Overview on ATLAS B Physics Results Highlights

Xin Chen

Tsinghua University

CLHCP 2024 Nov 14-17, Qingdao, Shandong

Introduction – ATLAS B Physics

ATLAS has a broad program in hadron and flavor physics

- Rare heavy flavor hadron decays, CP and LFU violations
- Hadron spectroscopy and production
- Exotic hadron search

B physics results are competitive, thanks to

- Efficient data-taking including B physics triggers (mainly dimuon and trimuon triggers)
- Good muon acceptance and identification down to ~2.5 GeV
- Good tracking acceptance down to 0.5 GeV (and can be lowered by request)

Usually requires a pair of leptons with mass consistent with J/ ψ or Y to reduce backgrounds

 $B_s \rightarrow \mu\mu$ Lifetime

 $B_s \rightarrow \mu\mu$ is a FCNC process via loop diagrams, has a very small BR and sensitive to New Physics

- New Physics can manifest itself in either $B_s \to \mu\mu$ BR or lifetime, which are independent tests
- In SM, only CP-odd (heavy) B_s state decays to dimuon. The CP-odd lifetime could be very different from the effective lifetime
- BR already measured with first Run-2 data, can proceed to proper decay time

[JHEP04 (2019) 098]

 $B_s \rightarrow \mu\mu$ Lifetime

[JHEP09 (2023) 199]

- Backgrounds mainly consist of combinatorial, partially reconstructed b-hadron decays (SSSV). Other small sources are treated as systematics
- Unbinned Extended ML fit to $m(\mu\mu)$ distribution, with background parameters unconstrained and signal shape from MC. Signal yield is 58 ± 13
- Proper decay time is calculated as $\tilde{\tau}=$ $L_{xy}m_{B_S}^{PDG}$ $p_T^{\bf D}$ $\frac{\mu_{B_S}}{B_S}$ ($L_{\chi y}$ is the transverse flight distance)
- Background is subtracted by *sPlot* technique to obtain the signal $\tilde{\tau}$

 $B_s \rightarrow \mu\mu$ Lifetime

- Signal templates with different proper decay times are generated from MC with truth reweighting to different $\tilde{\tau}$
- Get binned χ^2 between data (background subtracted) and different templates, and taking the smallest χ^2
- χ^2 incudes data and MC uncertainties, and closure test is done with toys
- Full procedure is repeated with $B^{\pm} \rightarrow J/\psi K^{\pm}$ signal in data for L_{xy} resolution effect – found to be a 134 fs effect

$B_s \rightarrow \mu\mu$ Lifetime

- Neyman construction to go from observed to true proper time
- Largest systematics from Data-**MC** discrepancies
- Measured $\tau_{\mu\mu} = 0.99^{+0.42}_{-0.07} (stat.)$ \bullet \pm 0.17(sys.) ps, compared with SM prediction of 1.624 ± 0.009 ps

Hidden charm tetraquark

- X(3872) at Belle, Y(4260) at BABAR, $Z_c^+(3900)$ at BESIII, and later a number of XYZ states …
- Charmed Tetraquark (TQ) state is often proposed for these LS
- Potential 4-charm TQ from LHCb

Reconstruction of 4μ vertex at ATLAS

- We first find vertices of J/ψ candidates and geometrically fit the 4 tracks of a J/ψ pair to a common vertex. We revertex two J/ψ tracks with a mass constraint, improving the 4μ mass resolution from \sim 95 MeV to \sim 20 MeV
- Use sum of χ^2/N of two charmonia and 4μ vertices to select the best 4μ candidate per event

SPS and DPS backgrounds

Both color singlet and color octet processes are included for di-charmonium SPS, dominated by gluon-gluon interactions. As a result, the two J/ψ 's from SPS are highly correlated

- DPS populates the reatively low- p_T region, and becomes more important with larger collider energy, as the parton density increases at small x
- If neglecting correlations between partons (effective cross section approximation):

$$
\sigma_{\textrm{eff}}\ =\ \frac{1}{2}\frac{\sigma_{J/\psi}^2}{\sigma_{\textrm{DPS}}^{J/\psi,J/\psi}}
$$

000000 DPS: **000000** μ^{+}

Event selection

Signal region cuts:

- di-µ or tri-µ triggers per year for maximum efficiency
- 4 muons with minimum p_T of 3 GeV within accepance
- Vertex χ^2/N cut, J/ ψ mass window cuts
- L_{xv} (distance between J/ ψ and PV vertices) cut
- $\Delta R < 0.25$ of two J/ψ 's
- **•** SPS and DPS are estimated by MC, and are kinematically corrected by SPS and DPS enriched 4μ mass sidebands (SPS and DPS CRs)
- \bullet Non-prompt J/ ψ background is estimated with data by reversing the $L_{\chi \nu}$ or χ^2 $/N$ cut

