

中國科學院為維約昭納完備 Institute of High Energy Physics Chinese Academy of Sciences

ATLAS Photon lateral leakage studies 2022+2023 Run-3

CLHCP 2024 QingDao

Yanping Huang¹,Shaoguang Wu¹, ¹IHEP,CAS

motivation

- > Calibration for photons is based on electrons in ATLAS.
- Shower shape is not well modeled in MC, and differently between photon and electron.
 - Electron mismodelling is well controlled by electron calibration

Previous conservative strategy in Run2

- Only assign the uncertainty with the envelop of the double difference
- The idea is correcting the lateral energy difference between photon and electron in EMC
- \blacktriangleright Using $Z \rightarrow ee$ to get electron cluster energy information and $Z \rightarrow ll\gamma$ to get the photons cluster energy information
 - Photons are divided into converted and un-converted for different shower shape
 - Use energy in layer2 for most energy deposition

Methodology

Definition of leakage fractions

• $l = \frac{E_{s2}(7 \times 11) - E_{s2}(nominal)}{E_{s2}(nominal)}$

Due to the Timing cut issue (link)

- Some cells energy are missing in reconstruction step
- Missing cell energy is stored in Eadded_Lr2
- Include the missing cell energy in E_nominal

Definition of double difference

- $\Delta l^e \Delta l^{\gamma} = \left(l^{data} l^{MC}\right)^e \left(l^{data} l^{MC}\right)^{\gamma}$
- Describe the difference between data and MC, electrons and photons
- The double difference is used as calibration factors for photon leakage

Photon conversion

- The photons are divided into converted and unconverted photons
- Due to TRT bugs, the converted photons from TRT are regarded as un-converted photons

An illustration of barrel region

Selections

> Object selections

Cut	Electron		Photon	Muon
	$Z \rightarrow ee$	$Z \rightarrow e e \gamma$		
${E}_{T}$, ${ m P}_{T}$	<i>E_T</i> > 10 GeV	<i>E_T</i> > 18 GeV	<i>E_T</i> > 10 GeV	P _T >15 GeV
η	η <2.47 exclude [1.37,1.52]	η <2.47 exclude [1.37,1.52]	η <2.37 exclude [1.37,1.52]	η <2.7
d_0 significance	<10	<10		<10
$ z_{PV} $	<10 mm	<10mm		<10 mm
ID	Medium	Loose	Tight	Medium
ISO	Loose	Loose	FixedCutLoose	FCLoose

Event selections

- GRL PV EQ Trigger
- $m_{ee} \in (75 \text{GeV}, 105 \text{GeV}) \text{ for } Z \rightarrow ee$
- Overlap removal for $Z \rightarrow ll\gamma : \Delta R(l,\gamma) > 0.4$
- $m_{ll} \in (40 \text{GeV}, 83 \text{GeV})$ and $m_{ll\gamma} \in (83 \text{GeV}, 100 \text{GeV})$ for $Z \rightarrow ll\gamma$

Figure 3.1: An plot shows the 2D distribution and why requiring mass window cuts.

4

The distribution after selection

- > The distributions after selections are shown here
 - The data-MC agreement is good enough to use

The eta/pT binning

• Considering the statistical

+ Z \rightarrow ee Data

- Z \rightarrow ee MC

100

105 110

95

• The eta is divided by barrel and end-cup in the end

ATLAS Interna

 \downarrow Z \rightarrow eey Data

 $Z \rightarrow eev MC$

– Z \rightarrow μμγ MC

 $\rightarrow \mu\mu\gamma$ Data

m_⊪/GeV

0.025

Events Normalized 0.015 0.01 200.0

35 40 45 50 55 60 65 70 75 80 85

- The pT binning is determined to be:
 - $15 20 30 40 \infty$

85

90

m,/GeV

80

75

ATLAS Internal

0.05

0.04

0.03

0.02

0.01

Events Normalized

Lateral energy leakage distribution

- Mean value of leakage histogram:
 - Regarded as the leakage fraction value
 - Leakage fraction in end-cup is lower than barrel
- The standard error of mean is regarded as its statistical uncertainty

