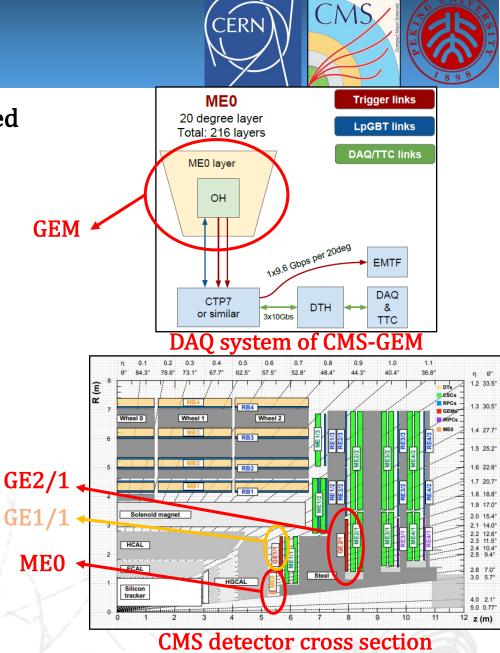


The design, production and QC test of GEM electronics board for CMS ME0 project Zhe Li (on behalf of PKU Group)

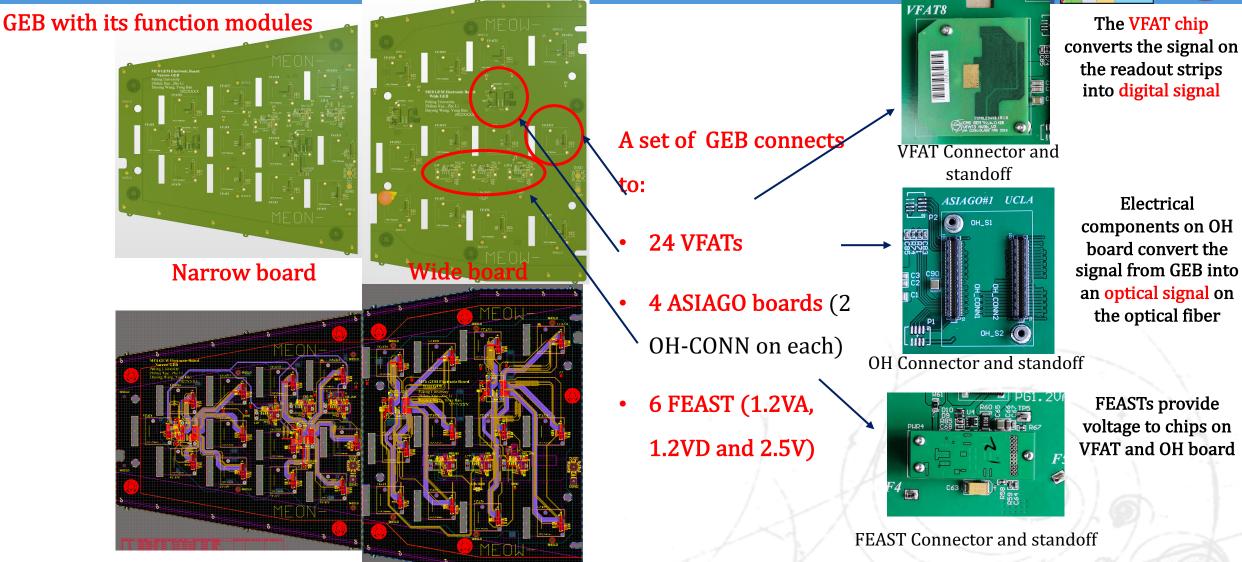


Outline:

- 1. Introduction of CMS ME0 GEB
- 2. Requirements of CMS ME0 GEB
- 3. Design of CMS ME0 GEB
- 4. Production and QC test of ME0 GEB
- 5. Summary

Introduction of CMS ME0 GEB

- GEB: front-end electronics board of GEM detector for upgraded CMS muon system (GE1/1, GE2/1, ME0)
- Function of GEB:
 - Carrier of front-end and back-end electronics system
 - Front-end signal transmission carrier
 - Provide direct shielding for GEM detectors
- Works of CMS China HEP group:
 - Production and test of GE1/1 GEB
 - Design、 production and test of ME0 and GE2/1 GEB
 - Development of automatic tester