SPS and DPS CRs in $J/\psi + \psi(2S)$ channel

- Larger "others" background due to smaller signal/background ratio for $\psi(2S)$
- SPS and DPS are also corrected through reweighting method (after "others" corrections in its dedicated $CR - J/\psi$ mass sidebands)

Fit models in di-J/ ψ channel

- In the di-J/ ψ channel, two models are considered
	- Model A with three interfering S-wave resonances

$$
f_s(x) = \left| \sum_{i=0}^{2} \frac{z_i}{m_i^2 - x^2 - im_i \Gamma_i(x)} \right|^2 \sqrt{1 - \frac{4m_{J/\psi}^2}{x^2}} \otimes R(\theta)
$$

where z_1 is fixed to unity with zero phase, and R is the mass resolution function that the BWs convolute with

• Model B with two S-wave resonances. The first interferes with SPS, while the second is standalone

$$
f(x) = \left(\left| \frac{z_0}{m_0^2 - x^2 - im_0 \Gamma_0(x)} + A(x)e^{i\phi} \right|^2 + \left| \frac{z_2}{m_2^2 - x^2 - im_2 \Gamma_2(x)} \right|^2 \right) \sqrt{1 - \frac{4m_{J/\psi}^2}{x^2}} \otimes R(\theta)
$$

where $|A(x)|^2$ reproduces the non-interfering SPS background from the MC prediction

Fit result in di-J/ ψ channel

Fit models in $J/\psi+\psi(2S)$ channel

- In the J/ ψ + ψ (2S) channel, two models are also considered
	- Model α with two resonances. The first is the same as Model A in di-J/ ψ channel (parameters fixed), and second is standalone

$$
f_s(x) = \left(\left| \sum_{i=0}^{2} \frac{z_i}{m_i^2 - x^2 - im_i \Gamma_i(x)} \right|^2 + \left| \frac{z_3}{m_3^2 - x^2 - im_3 \Gamma_3(x)} \right|^2 \right) \sqrt{1 - \left(\frac{m_{J/\psi} + m_{\psi(2S)}}{x} \right)^2} \otimes R(\theta)
$$

- Model β with a single resonance
- l The feed-down background normalization is obtained as

$$
N_{\rm fd} = \frac{\mathcal{B}' \epsilon'}{\mathcal{B}(\psi(2S) \to \mu\mu) \epsilon} N
$$

where $\mathcal{B}' = [\mathcal{B}(\psi(2S) \to J/\psi + X) + \mathcal{B}(\psi(2S) \to \gamma \chi_{cJ}) \mathcal{B}(\chi_{cJ} \to \gamma J/\psi)] \mathcal{B}(J/\psi \to \mu\mu)$

Reconstruction systematics largely cancel each others in the ratio. The only significant systematics comes from the fitted error on signal yields N in the J/ψ+ψ(2S) channel

Fit result in $J/\psi + \psi(2S)$ channel

Total signal significance is 4.7 σ (4.3 σ) for Model α (β). In model α , the significance of the second resonance alone is 3.0 σ

Full-beauty tetraquark?

- A tightly bound $bbbbb$ tetraquark state can have a mass below the threshold of $\eta_b \eta_b$, and decays to $Y(1S) + \mu^+ \mu^- \rightarrow 4\mu$. This possible full-beauty tetraquark has been searched by ATLAS and other experiments (while other theoretical interpretations, e.g. a BSM Higgs, is also feasible)
- A potential resonance in the $Y(1S) + \mu^+\mu^-$ channel have not been established by CMS and LHCb. It deserves a further check at ATLAS

Baseline cuts

• Baseline event selections for the $Y(1S) + \mu^+ \mu^-$ search at ATLAS:

- The background is modelled by a 4th-order Chebyshev polynomial and the signal by a Gaussian with its width fixed to the detector resolution (~0.2 GeV).
- Since the run-1 data did not follow a blind/unblind procedure, various modified selections w.r.t. the baseline cuts are applied to check the stability of the peak around 18 GeV (backup)

$Y + \mu\mu$ search with 13 TeV run-2 data

- Signal yields around 18 GeV are much smaller than in run-1, so the Gaussian width is fixed to 0.2 GeV, and the mass in 2015-2017 (2018) is floated (fixed to 18.05 GeV)
- Fitted signal yields are 48 \pm 25 and −4 \pm 22 in the two periods, while the backgrounds are ~2.5 times larger per unit integrated luminosity in run-2 than in run-1

$Y + \mu\mu$ search limits

Limits/measurements on $\sigma_{X(18)}$. Br(X(18) \rightarrow Y(1S)[$\rightarrow \mu^+ \mu^-$]+ $\mu^+ \mu^-$)