Data-MC difference distributions on pT and eta

- > The Data-MC difference are shown for electrons and photons
- > Circle markers are photons and triangle markers are electrons
 - Finer bins for **electrons** since larger statistical
 - The Data-MC difference increase by pT for **electrons**
 - Mis-modelling in barrel is higher than end-cap for both electron and photon

Data-MC difference distributions on pile up

- > The pile up distribution of $Z \rightarrow ee\gamma$ and $Z \rightarrow \mu\mu\gamma$ is shown here
 - Divided into three subregions
 - Pileup<30; 30≤Pileup<40;40≤Pileup

> The data-MC distribution dependence is shown below

- Slight influence on unconverted photon and electron
- Higher influence on low pt converted photon, but large uncertainty here

Double difference distributions

- The double difference conveys the difference of lateral leakage mis-modeling between electrons and photons
 - Double difference in barrel is higher than end-cap for both converted and unconverted photons

The influence of Photon ID/ISO

> The nominal Photons ID and ISO is tight and fixcutloose

- The ID is changed to loose (using 2015-2018 and Rel 21 recommendation, only tight and loose)
- The ISO is changed to FixedCutTightCaloOnly and FixedCutTight

The double difference value before the conversion reweighting is shown in table below

- The ISO is would change the result a lot for converted photons in barrel
- The difference would decrease with pt in most situations
- The difference from photon ID is mush smaller than ISO

Double difference(%)	ID/ISO	$15GeV < p_T < 20GeV$	$20GeV < p_T < 30GeV$	$30GeV < p_T < 40GeV$	$p_T > 40 GeV$
El - Conv, barrel	Tight/FixedCutLoose	-0.469 ± 0.165	-0.205 ± 0.096	-0.309 ± 0.108	-0.113 ± 0.098
	Tight/FixedCutTight	-0.525 ± 0.157	-0.160 ± 0.097	-0.288 ± 0.115	-0.206 ± 0.107
	Tight/FixedCutTightCaloOnly	-0.460 ± 0.156	-0.161 ± 0.095	-0.290 ± 0.113	-0.154 ± 0.106
	Loose/FixedCutTight	-0.541 ± 0.159	-0.138 ± 0.098	-0.283 ± 0.115	-0.176 ± 0.107

Table 7.1: The double difference results in different WPs for barrel converted photons

Double difference(%)	ID/ISO	$15GeV < p_T < 20GeV$	$20GeV < p_T < 30GeV$	$30GeV < p_T < 40GeV$	$p_T > 40 GeV$
El - Unconv, barrel	Tight/FixedCutLoose	-0.278 ± 0.036	-0.168 ± 0.022	-0.114 ± 0.029	-0.046 ± 0.030
	Tight/FixedCutTight	-0.295 ± 0.037	-0.198 ± 0.024	-0.122 ± 0.031	-0.060 ± 0.034
	Tight/FixedCutTightCaloOnly	-0.296 ± 0.036	-0.193 ± 0.023	-0.125 ± 0.031	-0.059 ± 0.034
	Loose/FixedCutTight	-0.285 ± 0.037	-0.190 ± 0.024	-0.123 ± 0.032	-0.057 ± 0.034

Table 7.3: The double difference results in different WPs for barrel unconverted photons

Systematics uncertainty

$\mu\mu\gamma$ fractions taken from <u>Internal</u> <u>Note</u> are used in this study

- Only conversion reconstruction mis-modeling is considered as Systematics uncertainty
- The number of photons reconstructed as converted/unconverted is:

 $N_{conv}^{reco} = N f_{conv} \times f_{reco} + N(1 - f_{conv}) \times f_{fake}$

$$N_{unconv}^{reco} = N(1 - f_{conv}) \times (1 - f_{fake}) + Nf_{conv} \times (1 - f_{reco})$$

• f_{conv} is the probability of a photon to covert, f_{reco} is the conversion reconstruction efficiency, f_{fake} is the conversion fake rate