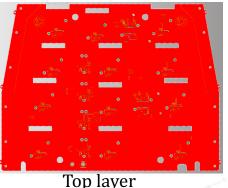


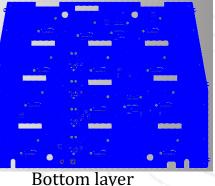
- Signal transmission:
 - Ensure that the **characteristic impedance** is 100 Ohm for differential line, and small fluctuations in characteristic impedance to reduce signal reflections
 - Ensuring that time delay of the signal lines are the same to meet isochronism requirement
 - Low BER (Bit Error Rate) and noise
- Power Supply:
 - Meet the different power requirements of VFAT and OH board
 - Effective power distribution systems
 - Power monitor, current, voltage and temperature monitor
 - Prevent large voltage drop during transmission
 - Validate the voltage to set value
- Mechanical performance:
 - Total board thickness is less than **1.1mm**, limited by installation space.
 - Surface flatness lower than the IPC standard curvature 0.75%.
 - standoffs (holding VFAT and OH boards) aligned and firmed mounted

Design of CMS ME0 GEB

Stacks of GEB board

To meet characteristic impedance requirement:


- Choose proper dielectric constant: surface solder 3.5 medium 4.2
- Copper thickness for signal stack:
 0.50z
- Mini number of vias for each differential line: 2 vias (Reduce the fluctuation of characteristic impedance)


To meet mechanical performance requirement:

- Board thickness: 1.05mm (within the requirement 1.1mm)
- Symmetrical arrangement and the same copper laying method (Reduce the curvature)
- > Use halogen-free boards

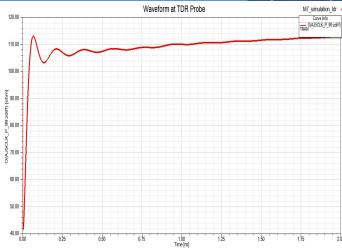
Stacks structure

	Top Overlay			Overlay			
	Top Solder	Solder Resist		Solder Mask	0. 01mm	3.5	
1	Top Layer		-	Signal	0. 035mm		1oz
	Dielectric 1	FR-4		Core	0. 16mm	4.2	
2	Signal 1			Signal	0. 018mm		1/2oz
	Dielectric 2			Prepreg	0. 13mm	4.2	
3	DGND1		-	Plane	0. 018mm		1/2oz
	Dielectric 3			Core	0. 08mm	4.2	
4	POWER			Plane	0. 036mm		1oz
	Dielectric 4			Prepreg	0. 076mm	4.2	
5	AGND2		-	Plane	0. 036mm		1oz
	Dielectric 6			Core	0. 08mm	4.2	
6	DGND2			Plane	0. 018mm		1/2oz
	Dielectric 9			Prepreg	0. 13mm	4.2	
7	Signal 2			Signal	0. 018mm		1/2oz
	Dielectric 7			Core	0. 16mm	4.2	
8	Bottom Layer			Signal	0. 035mm		1oz
	Bottom Solder	Solder Resist		Solder Mask	0. 01mm	3.5	
	Bottom Overlay			Overlay			

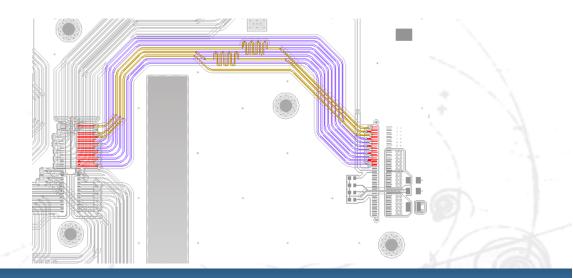
For example, top layer and bottom layer are laid with the same copper arrangement, in order to reduce the board curvature

Characteristic impedance and routing

CERN CCMS of the second second


Characteristic Impedance

- Set to **1000hm** for differential lines:
- Factors that affects characteristic impedance:
- (1) W1,W2:Line width
- (2) S1:Differential line separation
- (3) D1:Ground strip separation
- (4) H1,H2:Stack thickness
- (5) Er1, Er2: Dielectric constant of the medium
- **Routing:**
- Characteristic Impedance fluctuation: <10%

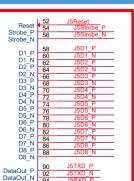

(1) Differential signal lines: linewidth / gap / linewidth: 0.1/0.25/0.1 mm (Considering coupling effect)

(2) Other parameters: Minimum distance to another pairs / DGND: 0.55mm / 0.6mm.

