

Probing heavy meson lightcone distribution amplitudes with heavy quark spin symmetry

Shanghai Jiao Tong University arXiv:2409.00632, accepted in PRD Collaborators: Zhi-Fu Deng, Wei Wang, Yan-Bing Wei

Jun Zeng

2024.11.14

The 10th China LHC Physics Conference (CLHCP2024), Qingdao

1 Heavy Meson LCDAs

Heavy quark spin symmetry

Summary and outlook

2

3

Heavy Meson LCDAs

- The heavy meson LCDA describes the distribution of momentum of the quark-antiquark pair.
- Crucial for calculating decay processes of mesons, providing insights into their dynamics.
- An important tool for understanding non-perturbative aspects of QCD, especially in the strong coupling regime of heavy quarks.
- \triangleright It forms the basis for developing HQET, aiding in the study of heavy quark properties.

Understand the strong interactions of heavy quark decay

 $B \to \pi \pi$ Phys. Rev. Lett. 83, 1914 (1999) $B \to \pi K$ Nucl. Phys. B 606, 245 (2001) $B \to \pi D$ Phys. Rev. D 69, 112002 (2004)

Accurate measurement of SM parameters : Vub Vcs $B \to \pi \ell \nu$ PLB, 633(2006)61 $D \to K \ell \nu$ ZPC, 29 (1985) 637, 1862 citations

Precise measurement of CP violation parameters : A_{CP}

$$
A_{CP}(B^+\to \pi^+\pi^0) \qquad A_{CP}(B^+\to D^0\ell^+\nu_{\ell})
$$

$$
A_{CP}(B^+\to K^+\pi^0) \qquad A_{CP}(B^+\to \overline{D}{}^0\pi^+)
$$

Why is LCDA important?

Test of lepton universality with $B^0 \to K^{*0} \ell^+ \ell^-$ decays LHCb Collaboration · R. Aaij (CERN) et al. (May 16, 2017) Published in: JHEP 08 (2017) 055 · e-Print: 1705.05802 [hep-ex] D pdf ϑ links ϑ DOI $\quad \ \ \exists$ cite 目 datasets **昆** claim \ominus 1,344 citations _同 reference search Angular analysis of the $B^0 \to K^{*0} \mu^+ \mu^-$ decay using 3 fb $^{-1}$ of integrated luminosity LHCb Collaboration · Roel Aaij (CERN) et al. (Dec 14, 2015) Published in: JHEP 02 (2016) 104 · e-Print: 1512.04442 [hep-ex] links ³ن \mathscr{O} DOI $\quad \quad \boxdot \text{ site}$ 目 datasets claim Da pdf

B

reference search → 985 citations Measurement of the Differential Branching Fraction and Forward-Backward Asymmetry for $B \to K^{(*)} \ell^+ \ell^-$ Belle Collaboration • J.-T. Wei (Taiwan, Natl. Taiwan U.) et al. (Apr, 2009) Published in: Phys.Rev.Lett. 103 (2009) 171801 · e-Print: 0904.0770 [hep-ex] \Box cite \Box claim ♪ pdf ♂ DOI → 630 citations **a** reference search

Lepton Flavor Universality

Angular Analysis and P'_5

Forward-backward Asymmetry

Without reliable (precise) knowledge on LCDAs, it is hard to probe NP

Why is LCDA important?

$$
\langle \pi(p') \pi(q) | Q_i | \bar{B}(p) \rangle = f^{B \to \pi} (q^2) \int_0^1 dx T_i^{\text{I}}(x) \phi_{\pi}(x)
$$

+
$$
\int_0^1 d\xi dx dy' \chi_i^{\text{II}}(\xi, x, y) \phi_B(\xi) \phi_{\pi}(x) \phi_{\pi}(y)
$$

$$
B \to \pi \text{ form factor}
$$

Hard kernel

QCD Factorization: BBNS, PRL 83, 1914 (1999) For PQCD, See: Keum, Li, Sanda PRD 63,054008 (2001)

Heavy quark spin symmetry

7

The heavy meson QCD LCDA

$$
\mathcal{O}_{C}^{P}(u) = \int \frac{dt}{2\pi} e^{-iutn_{+} \cdot p} \bar{\xi}_{C}^{(Q)}(0) \psi_{+} \gamma_{5} [0, t_{+}] \xi_{C}(t_{+}) = \int \frac{dt}{2\pi} e^{-iutn_{+} \cdot p} \bar{Q}(0) \psi_{+} \gamma_{5} [0, t_{+}] q(t_{+}),
$$