$ \eta $	f _{conv}		f _{reco}		f_{fake}	
regions	Data	MC	Data	MC	Data	MC
$ \eta \in [0,0.6)$	0.148 ± 0.010	0.145	0.764 ± 0.037	0.850	0.076 ± 0.004	0.040
$ \eta \in [0.6, 0.8)$	0.234 ± 0.016	0.271	0.804 ± 0.040	0.774	0.036 ± 0.003	0.022
$ \eta \in [0.8, 1.37)$	0.234 ± 0.016	0.271	0.804 ± 0.040	0.774	0.036 ± 0.003	0.022
$ \eta \in [1.52, 1.81)$	0.438 ± 0.026	0.415	0.771 ± 0.043	0.915	0.028 ± 0.016	0.037
$ \eta \in [1.81, 2.01)$	0.521 ± 0.011	0.516	0.582 ± 0.010	0.653	0.010 ± 0.005	0.012
$ \eta \in [2.01, 2.37)$	0.521 ± 0.011	0.516	0.582 ± 0.010	0.653	0.010 ± 0.005	0.012

Systematics uncertainty

- To correct for the difference between MC and data, weights are applied to MC samples:
 - for a true converted photon reconstructed as unconverted:
 - for a true unconverted photon reconstructed as unconverted :
 - for a true converted photon reconstructed as converted :
 - for a true unconverted photon reconstructed as converted :

Weight	Reco C/True C	Reco C/True U	Reco U/True C	Reco U/True U
$ \eta < 0.6$	0.917 ± 0.106	1.893 ± 0.122	1.606 ± 0.360	0.959 ± 0.015
$0.6 < \eta < 0.8$	0.897 ± 0.106	1.719 ± 0.179	0.749 ± 0.204	1.036 ± 0.025
$0.8 < \eta < 1.37$	0.897 ± 0.106	1.719 ± 0.179	0.749 ± 0.204	1.036 ± 0.025
$1.52 < \eta < 1.81$	0.889 ± 0.102	0.727 ± 0.449	2.843 ± 0.703	0.970 ± 0.061
$1.81 < \eta < 2.01$	0.900 ± 0.034	0.825 ± 0.431	1.216 ± 0.055	0.992 ± 0.028
$2.01 < \eta < 2.37$	0.900 ± 0.034	0.825 ± 0.431	1.216 ± 0.055	0.992 ± 0.028

The leakage factors at FixedCutLoose ISO

- > The ID and ISO work point is Tight and fixcutloose
- Due to the change of TRT converted photon definition, the systematic uncertainty form photon conversation are very large. How to deal with it is not decided yet

Scale factor(%)	$15GeV < p_T < 20GeV$	$20GeV < p_T < 30GeV$	$30GeV < p_T < 40GeV$	$p_T > 40 GeV$
El - Conv, barrel	$-0.445 \pm 0.166 \pm 0.023$	$-0.209 \pm 0.096 \pm 0.004$	$-0.313 \pm 0.108 \pm 0.003$	$-0.122 \pm 0.098 \pm 0.008$
El - Conv, end-cap	$-0.475 \pm 0.088 \pm 0.003$	$-0.292 \pm 0.056 \pm 0.002$	$-0.227 \pm 0.075 \pm 0.001$	$0.027 \pm 0.067 \pm 0.002$
El - Unconv, barrel	$-0.283 \pm 0.036 \pm 0.004$	$-0.183 \pm 0.022 \pm 0.014$	$-0.138 \pm 0.029 \pm 0.024$	$-0.063 \pm 0.030 \pm 0.017$
El - Unconv, end-cap	$-0.357 \pm 0.045 \pm 0.025$	$-0.248 \pm 0.028 \pm 0.021$	$-0.144 \pm 0.036 \pm 0.008$	$-0.094 \pm 0.038 \pm 0.011$

Summary

> Performed the photon leakage measurement in Run3, but still work in progress

- The data-MC differences , double difference and the dependences on eta, pt and pile-up are investigated
- The measurement are performed in different ISO work points

> The uncertainty is mainly statistical uncertainty

• The systematics uncertainty from photon conversation need to be reestimate

> Need further understand the influence of ISO and ID work point

• Considering as systematics uncertainty?