(3) Simpler routing design: Reduce routing corner

Characteristic impedance fluctuation of most differential line is within 10%

2024/11/14


Finalization of CMS ME0 GEB design

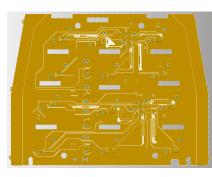
Signal

Signals introduction:

VFAT trigger unit outputs 9 differential signals: VFAT communication E-port has 3 pairs of differential signals

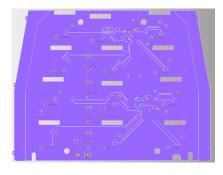
Clock

VFAT **reset signal** LVCMOS level signal: **RESET**

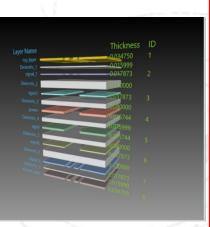

To meet time resolution requirement of signals: Equal length(CLK and RXD): J1-J6,J7-J12 To ensure signal isochronism

Designator	Average Leng.	Designator	Average Le
IICLK	208.835	J10CLK	276.24
J1RXD	208.835	J10RXD	276.24
J2CLK	208.835	J11CLK	276.24
J2RXD	208.835	J11RXD	276.24
J3CLK	208.835	J12CLK	276.24
J3RXD	208.83	J12RXD	276.24
J4CLK	208.835	J7CLK	276.24
J4RXD	208.835	J7RXD	276.24
JSCLK	208.835	J8CLK	276.24
J5RXD	208.835	J8RXD	276.24
J6CLK	208.835	J9CLK	276.24
J6RXD	208.835	J9RXD	276.236

Signals are arranged on two layers: Signal1 and signal2


orginal I alla Signal 2

Prevent crossover of signal lines as in GE1/1 case



Signal1 Layer

Both signal layers have upper (Top layer or bottom layer) and lower shielding layers (DGND1 and DGND2) to reduce signal interference

Signal2 Layer

Power distribution system

- Chip of VFAT and OH requires a different FEAST power supply
- 3 FEASTs provides 3 voltages to the corresponding chips of VFAT and OH board

Different colors show different power supply areas and link to different FEAST

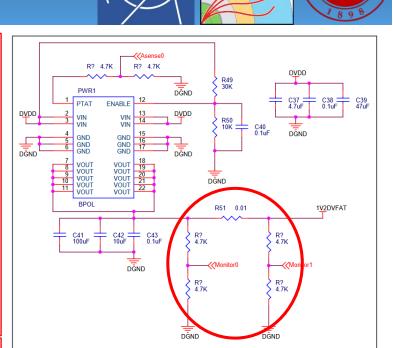
- GEB distribute the voltage from FEAST to VFAT and OH board through vias and power plane.
- In addition, grounding operation is achieved through the DGND and AGND planes.

Prevent voltage loss:

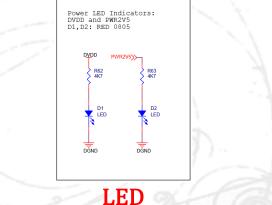
(1) The thickness of the power supply layer is **1**oz

(2) For high current power supply, we provide large area power plane

Power monitor


Power monitor:

introduced to ensure that the voltage value of the supply is normal

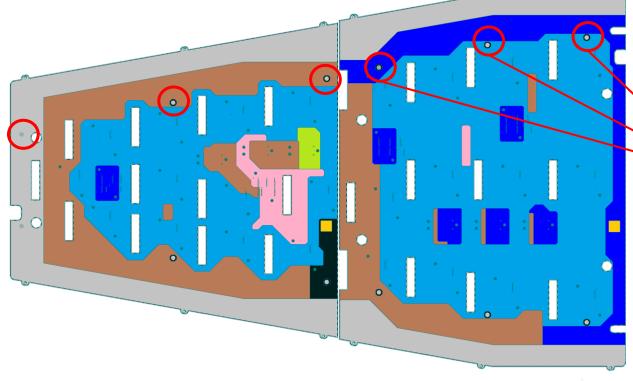

- The output **monitoring voltage** show whether the FEAST is working properly.
- To monitor the current output of each power supply, we use Monitor to detect the voltage drop through the current sensing resistor with a resistance of 0.01 Ohm.
- The GEB power supply is designed with 2 sets of LED lights, corresponding to the main power input terminal and 2.5V power output seperately, which can display the power supply status of both in time.

