1 and +2 TS, respectively μ_i : amplitudes of ith pulse

B: constant baseline (average of pedestals in

all TS except SOI and SOI+1)

MAHI

京师道子 和 1902 NANJ R NNU NNU NNU NNU NNU NNU

- MAHI (Minimization At HCAL, Iteratively) estimates the energy of SOI pulse by minimizing χ^2 in an iterative approach, using Non-Negative Least Square (NNLS) algorithm instead of MIGRAD in M2
- Reconstruction speed: MAHI is O(10) faster than M2 and O(10) slower than M3

$$\mathbf{V} = \sum_{j=0}^{7} \mu_j^2 \mathbf{D}_j^{\text{pulse}} + \mathbf{D}^{\text{noise}}$$

 μ_j : amplitudes of jth pulse D_j^{pulse} : pulse shape uncertainty D^{noise} : total noise (pedestals, QIE granularity, and photostatistics)

$$\chi^2 = \left[\sum_j \vec{P}_j \mu_j - \vec{d}\right]^T \mathbf{V}^{-1} \left[\sum_j \vec{P}_j \mu_j - \vec{d}\right]$$

 $\overrightarrow{P_j}$: 8x8 matrix contains pulse template \overrightarrow{d} : vector contains QIE digis of 8TS

Reconstruction performance

Charged pion resolution in data

- Extrapolate isolated tracks to calorimeter and match to a cone
- Use track momentum ECAL energy in that cone as "truth" HCAL energy
- M0, M2 and MAHI have similar resolutions, but M0 has high response because of OOT-PU

Response of pions in MC

- Two MC samples from the same GEN step pion gun
 - One has only OOT-PU
 - The other has no PU
- Extrapolate GEN pion tracks to calorimeter and match to a cone

- Response = cone energy / GEN pion energy
- Plot ratios of responses in OOT-PU sample and no PU sample
- Performance: M2/MAHI better than M0, especially in low energy / high eta regions, because of OOT-PU subtractions

Reconstruction with ML

Limitation of analytical algorithms

- Reconstructed energy resolution in each channel
 - MAHI: not fitting pulse arrival time Bad performance at high energy
 - M2: too slow only fits up to 3 pulses
 Bad performance at low energy
- Is there an algorithm that has better resolution at both low and high energy?
- Machine learning can achieve this!

DLPHIN

- Deep Learning Processes for HCAL INtegration
- Novel architecture based on 2D CNN
 - Dim. 1: digitized charge in 8 BX
 - Dim. 2: depth → exploit correlations among channels in an HCAL tower
- More than 3 times faster than MAHI
- Better perform from upstream to downstream
 Channel-level → single particle-level → jet-level
- Will benefit almost all physics analyses

DLPHIN performance

Backup Slides

Trigger System and Pileup

- Two-level trigger system
 - Reduce the event rates from 40 MHz to ~1kHz
 - While keeping most of the interesting events
- Level-1 trigger (L1T)
 - Custom ASIC, FPGA, etc
 - Reduce rate to 100 kHz
- High-level trigger (HLT)
 - Commercial CPU + GPU
 - Rate reduce to ~1k Hz

pileup (PU)

- In-time PU: current bunch crossing (BX)
- Out-of-time PU: other BX, very important for calorimeter reconstruction

Event Reconstruction

- Particle Flow (PF) Algorithm
 - Runs on HLT and offline reconstruction
 - Synthesizes information from all subdetectors and reconstructs particles based on their signatures
 - 1. Muon
 - 2. Electron and Photon
 - 3. Charged and Neutral Hadron
- Then PF particles are clustered as jets
 - Usually anti- $k_{\rm T}$ algorithm in CMS
- Last global quantities of an event
 - e.g. missing transverse momentum p_T^{miss} , aka MET usually a manifest of neutrinos, but may also from BSM :P

Parton Shower vs Hadron Shower

r= Molière radius

Parton shower (+ hadronization that form a jet) typically in a cone

Shower length

Hadron shower (interacting with detector material)

typically in a cylinder

- longitudinal development: radiation or interaction length
- lateral development: Molière radius (a cylinder containing on average 90% of the shower's energy deposition)
- Typical Molière radius for a pion is an HCAL tower (0.087 x 0.087 rad.)