> Next:

• Include data and MC this year for much higher statistic

Additional slides

15

Samples and GRL

Data: ptag p6000/p5859

$2^*Z \rightarrow ee$	data22_13p6TeV.periodAllYear.physics_Main.PhysCont.DAOD_EGAM1.grp22_v01_p6000
	data23_13p6TeV.periodAllYear.physics_Main.PhysCont.DAOD_EGAM1.grp23_v01_p5859
$2^*Z \rightarrow ee\gamma$	data22_13p6TeV.periodAllYear.physics_Main.PhysCont.DAOD_EGAM3.grp22_v01_p6000
	data23_13p6TeV.periodAllYear.physics_Main.PhysCont.DAOD_EGAM3.grp23_v01_p5859
$2^*Z \rightarrow \mu\mu\gamma$	data22_13p6TeV.periodAllYear.physics_Main.PhysCont.DAOD_EGAM4.grp22_v01_p6000
	data23_13p6TeV.periodAllYear.physics_Main.PhysCont.DAOD_EGAM4.grp23_v01_p5859
	Table 2.1: Data samples used for $Z \rightarrow ee, Z \rightarrow ee\gamma$ and $Z \rightarrow \mu\mu\gamma$ channel.

MC: Amitag r14622_p5660/r15224_p6080

$2^*Z \rightarrow ee$	mc23_13p6TeV.601189.PhPy8EG_AZNLO_Zee.deriv.DAOD_EGAM1.e8514_s4111_r14622_p5660
	mc23_13p6TeV.601189.PhPy8EG_AZNLO_Zee.deriv.DAOD_EGAM1.e8514_s4159_r15224_p6080
$2^*Z \rightarrow ee\gamma$	mc23_13p6TeV.700770.Sh_2214_eegamma.deriv.DAOD_EGAM3.e8514_s4111_r14622_p5660
	mc23_13p6TeV.700770.Sh_2214_eegamma.deriv.DAOD_EGAM3.e8514_s4159_r15224_p6080
$2^*Z \to \mu\mu\gamma$	mc23_13p6TeV.700771.Sh_2214_mumugamma.deriv.DAOD_EGAM4.e8514_s4111_r14622_p5660
	mc23_13p6TeV.700771.Sh_2214_mumugamma.deriv.DAOD_EGAM4.e8514_s4159_r15224_p6080

Table 2.2: MC samples used for $Z \rightarrow ee$, $Z \rightarrow ee\gamma$ and $Z \rightarrow \mu\mu\gamma$ channel.

Triggers and GRLs

> Triggers

• Only electron and muon triggers

Year	SingleElectron	DiElectron	SingleMuon	DiMuon
2022	HLT_e26_lhtight_ivarloose_L1EM22VHI	HLT_2e17_lhvloose_L12EM15VHI	HLT_mu24_ivarmedium_L1MU14FCH	HLT_2mu14_L12MU8F
	HLT_e60_lhmedium_L1EM22VHI	HLT_2e24_lhvloose_L12EM20VH	HLT_mu50_L1MU14FCH	
	HLT_e140_lhloose_L1EM22VHI		HLT_mu60_0eta105_msonly_L1MU14FCH	
2023	HLT_e26_lhtight_ivarloose_L1eEM26M	HLT_2e17_lhvloose_L12eEM18M	HLT_mu24_ivarmedium_L1MU14FCH	HLT_2mu14_L12MU8F
	HLT_e60_lhmedium_L1eEM26M	HLT_2e24_lhvloose_L12eEM24L	HLT_mu50_L1MU14FCH	
	HLT_e140_lhloose_L1eEM26M		HLT_mu60_0eta105_msonly_L1MU14FCH	

Table 3.2: List of triggers used in the data selection

➢ GRL:

2022 data22_13p6TeV.periodAllYear_DetStatus-v109-pro28-04_MERGED_PHYS_StandardGRL_All_Good_25ns_ignore_TRIGMU	
2023 data23 13p6TeV periodAllYear DetStatus_v110_pro31_06 MERGED PHYS StandardGRI All Good 25ps ignoreTRIG I	JO_TRIGLAR.xml
2025 data25_15porev.periodAli real_DetStatus-v110-pi051-00_WERGED_11115_StatuardORE_Ali_000d_25iis_ignore rRi0_j	JETCTPIN.xml

Table 3.1: Good Run Lists used for different years

The influence of timing cut issue

Leakage fraction definition:

- $l = \frac{E_{s2}(7 \times 11) E_{s2}(nominal)}{E_{s2}(nominal)}$
- $E_{s2}(nominal)$ is the reconstructed energy in Layer2

> Due to the Timing cut issue (<u>link</u>)

- Missing cell energy is stored in Eadded_Lr2
- $E_{s2}(nominal) = \text{cluster} \rightarrow \text{energyBE}(2) + \text{electron} \rightarrow \text{auxdata} < \text{float} > ("Eadded_Lr2")$
- The agreement of the leakage fraction between data and MC would be improved after including the missing energy, but there would still be some difference between data and MC.