OH power supply;

- PWR1: 1V2DVFAT ---1.3A for one ASIAGO, total is 2.6A.
- PWR2: PWR2V5 --- 0.2A for one ASIAGO, total is 0.4A.
- VFAT power supply:
 - PWR1: 1V2DVFAT ---70mA for one ASIAGO, total is 840mA.
 - PWR2: PWR2V5 --- <1mA for every VFAT
 - PWR4: 1V2AVFAT ---140mA for one VFAT, total is 1.68A
- Voltage measurement:
 - Monitor1 and Monitor0 are 0.6V (1.2V × 0.5)
- Current measurement:
 - If Ir51 = 3.44A, voltage of Monitor0
 -Monitor1 = 17.2mV
 - $(3.44A \times 0.01\Omega \times 0.5)$

Power monitor of 1V2DVFAT

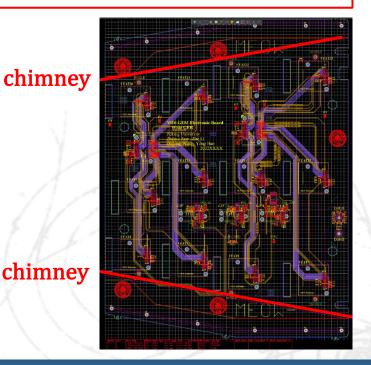
Finalization of CMS ME0 GEB design


第10页

Grounding system and shielding system

Grounding system:

2 DGND layer(digital ground) and 1 • AGND(analog ground) layer.

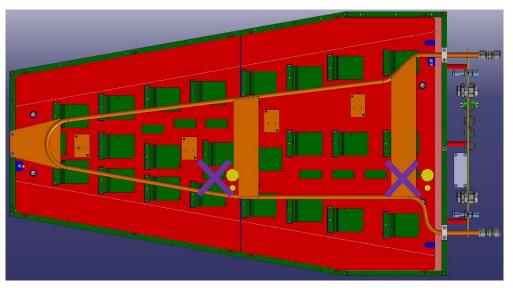

Split plane of AGND layer

Shielding system:

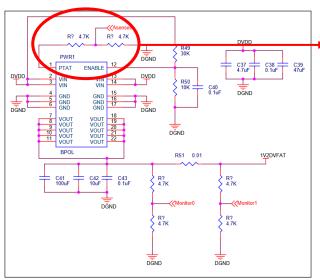
- The signal layer is between top/bottom layer ٠ and grounding layers to avoid electromagnetic interference.
- Shielding pads which connected to the external frame are added to reduce noise.

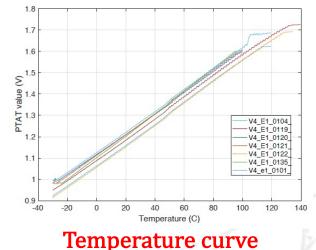
chimney

Shielding Pads 12 in total

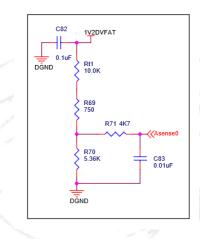

2024/11/14

Cooling system and temperature measurement


Cooling system to cool down the DAQ system: The cooling system is modified as the number

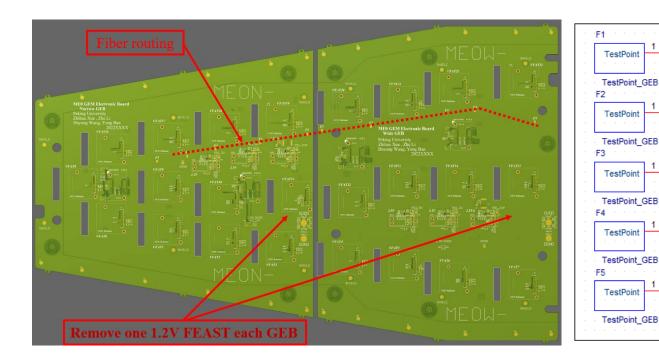

of FEAST is from 4 to 3.