\n
$$
\mathcal{O}_{C}^{\parallel}(u) = \int \frac{dt}{2\pi} e^{-iutn_{+} \cdot p} \bar{\xi}_{C}^{(Q)}(0) \psi_{+} [0, t_{+}] \xi_{C}(t_{+}) = \int \frac{dt}{2\pi} e^{-iutn_{+} \cdot p} \bar{Q}(0) \psi_{+} [0, t_{+}] q(t_{+}),
$$

\n
$$
\mathcal{O}_{C}^{\perp \mu}(u) = \int \frac{dt}{2\pi} e^{-iutn_{+} \cdot p} \bar{\xi}_{C}^{(Q)}(0) \psi_{+} \gamma_{+}^{\mu} [0, t_{+}] \xi_{C}(t_{+}) = \int \frac{dt}{2\pi} e^{-iutn_{+} \cdot p} \bar{Q}(0) \psi_{+} \gamma_{+}^{\mu} [0, t_{+}] q(t_{+}),
$$

$$
\langle H (p_H) | O_C^P(u) | 0 \rangle = -i f_P \phi_P(u),
$$

$$
\langle H^* (p_H, \eta) | O_C^{\parallel}(u) | 0 \rangle = f_{\parallel} \frac{m_H}{n_+ \cdot p_H} n_+ \cdot \eta^* \phi_{\parallel}(u),
$$

$$
\langle H^* (p_H, \eta) | O_C^{\perp \mu}(u) | 0 \rangle = f_{\perp}(\mu) \eta^*_{\perp} \phi_{\perp}(u).
$$

$$
q(x) = \xi_C(x) + \eta_C(x),
$$

\n
$$
Q(x) = \xi_C^{(Q)}(x) + \eta_C^{(Q)}(x),
$$

\n
$$
\xi_C(x) = \frac{\cancel{\eta_1} + \cancel{\eta_1} + \eta_2(x)}{4},
$$

\n
$$
\xi_C^{(Q)}(x) = \frac{\cancel{\eta_1} + \cancel{\eta_1} + \eta_2(x)}{4},
$$

\n
$$
\eta_C(x) = \frac{\cancel{\eta_1} + \cancel{\eta_2} - \eta_2(x)}{4},
$$

\n
$$
\eta_C^{(Q)}(x) = \frac{\cancel{\eta_1} + \cancel{\eta_2} - \eta_2(x)}{4}.
$$

 $\mathcal{L}_{\text{HQET}} = h_v(x)iv \cdot Dh_v(x)$ In heavy-quark limit:The leading-twist heavy-meson LCDA in HQET [Grozin and Neubert, 96] $\langle H(p_H)|O_v^P(tn_+)|0\rangle = -i\tilde{f}_Hm_Hn_+\cdot v\int_0^\infty d\omega e^{i\omega tn_+ \cdot v}\varphi_+(\omega;\mu),$ $\langle H^*(p_H,\eta)|O_v^{||}(tn_+)|0\rangle = \tilde{f}_H m_H n_+ \cdot \eta^* \int_0^\infty d\omega e^{i\omega tn_+ \cdot v} \varphi_+(\omega;\mu),$ $\langle H^*(p_H,\eta)|O_v^{\perp\mu}(tn_+)|0\rangle = \tilde{f}_H m_H n_+ \cdot v \eta_\perp^{*\mu} \int_0^\infty d\omega e^{i\omega tn_+ \cdot v} \varphi_+(\omega;\mu),$ $O_v^P(tn_+) = \bar{h}_v(0)\psi_+\gamma_5[0, tn_+]q_s(tn_+),$ $h_v(x) = e^{im_Q v \cdot x} \frac{1+\psi}{2} Q(x)$ $O_v^{\parallel}(tn_+) = \bar{h}_v(0)\psi_+[0, tn_+]q_s(tn_+),$ $O_v^{\perp \mu}(tn_+) = \bar{h}_v(0) \psi_+ \gamma_\perp^{\mu} [0, tn_+] q_s(tn_+),$