The comparison between Run2 and Run3

- \succ Compare the $E_{nominal}$, $E_{7\times 11}$ and *leakage* distribution
 - Compare with Run2 Ntuple ٠
 - Difference is observed in leakage distribution •

Electrons, Barrel

Full photon ID and ISO influence table

Double difference(%)	ID/ISO	$15 GeV < p_T < 20 GeV$	$20GeV < p_T < 30GeV$	$30GeV < p_T < 40GeV$	$p_T > 40 GeV$
El - Conv, barrel	Tight/FixedCutLoose	-0.469 ± 0.165	-0.205 ± 0.096	-0.309 ± 0.108	-0.113 ± 0.098
	Tight/FixedCutTight	-0.525 ± 0.157	-0.160 ± 0.097	-0.288 ± 0.115	-0.206 ± 0.107
	Tight/FixedCutTightCaloOnly	-0.460 ± 0.156	-0.161 ± 0.095	-0.290 ± 0.113	-0.154 ± 0.106
	Loose/FixedCutTight	-0.541 ± 0.159	-0.138 ± 0.098	-0.283 ± 0.115	-0.176 ± 0.107

Table 7.1: The double difference results in different WPs for barrel converted photons

Double difference(%)	ID/ISO	$15GeV < p_T < 20GeV$	$20GeV < p_T < 30GeV$	$30GeV < p_T < 40GeV$	$p_T > 40 GeV$
El - Conv, end-cap	Tight/FixedCutLoose	-0.477 ± 0.088	-0.294 ± 0.056	-0.228 ± 0.075	0.025 ± 0.067
	Tight/FixedCutTight	-0.447 ± 0.094	-0.371 ± 0.060	-0.239 ± 0.079	-0.008 ± 0.072
	Tight/FixedCutTightCaloOnly	-0.404 ± 0.091	-0.329 ± 0.058	-0.228 ± 0.078	0.010 ± 0.073
	Loose/FixedCutTight	-0.427 ± 0.096	-0.354 ± 0.061	-0.250 ± 0.081	-0.017 ± 0.073

Table 7.2: The double difference results in different WPs for end-cup converted photons

Double difference(%)	ID/ISO	$15GeV < p_T < 20GeV$	$20GeV < p_T < 30GeV$	$30GeV < p_T < 40GeV$	$p_T > 40 GeV$
El - Unconv, barrel	Tight/FixedCutLoose	-0.278 ± 0.036	-0.168 ± 0.022	-0.114 ± 0.029	-0.046 ± 0.030
	Tight/FixedCutTight	-0.295 ± 0.037	-0.198 ± 0.024	-0.122 ± 0.031	-0.060 ± 0.034
	Tight/FixedCutTightCaloOnly	-0.296 ± 0.036	-0.193 ± 0.023	-0.125 ± 0.031	-0.059 ± 0.034
	Loose/FixedCutTight	-0.285 ± 0.037	-0.190 ± 0.024	-0.123 ± 0.032	-0.057 ± 0.034

Table 7.3: The double difference results in different WPs for barrel unconverted photons

Double difference(%)	ID/ISO	$15GeV < p_T < 20GeV$	$20GeV < p_T < 30GeV$	$30GeV < p_T < 40GeV$	$p_T > 40 GeV$
El - Unconv, end-cap	Tight/FixedCutLoose	-0.382 ± 0.041	-0.269 ± 0.025	-0.135 ± 0.033	-0.083 ± 0.036
	Tight/FixedCutTight	-0.403 ± 0.043	-0.248 ± 0.027	-0.169 ± 0.036	-0.072 ± 0.039
	Tight/FixedCutTightCaloOnly	-0.397 ± 0.042	-0.238 ± 0.027	-0.168 ± 0.035	-0.061 ± 0.039
	Loose/FixedCutTight	-0.390 ± 0.044	-0.230 ± 0.027	-0.169 ± 0.036	-0.065 ± 0.039

Table 7.4: The double difference results in different WPs for end-cup unconverted photons

20