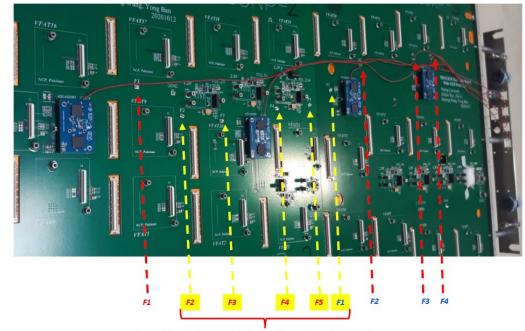
Cooling system


• Remove the 1.2VD FEAST which is located in the positions marked by the purple X

Temperature measurement:

- Temperature is measured by the pin of PTAT on the BPOL with divided resistors.
- The output of the divider of PTAT is 0.45V --- 0.85V(2.425mV/°C).
- PTAT output change with temperature shown as below picture.


Previous temperature measurement system


2024/11/14

Finalization of CMS ME0 GEB design

Fiber routing

Better in different position above the FEAST/BPOL Positions

Fiber fixing

- 5 KEYSTONE 5016 for narrow GEB
- 5 KEYSTONE 5016 for wide GEB

attach optical fiber to zipline

- In order to ensure it is firm, many through holes are placed on the keystone.
- In order to avoid signal interference,
- 1. The keystone is not grounded
- 2. No signal routes through the occupied position

2024/11/14

Finalization of CMS ME0 GEB design

Production site of ME0 GEB

• **Sinofast** in Shenzhen, China has long term collaboration with CMS-GEM team, has produced all GE1/1 & GE2/1 GEBs and ME0 GEB, including their prototypes

Etching Machine

Laminating Machine

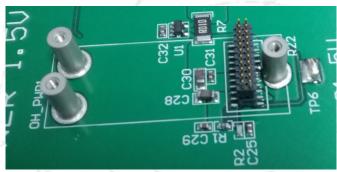
CNC drilling machine

Production and QC test of ME0 GEB

- Milestone of ME0 GEBs production:
 - Designed finalized in June 2022, 1st batch of 15 sets of ME0 GEBs produced on Jan. 2023, completed test at CERN in Apr. 2024
 - 240 sets of the remaining GEBs production completed in Feb. 2024, 2nd batch of 95 sets of GEBs tested in China and shipped to CERN in April 2024
 - 3rd batch of 145 sets of GEBs tested at China completed in Nov. 2024, shipped to CERN ~15 Nov.
- Test at GEB production site in Shenzhen Sinofast Ltd., China:
 - Flying Probe test and characteristic impedance test (by the factory)
 - Power module test
 - Signal connectivity test and BER test (new tool)
 - Bending degree test and mechanical compatibility test
- Acceptance test at CERN:
 - Similar as GE2/1 acceptance test at CERN, to make sure no damage caused by shipment.

Power module test

ASIAGO#2 UCLA



Voltage and current test of 3 power modules:

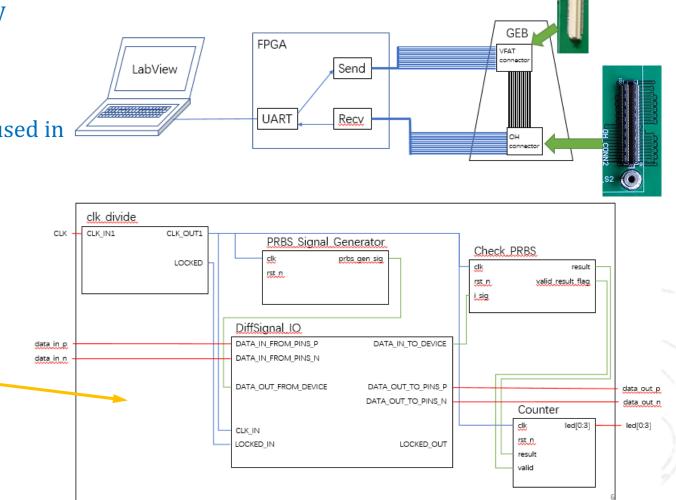
- 2.5V on OH board
- 1.2V digital power、 1.2V analog power supply on VFAT

 \rightarrow The power test has been done with the ME0 GEB(wide & narrow) prototypes, the results meet the GEB design requirements, and the fluctuations are within a reasonable range

2024/11/14

Verification

Signal Connectivity Test: FPGA-computer based device


- using Xilinx Spartan-6 FPGA and LabVIEW
- Used in acceptance test of GE2/1 GEB
- The device was verified and successfully used in GE2/1 mass production
 - Connectivity test:

all VFAT signal channels and power supply pins

• BER test:

schematic diagram
Test Criteria:
No short and open circuit (connectivity)

No error occurs in one minute (BER)