HQET LCDAs is boost invariant and can also be defined in boosted HQET (bHQET)

$$
\langle H(p_H) | O_b^P(\omega) | 0 \rangle = -i \tilde{f}_H \varphi_+(\omega; \mu),
$$

$$
\langle H^*(p_H, \eta) | O_b^{\parallel}(\omega) | 0 \rangle = \tilde{f}_H \frac{n_+ \cdot \eta^*}{n_+ \cdot \nu} \varphi_+(\omega; \mu)
$$

$$
\langle H^*(p_H, \eta) | O_b^{\perp \mu}(\omega) | 0 \rangle = \tilde{f}_H \eta^*_{\perp} \varphi_+(\omega; \mu).
$$

$$
\mathcal{O}_b^P(\omega) = \frac{1}{m_H} \int \frac{dt}{2\pi} e^{-it\omega n_+ \cdot v} \sqrt{\frac{n_+ \cdot v}{2}} \bar{h}_n(0) \psi_+ \gamma_5[0, tn_+] \xi_{sc}(tn_+),
$$

$$
\mathcal{O}_b^{\parallel}(\omega) = \frac{1}{m_H} \int \frac{dt}{2\pi} e^{-it\omega n_+ \cdot v} \sqrt{\frac{n_+ \cdot v}{2}} \bar{h}_n(0) \psi_+[0, tn_+] \xi_{sc}(tn_+),
$$

$$
\mathcal{O}_b^{\perp \mu}(\omega) = \frac{1}{m_H} \int \frac{dt}{2\pi} e^{-it\omega n_+ \cdot v} \sqrt{\frac{n_+ \cdot v}{2}} \bar{h}_n(0) \psi_+ \gamma_\perp^{\mu}[0, tn_+] \xi_{sc}(tn_+),
$$

The soft-collinear field describes the light anti-quark in the heavy meson in the boosted frame.

 $h_n(x) \equiv \sqrt{\frac{2}{n_+ \cdot v}} e^{i m_Q v \cdot x} \frac{\rlap{\hspace{0.1mm}/} n_+ \rlap{\hspace{0.1mm}/} \rlap{\hspace{0.1mm}/} n_+}{4} Q(x)$

$$
\xi_{sc}=\tfrac{\rlap{\hspace{0.02cm}/}{n}\rightharpoondown}{4}q_{sc}(x)
$$

The heavy meson QCD LCDA

 χ u: The light quark momentum fraction

$$
\mathcal{O}_{\rm QCD}^i(u) = \int \frac{dt}{2\pi} e^{-iutn + \cdot p_H} \bar{Q}(0)\psi_+ \Gamma_i[0, tn_+] q(tn_+)
$$

The heavy meson HQET LCDA

$$
\Gamma_i=\gamma^5,1,\gamma_\perp^\mu
$$

$$
O_{v}^{i}(\omega)=\int\frac{dt}{2\pi}e^{-it\omega n_{+}\cdot v}\bar{h}_{v}(0)\rlap{\hspace{0.02cm}/}_{\psi}+\Gamma_{i}[0,tn_{+}]q_{s}(tn_{+})
$$

$$
\langle Q(p_Q)\bar{q}(p_q)|\mathcal{O}_{\rm QCD}^i(u)|0\rangle = \frac{1}{n_+p_H}\int_0^\infty d\omega \mathcal{J}^i(u,\omega) \langle Q(p_Q)\bar{q}(p_q)|\mathcal{O}_v^i(\omega)|0\rangle
$$

FIG. 1. The one-loop diagrams relevant for calculating the jet function.

$$
\phi_i(u) = \frac{\tilde{f}_H}{f_i} \mathcal{J}^i(u,\omega) \otimes \varphi_+(\omega), \qquad u \sim \mathcal{O}(\frac{\Lambda_{\text{QCD}}}{m_Q}) \text{ peak region}
$$