- CL_s limits on $\sigma \times \text{BR}$ of the 18 GeV peak are calculated with different signal models: 'Low ε' and 'high ε' refer to the limits derived from signal models with lowest (Higgs-like scalar) and highest (pseudoscalar tetraquark) predicted selection plus reconstruction efficiencies, respectively
- Further study with increased statistics from Run-3 data is needed

Summary

- ATLAS is not only a discovery machine for high energy physics, but can also make low energy hadron measurements owing to its excellent tracking
- $B_s \to \mu\mu$ lifetime result is competitive with existing ones from other experiment, and the 18 GeV peak in $Y + \mu\mu$ has not been established by ATLAS
- ATLAS searched for full-charmed tetraquarks decaying into a pair of J/ψ's, or into J/ψ+ψ(2S), in the 4µ final state
	- \checkmark Two models are used to fit the significant excess in the di-J/ ψ channel, one of which is consistent with X(6900) by LHCb and CMS
	- \checkmark Two models are used to fit the excess in the J/ ψ + ψ (2S) channel. More data is needed to measure its parameters
- We look forward to new results combing Run-3 of LHC

Backup Slides

Introduction – exotic hadrons

Traditional quark models: \bar{q} \boldsymbol{q} $\it q$ q q Meson Baryon $\overline{D^{*0}}$ Diquark-diantiquark D^0 - $\overline{D^{*0}}$ "molecule" q $\bar{\mathbf{D}}^{(*)}$ $\Sigma_{\rm c}^{(*)}$ \mathbf{c} \overline{c} Pentaquark \overline{q} Meson + baryon "molecule"

Full heavy tetraquark

 $(cc)_3* - (\overline{cc})_3$

L	S	I ^{PC}			Mass (GeV)
1	θ 1	$1 - -$ 0^{-+} , 1^{-+} , 2^{-+}			6.55
	\overline{c}		1^{--} , 2^{--} , 3^{--}		
$\overline{2}$	Ω	2^{++} 1^{+-} , 2^{+-} , 3^{+-} 0^{++} , 1^{++} , 2^{++} , 3^{++} , 4^{++}			6.78
	1 $\overline{2}$				
3	θ	3^{--}			6.98
	$\mathbf 1$ $\overline{2}$	2^{-+} , 3^{-+} , 4^{-+} 1^{--} , 2^{--} , 3^{--} , 4^{--} , 5^{--}			
			$(cc)_{6} - (CC)_{6} *$		
	L	S	I^{PC}	Mass(GeV)	
	1	$\overline{0}$	$1 - -$	6.82	
	2	θ	$2^{+ +}$	7.15	
	3	0	3^{--}	7.41	

- First mention of the 4c state (6.2 GeV, 1975): Prog. of Theo. Phys. Vol. 54, No. 2
- First calculation of the 4c mass (diquark+antidiquark): Z. Phys. C 7 (1981) 317

 $Fig. 2$

 $Fig.4$

Full heavy tetraquark is different from heavy+light quark composition

Signal and Backgrounds

- Signal process
	- Signal samples for process: $pp \rightarrow X \rightarrow di-1/\psi \rightarrow 4\mu$

− TQ mass = 6.9 GeV, width = 0.1 GeV, spin = 0 with JHU

- Background processes:
	- Prompt di- J/ψ background: Single Parton Scattering (SPS), Double Parton Scattering (DPS) with Pythia8
	- Non prompt di- J/ψ background: $b\bar{b} \rightarrow J/\psi J/\psi$ with Pythia8
	- Single J/ψ background
		- $-$ Prompt or nonprompt J/ψ , plus fake muons from the primary vertex
	- Non-peaking background containing no real J/ψ candidates

Single J/ψ background and non-peaking background are collectively called "others", and are estimated from data by reversing one muon's ID

SPS and DPS CRs in di-J/ ψ channel

- Discrepancies in some kinematics distributions are resolved by event reweighting in the SPS and DPS CRs without ΔR cut
	- ✓ SPS CR: 7.5 GeV < $m_{4\mu}$ < 12.0 GeV
	- \checkmark DPS CR: 14.0 GeV < $m_{4\mu}$ < 24.5 GeV
- After reweighting, other kinematic distributions are also improved

Control region (Δ R $>$ 0.25)

- The control region has the same cuts as the signal region, but with $\Delta R > 0.25$ between two J/ψ' s. It serves two purposes
	- \checkmark Correct and validate the SPS 4 μ mass shape. Pythia8 **pT0timesMPI** parameter is first tuned to data in SPS CR in $m_{4\mu}$ > 7.5 GeV, and validated in the control region with $m_{4\mu}$ < 7.5 GeV
	- \checkmark The total background yields in the CR are used in the fit to constrain the background yields in the signal region