Flow chart of the test device

CM

Characteristic Impedance test

Characteristic Impedance test results (provided by Sinofast company)

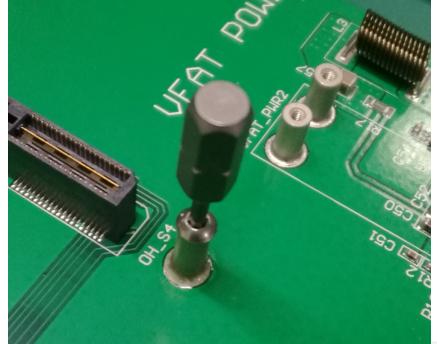
IMPEDANCE MEASUREMENT REPORT

阻抗测量报告

			阻	抗测	量报	生. 日			
TESTING	G QTY	:	1		DATE CODE :		4620		
1									
Measurin				-	071C (TDR T			tometer)时域	反射仪
Impedanc	ce Mea	asurement 🕅	1.抗测量于:	Finished	Board	瓦	戊品板		
			Type of Impedance 阻抗类别			Tolerance			
SampleN o. 样品编号	Laye r 层号	Line Width 线宽(mm) +/-10%	Single Ended 单端	Differenti al 差动	Impedance Requirement (ohm) 阻抗值要求	+	-	Impedance Value 阻抗测试数 值	Result 结果
	L1	0.192	/	V	100	10	10	100.23	ACC
1	L2	0.098	/	1	100	10	10	98.56	ACC
	L7	0.098	/	V	100	10	10	99.48	ACC
Remarks	6:								
Disposition:			Acc 🔽			Rej 🗆			
TESTED BY:		GV	GWEI			2020.	11.22	-	
APPROVED BY:		DQ	DQCAI			2020.	11.22	-	

Documentation NO.QA-2019-08 Rev:1.2

Mechanical Compatibility & Flying Probe Test



Mechanical compatibility test

- Mount VFAT (Plugin Card), OH board, and FEAST to check the collimation of Standoff.
- Test results of ME0 GEB prototypes: Standoff has good collimation

Automated flying probe test machine

Flying probe test:

• The factory performs automated flying probe test during GEB production.

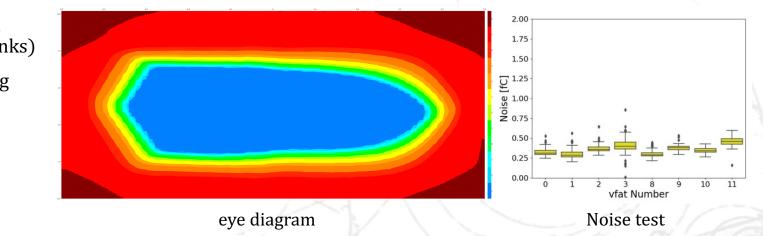
2024/11/14

Verification

Test At UCLA and FIT

Integration test with OH and VFATs

1. The goal:


 $6~\mbox{ME0}$ GEBs (2N + 4W) arrived and underwent full-loaded test at UCLA

2. Test process:

- Check voltages with only FEASTs loaded onto GEB
- Load one ASIAGO (ME0 Optohybrid) and one VFAT
- Check ASIAGO is ready and can communicate with VFAT
- Fully load GEB and check communication with all VFATs (tests full communication chain and DAQ elinks)
- Take current measurements using current sensing chips + thermistors on ME0 GEB and reading out through ADC of ASIAGO
- Check uplink and downlink error rates and eye diagrams

GEB Slot	Component	Status			
ASIAGO #1	ASIAGO_v1 #5 (Unfused)	•Receiving power •READY (frontend & backend) •I2C working •IC/EC working			
ASIAGO #2	ASIAGO_v1 #10 (Fused)	•Receiving power •READY (frontend & backend) •I2C working •IC/EC working			
All VFAT slots	Hybrids	•Receiving power			
Any 1 slots	Plugin cards	•Receiving power •Slow Control Firmware being implemented (Needs Addressing)			

Test result of fullloaded test

Verification

- ■The design, production and test of all CMS-GEM GEB are completed (except the acceptance test of the last batch of ME0 GEBs at CERN)
- ■We developed the GEB test criteria, procedure and automatic device, all GE1/1, GE2/1 and ME0 GEBs produced in China passed the test and shipped to CERN
- The CMS-GEM upgrade project is on schedule, Chinese group completed its shared tasks on GEBs (GEM electronics boards).