$$
W_{Q,i}^{\text{QCD}}(u,s) = \int \frac{D^d q}{(2\pi)^d} \frac{-ig_{\mu\nu}\delta^{ab}}{q^2 + i\epsilon} \frac{\delta_{ik}\bar{u}(p_Q)(igT_{ij}^a \gamma^{\mu}) \frac{i(p_Q - q + m_Q)}{(p_Q - q)^2 - m_Q^2 + i\epsilon} (ign_{+}^{\nu}T_{jk}^b) \frac{i}{n_{+} \cdot q + i\epsilon} \Gamma_i v(p_q)}{i\bar{u}(p_Q)\Gamma_i v(p_q)} \qquad W_{Q,i}^{\text{QCD},h}(u,s) = ig_s^2 C_F \int \frac{D^d q}{(2\pi)^d} \frac{2n_{+} \cdot (p_Q - q)\delta(s - u)}{[(p_Q - q)^2 - m_Q^2 + i\epsilon] \left[n_{+} \cdot q + i\epsilon\right] \left[q^2 + i\epsilon\right]}{\left[\left(n_{+} \cdot q + i\epsilon\right] \left[q^2 + i\epsilon\right]},
$$
\n
$$
(\delta(u - s - \frac{n_{+} \cdot q}{n_{+} \cdot p_{H}}) - \delta(u - s))
$$
\n
$$
= -ig_s^2 C_F \int \frac{D^d q}{(2\pi)^d} \frac{2n_{+} \cdot (p_Q - q)\left(\delta(u - s - \frac{n_{+} \cdot q}{n_{+} \cdot p_{H}}) - \delta(u - s)\right)}{[(p_Q - q)^2 - m_Q^2 + i\epsilon] \left[n_{+} \cdot q + i\epsilon\right] \left[q^2 + i\epsilon\right]},
$$
\n
$$
\bar{u}(p_Q) \Gamma_i v(p_q)
$$
\n
$$
W_{Q,i}^{\text{QCD},s}(u,s) = -ig_s^2 C_F \int \frac{D^d q}{(2\pi)^d} \frac{2n_{+} \cdot p_Q\left(\delta(u - s - \frac{n_{+} \cdot q}{n_{+} \cdot p_{H}}) - \delta(u - s)\right)}{[(p_Q - q)^2 - m_Q^2 + i\epsilon] \left[n_{+} \cdot q + i\epsilon\right] \left[q^2 + i\epsilon\right]},
$$
\n
$$
W_Q
$$

$$
W_{q,i}^{\text{QCD}}(u,s) = \int \frac{D^dq}{(2\pi)^d} \frac{-ig_{\mu\nu}\delta^{ab}}{q^2 + i\epsilon} \frac{\delta_{ik}\bar{u}(p_Q) \frac{i}{n_i+q+i\epsilon} \left(-igT_{ij}^{\alpha}n_{+}^{\mu} \right) \Gamma_i \frac{i}{(p_q - q)^2 + i\epsilon} (ig\gamma^{\nu}T_{jk}^b) v(p_q)}{i\bar{u}(p_Q) \Gamma_i v(p_q)} \qquad W_{q,i}^{\text{QCD},h}(u,s) = -\delta (u-s)ig_s^2 C_F \int \frac{D^dq}{(2\pi)^d} \frac{2n_+ \cdot (-q)}{[q^2 + i\epsilon]} \frac{2n_+ \cdot (-q)}{[q^2 + i\
$$

