

Calibration and Performance of the CMS Electromagnetic Calorimeter

JIE ZHANG¹, On behalf of the CMS Collaboration CMS-DP-2024-022

1: Institute of High Energy Physics

2024-11-14

CMS Electromagnetic Calorimeter (ECAL)

ECAL: a homogeneous and hermetic scintillating lead tungstate
crystal (PbWO₄) calorimeter.

- ✓ 75848 lead tungstate crystals $PbWO_4$
- ✓ Coverage:
 - **Barrel(EB)**: $|\eta| < 1.479$
 - Endcaps(EE): $1.479 < |\eta| < 3.0$
 - **Preshower (ES)**: $1.65 < |\eta| < 2.6$

A highly efficient and accurate reconstruction of photons and electrons over a wide range of energies

- Low-energy electrons(5GeV) typical of multilepton events
- Electroweak-scale energies(Higgs and W/Z bosons)
- Up to the TeV scale typical of high-mass resonance

ECAL signal reconstrction

□ The energy **E** of an electromagnetic shower in the CMS ECAL is represented as the energy of a **SuperCluster**.

□ The reconstructed energy of electrons and photons is estimated by:

The index, i, represents individual crystals within the supercluster

Signal amplitude reconstruction(A_i)

The amplitude A is reconstructed from the ten digitized pulse samples.

• First three samples in a pulse are used for pedestals.

To mitigate the effect of the increased pileup, "multifit" method was developed.

- One in-time pulse and up to 9 out-of-time (OOT) pulses
- The signal shape for in-time signals was derived using collisions of isolated proton bunches.
- The signal shapes for the out-of-time signals were obtained from the in-time signal by shifting the time in steps of 25 ns.

2024-11-14

4

Response to injected laser

Laser correction (LC_i) for transparency loss

- The energy response of the ECAL changes continuously with time due to the ageing of the \succ crystals and high radiation.
- **Transparency loss corrections** are crucial to maintain the stability of the reconstructed \geq energy scale and resolution.

the reference PN.

measuring the ratio of the light

APD(VPT)/PN

measured by the photodetectors and by

 $LC_i(t) = \left| \frac{R_i(0)}{R_i(t)} \right|$

A dedicated **light-monitoring system** is used to measure the transparency \succ

of each crystal and the photodetector response

Parameter depends on n and evolves with integrated luminosity

Intercalibration (IC_i)

- \triangleright Per-crystal intercalibration constants, IC_i, are computed to equalise the crystal response.
- A combination of several methods based on different physics signals: π^0 method:
- Exploit reconstructed π^0 mass with its decay of photon pairs
- The IC is derived from a fit to the m distribution measured in each channel.

E/P method:

- Comparison of the ECAL energy to the tracker momentum for isolated electrons from W/Z boson decay.
- The IC is used to constrain the average E/p ratio to 1.

Zee method:

- Exploit the invariant mass reconstructed with electron pairs from Z decays
- The IC is derived from a fit to the m distribution measured in each channel.^{$\frac{5}{2}}$ </sup>

oer of γγ pairs

2024-11-14

ECAL performance in Run3

2024-11-14

- ✓ ECAL response is stable over time after corrections
- ✓ The spread of the median ratio is at per mil level throughout 2022 and 2023

- Time stability of the di-electron invariant mass comparing between data and Monte Carlo (MC) simulation for the 2022 and 2023 data-taking period using Z→ee
- Time-dependent effects produce asymmetric distributions causing a slightly lower median in data wrt Monte Carlo
- Lower mass value appear in correspondence of low statistic runs occurring after an LHC stop but before a new update of the pulse shape templates used in amplitude reconstruction 7

ECAL performance in Run3

- ✓ Stability over the whole 2022-2023 period despite luminosity increase and detector ageing
- ✓ The inclusive resolutions of electrons are less than 2% in the barrel for both 2022 and 2023, and around 3.2% in the endcap in 2022 and 2023.

The plots show the invariant mass distribution comparing 2022 and 2023 datataking period using inclusive $Z \rightarrow ee$ events with a refined re-calibration.

ECAL performance in Run3

- ✓ Stability over the whole 2022-2023 period despite luminosity increase and detector ageing
- ✓ The resolution of electrons ranges from 1.8% to 5% depending on η for Z → ee low bremsstrahlung electrons.

Relative electron (ECAL) energy resolution unfolded in bins of pseudorapidity η . Electrons from Z \rightarrow ee decays are used. The vertical bars on the points represent the statistical uncertainty.

Summary

- > Calibration and optimization has been exploited in CMS ECAL.
- > Outstanding performance of the CMS ECAL with calibration
 - □ Stable ECAL response over time with spread at ~1% level
 - **C** Resolution of electrons between 1.8% and 5%
 - ECAL performance stable over time despite much harsher environment and detector aging
- > More work ongoing within ECAL to improve the performance
 - □ Automation framework for calibration and monitoring, machine learning in clustering and DQM etc..

Thank you!