Maximum Likelihood

- Unbinned maximum likelihood fits are made to extract the signal information from data in the 4µ mass spectra
- The likelihood reads:

$$
\mathcal{L} = \mathcal{L}_{SR} \left(\vec{\alpha}, \vec{\beta} \right) \cdot \mathcal{L}_{CR} \left(\vec{\alpha} \right) \cdot \prod_{j=1}^{K} G \left(\alpha_j'; \alpha_j, \sigma_j \right),
$$

$$
\mathcal{L}_{SR} = \frac{(s+b)^N}{N!} e^{-(s+b)} \prod_{i=1}^{N} \left[\frac{s}{s+b} f_s(x_i; \vec{\alpha}, \vec{\beta}) + \frac{b}{s+b} f_b(x_i; \vec{\alpha}) \right], \quad \mathcal{L}_{CR} = \frac{b_{CR}^{N_{CR}}}{N_{CR}!} e^{-b_{CR}}, \text{ with } b_{CR} = b \cdot t(\alpha_t),
$$

 β are the parameters of interest, α are the nuisance parameters (NP) accounting for systematics shared between the two regions

- Each NP has a Gaussian constraint with a subsidiary measurement α'_j , a mean α_j and a width σ_i
- In the di-J/ ψ channel, feed-down from J/ $\psi + \psi$ (2S) is included as an additional background

Fit models

• The signal probability density function (PDF) consists of several interfering S-wave Breit-Wigner (BW) peaks convoluted with a mass resolution function

$$
f_s(x) = \left| \sum_{i=0}^{2} \frac{z_i}{m_i^2 - x^2 - im_i \Gamma_i(x)} \right|^2 \sqrt{1 - \frac{4m_{J/\psi}^2}{x^2}} \otimes R(\alpha),
$$

• In general, the BW function for orbital angular momentum L is $(F₁$ is the Blatt-Weisskopf form factor, $R = 3$ GeV⁻¹)

$$
BW(x; m_0, \Gamma_0) = \frac{\left(\frac{q}{q_0}\right)^L \frac{F_L(Rq)}{F_L(Rq_0)}}{m_0^2 - x^2 - im_0 \Gamma(x)}, \qquad \Gamma(x) = \Gamma_0 \left(\frac{q}{q_0}\right)^{2L+1} \frac{m_0}{x} \frac{F_L^2(Rq)}{F_L^2(Rq_0)}.
$$

• For S-wave, this is simplified to

$$
BW(x; m_0, \Gamma_0) = \frac{1}{m_0^2 - x^2 - im_0 \Gamma(x)} = \frac{1}{m_0^2 - x^2 - im_0 \Gamma_0 \frac{m_0}{x} \sqrt{\frac{x^2 - 4m_{J/\psi}^2}{m_0^2 - 4m_{J/\psi}^2}}}
$$

Systematics

Since normalizations are freely floating, only systematics affecting the signal and background shapes are considered:

- muon momentum
- J/ ψ mass resolution
- MC simulation statistics
- SPS theory and di-charmonium p_T
- background transfer factor
- "others" non-closure
- P and D-wave BW
- Feed-down

$Y + \mu\mu$ search with 8 TeV run-1 data

Since the run-1 data did not follow a blind/unblind procedure, various \bullet modified selections are applied to check the stability of the peak around 18 GeV

$Y + \mu\mu$ search with 8 TeV run-1data

• In 8 TeV run-1 data, three potential peaks are found at about 18.05 GeV, 21.4 GeV, and 31.7 GeV with local significances of 5.5, 2.4, and 2.6 σ

• To check if the peaks are artificial due to selection cuts, SS muons sample, $m_{\mu\mu}$ mass sideband control samples, Y +di-track and single-muon + 3tracks data, event-mixed data, are investigated. No artificial structures are found in these checks

$Y + \mu\mu$ search with 13 TeV run-2 data

• Selection cuts for 13 TeV run-2 data were restricted to those used for the 8 TeV data. It serves as an independent check of the observed peaks in run-1

- In run-1, both di-muon and tri-muon triggers are used. No charge or mass requirements are imposed in the latter
- In run-2 data in years 2015-2017, similar trigger as run-1. But in run-2 2018, charge and mass cuts were required, which cause a shape difference in the OS vs SS $m_{4\mu}$ distribution

$Y + \mu\mu$ search with 13 TeV run-2 data

• With other things equal and assuming $\frac{\sigma_{13TeV}}{\sigma} = 1.4$, the expected $\sigma_{\rm 8 TeV}$ signal yield in 2015-2017 (2018) data is 89 (101), whereas the fitted signal yield is 51 ± 22 (42 \pm 21)

• Similar trend is observed in the di- γ data. The observed yield in run-2 is ~60% of what would be expected if extrapolating from run-1 8 TeV data