Heavy quark spin symmetry

$$
W_{Q,i}^{\text{HQET}}(\omega,\omega_{0}) = \int \frac{D^{d}q}{(2\pi)^{d}} \frac{-ig_{\mu\nu}\delta^{ab}}{q^{2}+i\epsilon} \frac{\delta_{ik}\bar{u}(p_{Q})(ig_{q}^{a}{}_{ij}^{a}\nu^{\mu})\frac{1+\not p}{2} \frac{i\Gamma_{i}}{v\cdot k+i\epsilon}(ig_{n}{}^{\mu}{}_{i}{}^{T}{}_{j}{}_{k})\frac{i}{n_{+}\cdot q+i\epsilon}v(p_{q})}{\bar{u}(p_{Q})\Gamma_{i}v(p_{q})}
$$
\n
$$
= -ig_{s}^{2}C_{F}n_{+}\cdot v \int \frac{D^{d}q}{(2\pi)^{d}} \frac{\left(\delta(\omega - \frac{n_{+}\cdot p_{q}}{n_{+}\cdot v})\right)}{[-v\cdot q+i\epsilon]\left[n_{+}\cdot q+i\epsilon]\left[q^{2}+i\epsilon\right]}\right]}{\left[n_{+}\cdot q+i\epsilon\left[q^{2}+i\epsilon\right]}\right]}.
$$
\n
$$
W_{q,i}^{\text{HQET}}(\omega,\omega_{0}) = \int \frac{D^{d}q}{(2\pi)^{d}} \frac{-ig_{\mu\nu}\delta^{ab}}{q^{2}+i\epsilon} \frac{\delta_{ik}\bar{u}(p_{Q})\frac{i}{n_{+}\cdot q+i\epsilon}(-ig_{q}^{a}{}_{j}^{a}{}_{j}{}^{\mu}{}_{j})\Gamma_{i}\frac{i(p_{q}-q)}{(p_{q}-q)^{2}+i\epsilon}(ig\gamma^{\nu}T_{jk}^{b})v(p_{q})}{\bar{u}(p_{Q})\Gamma_{i}v(p_{q})}
$$
\n
$$
\left(\delta(\omega - \frac{n_{+}\cdot (p_{q}-q)}{n_{+}\cdot v})\right) - \delta(\omega - \frac{n_{+}\cdot p_{q}}{n_{+}\cdot v})\right)
$$
\n
$$
= ig_{s}^{2}C_{F} \int \frac{D^{d}q}{(2\pi)^{d}} \frac{2n_{+}\cdot (p_{q}-q)\left(\delta(\omega - \frac{n_{+}\cdot p_{q}-q)}{n_{+}\cdot v}\right)}{\left[(p_{q}-q)^{2}+i\epsilon\right]\left[n_{+}\cdot q+i\epsilon\right]\left[q^{2}+i\epsilon\right]}.
$$
\n
$$
V_{i}^{\text{RQET}}(\omega,\omega_{0}) = \int
$$

QCD
\n
$$
i \frac{p + m_Q}{p^2 - m_Q^2 + i\varepsilon} = i \frac{m_Q \psi + m_Q + k}{2m_Q v \cdot k + k^2 + i\varepsilon} \rightarrow i \frac{1 + \psi}{2v \cdot k + i\varepsilon}
$$
\n
$$
\gamma^{\mu} \rightarrow \frac{1 + \psi}{2} \gamma^{\mu} \frac{1 + \psi}{2} = v^{\mu} \frac{1 + \psi}{2} \rightarrow v^{\mu}
$$

The soft region contribution of QCD is diagram by diagram the same as the HQET results.

$$
W_{Q,i}^{\text{QCD},s}(u, \frac{\omega}{m_H}) = m_H W_{Q,i}^{\text{HQET}}(um_H, \omega)
$$

$$
W_{q,i}^{\text{QCD},s}(u,\frac{\omega}{m_H}) = m_H W_{q,i}^{\text{HQET}}(um_H, \omega)
$$

$$
V_i^{\text{QCD},s}(u,\frac{\omega}{m_H}) = m_H V_i^{\text{HQET}}(um_H,\omega)
$$

Heavy quark spin symmetry

$$
\mathcal{J}^{i}(u,\omega) = \theta(m_{H} - \omega)\delta(u - \frac{\omega}{m_{H}})\left(1 + \frac{\alpha_{s}C_{F}}{4\pi}\mathcal{J}_{\text{peak}}^{(1)}(m_{H}) + \mathcal{O}(\alpha_{s}^{2})\right), \qquad i = P, \parallel, \perp
$$

$$
\mathcal{J}_{\text{peak}}^{(1)}(m_{H}) = \frac{1}{2}\ln^{2}\frac{\mu^{2}}{m_{H}^{2}} + \frac{1}{2}\ln\frac{\mu^{2}}{m_{H}^{2}} + \frac{\pi^{2}}{12} + 2. \qquad \text{Independent of hadron spin!}
$$

$$
W_{Q,hc}^{\text{SCET}} = W_{Q,h}^{\text{QCD}} = 2ig_{s}^{2}C_{F} \int \frac{d^{D}l}{(2\pi)^{D}} \frac{n_{+} \cdot (p_{Q} - l)\delta(u - s)}{(l^{2} - 2l \cdot p_{Q} + i\epsilon)(l^{2} + i\epsilon)(n_{+} \cdot l + i\epsilon)}
$$

$$
W_{q,hc}^{\text{SCET}} = W_{q,h}^{\text{QCD}} = 0
$$

$$
V_{hc}^{\text{SCET}} = V_{h}^{\text{QCD}} = 0. \qquad \text{More details, see Yan-Bing Wei's talk(16th afternoon)}
$$

$$
W_{Q,i}^{\text{HQET}} = W_{Q,i}^{\text{bHQET}}, W_{q,i}^{\text{HQET}} = W_{q,i}^{\text{bHQET}}, \text{and } V_{i}^{\text{HQET}} = V_{i}^{\text{bHQET}}
$$

Quasi DAs to QCD LCDAs

$$
\hat{\mathcal{O}}_i(x) = \int \frac{dz n_z \cdot P}{2\pi} e^{-ixzn_z \cdot P} \bar{Q}(0) \Gamma_i[0, zn_z] q(zn_z) \quad r_i = \gamma^{z/t} \gamma_5, \gamma^{z/t}, \gamma^{z/t} \gamma_{\perp}^{\mu} \text{ for } i = P, \parallel, \perp
$$
\n
$$
\langle H (p_H) | \hat{\mathcal{O}}_P(x) | 0 \rangle = -i \hat{f}_P P^{z/t} \hat{\phi}_P(x),
$$
\n
$$
\langle H^* (p_H, \eta) | \hat{\mathcal{O}}_{||}(x) | 0 \rangle = \hat{f}_{||} m_{H^*} \eta^{*, z/t} \hat{\phi}_{||}(x),
$$
\n**Quasi DAs**\n
$$
\langle H^* (p_H, \eta) | \hat{\mathcal{O}}_{\perp}^{\mu}(x) | 0 \rangle = \hat{f}_{\perp} P^{z/t} \eta_{\perp}^{*\mu} \hat{\phi}_{\perp}(x).
$$
\n**Lattice QCD calculable!**\n
$$
\hat{\phi}_i(x) = \int dy \left[\left(\delta(x - y) + C_i^{(1)}(x, y, \mu) - C_{CT}^{(1)} \right) \phi_i(y, \mu) + \mathcal{O}\left(\frac{\Lambda_{QCD}^2}{(yP^z)^2}, \frac{m_H^2}{(P^z)^2}\right) \right]
$$
\n**LamET matching**\n**J. Xu, Q. A. Zhang and S. Zhao, PRD 97 (2018) 114026
\nY. S. Liu, W. Wang, J. Xu, Q. A. Zhang, S. Zhao and Y. Zhao, PRD, 99(2019) 094036**

The recent work: 2403.17492 [hep-ph], 2410.18654 [hep-lat]

- A multi-scale processes:
	- 1. LaMET requires Λ_{QCD} , $m_H \ll P^2$ and finally integrate out P^2 ;
	- 2. HQET requires $\Lambda_{\text{QCD}} \ll m_H$ and integrate out m_H ; *See Yueying Han's talk(15th afternoon)*
- \Rightarrow **Hierarchy** $\Lambda_{QCD} \ll m_H \ll P^z$: A big challenge for lattice simulation but still calculable on the lattice

 \triangleright The LCDAs at for a heavy pseudoscalar and vector meson within the framework of HQET become indistinguishable.

 \triangleright The leading-twist HQET LCDA can be determined through lattice simulations of quasi-DAs with a large momentum.

 \triangleright One can make use of three different equal time matrix elements and determine the same HQET LCDA.

Thank you for your attention!

In the rest frame the external state momenta are

 $p_Q^{\mu} \sim (m_Q, \Lambda_{\rm QCD}, m_Q), \quad p_q^{\mu} \sim (\Lambda_{\rm QCD}, \Lambda_{\rm QCD}, \Lambda_{\rm QCD}).$

The hard and soft region is

hard $\sim (m_Q, m_Q, m_Q)$, soft $\sim (\Lambda_{\rm QCD}, \Lambda_{\rm QCD}, \Lambda_{\rm QCD})$

In the boost frame, the external state momenta are

 $p_Q^{\mu} \sim$ hard collinear $\sim (Q, m_H, m_H^2/Q)$, $p_q^{\mu} \sim$ soft collinear $\sim (Q, m_H, m_H^2/Q)\lambda$.

$$
|H^{(*)}(p_H)\rangle = \sqrt{m_H} \big[|H_v\rangle + \mathcal{O}(1/m_H)\big]
$$