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Introduction — ATLAS B Physics

ATLAS has a broad program in hadron 3 107l ATLAS Preliminary ] |
d fl hvsi E - Data 2023, /s = 13.6 TeV, 27.8 fb' ]
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* Rare heavy flavor hadron decays, CP 5 — | el
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* Hadron spectroscopy and production ,
e Exotic hadron search 10°

B physics results are competitive, thanks to 104-

» Efficient data-taking including B physics » 8 10 12
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triggers (mainly dimuon and trimuon
t r | g g ers ) barrel New Small Wheel (NSW)

muon chambers muon chambers

* Good muon acceptance and
identification down to ~2.5 GeV

* Good tracking acceptance down to 0.5 ..5%...
GeV (and can be lowered by request)

endcap toroid
magnet

Usually requires a pair of leptons with
mass consistent with J/y or ¥ to reduce
backgrounds SATLAS

solenoid magnet
barrel hadronic calorimeter

barrel toroid magnet

inner detectors



B. — uu Lifetime

* B — uupisa FCNC process via loop diagrams, has a very small BR and
sensitive to New Physics
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* New Physics can manifest itself in [ JHEPO4 (2019) 098 |
either B — uu BR or lifetime, which e
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are independent tests
* InSM, only CP-odd (heavy) B, state
decays to dimuon. The CP-odd lifetime 10
could be very different from the .
effective lifetime 4
* BR already measured with first Run-2 :
data, can proceed to proper decay time
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B. — uu Lifetime

[JHEPO9 (2023) 199 ]
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Backgrounds mainly consist of combinatorial, partially reconstructed b-hadron
decays (SSSV). Other small sources are treated as systematics

Unbinned Extended ML fit to m(uu) distribution, with background
parameters unconstrained and signal shape from MC. Signal yield is 58 =13

L mPDG
xypTBS (Lxy is the transverse flight
T

Proper decay time is calculated as T =

distance)
Background is subtracted by sPlot technique to obtain the signal T



B. — uu Lifetime
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Signal templates with different proper decay times are

generated from MC with truth reweighting to different T
Get binned y? between data (background subtracted)

Events/40 MeV

and different templates, and taking the smallest y?
x? incudes data and MC uncertainties, and closure test is

done with toys

Full procedure is repeated with B - J/}K= signal in data

for L,,, resolution effect — found to be a 134 fs effect
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ATLAS
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B~ =uean T00° = 0.99 ps

Neyman belt at 68 % cover_:age
Neyman belt at 95 % coverage -~ -
----- 68 % CL limits E T

e [ps]

68% CL

* Neyman construction to go from

observed to true proper time

e Largest systematics from Data-

MC discrepancies

* Measured 7, = 0997335 (stat.)

+ 0.17(sys.) ps, compared with
SM prediction of 1.624+0.009 ps

— uu Lifetime

CMS 2011-2016 ——
LHCb 2011-2016 ——
LHCb+CMS 2011-2016 ——

LHCb 2011-2018 —

CMS 2016-2018 ——
B ATLAS

ATLAS 2015-2016| =e=— | {s=13 TeV, 26.3 fb"
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B2—uu Effective Lifetime [ps]

Uncertainty source ATONS [fs]

Data - MC discrepancies 134
SSSV lifetime model 60
Combinatorial lifetime model 56

B kinematic reweighting 55

B isolation reweighting 32

SSSV mass model 22

B, background 16

Fit bias lifetime dependency and B? eigenstates admixture 15
Combinatorial mass model 14
Pileup reweighting 13

B_ background 10
Muon A;; correction 6
B — hh’ background 3
Muon reconstruction SF reweighting 2
Semileptonic background 2
Trigger reweighting 1

Total 174




Hidden charm tetraquark

[ Phys. Rev. Lett 91 (2003) 262001 ] [ Phys.Rev.Lett. 110 (2013) 252001 ]
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Reconstruction of 4u vertex at ATLAS

[ Phys. Rev. Lett. 131 (2023) 151902 ]

...........................

¢ Data

O:_»/E: 13 TeV, 140 fb™
E di-J/y

I x(6900) 3

Jhy's 10.02 GeV
(]
=]

C Feed-Down E
250— —
- SPS

+
v KU
200 f— M ors —f
- bb—JAydAy+X 3
* #- 150 = R Others 3
100 \ -
+ - 3
o !l, 50 :_ ~ s _:

:-‘A. —— e ! — ! — II PR ¥s T“-:-
“u L A D

* We first find vertices of J /¢ candidates and geometrically fit the 4
tracks of a J /¢ pair to a common vertex. We revertex two J /¢y

tracks with a mass constraint, improving the 4u mass resolution
from ~95 MeV to ~20 MeV

Data/Pred

Use sum of x?/N of two charmonia and 4u vertices to select the
best 4u candidate per event



SPS and DPS backgrounds

* Both color singlet and color octet processes are included for di-charmonium
SPS, dominated by gluon—gluon interactions. As a result, the two J/y’s from

SPS are highly correlated

 DPS populates the reatively low-p; region,
and becomes more important with larger 0

collider energy, as the parton density
increases at small x Y
. . + -
 If neglecting correlations between partons DPS: H K
(effective cross section approximation): m}[%ﬁm
, Jw
| AT 28

g



Event selection

Signal region Control region Non-prompt region
g g g

Di-muon or tri-muon triggers, oppositely charged muons from each charmonium,
loose muons, p%’2’3’4 > 4,4,3,3 GeV and |n;12.3.4| < 2.5 for the four muons,
myy € [2.94,3.25] GeV, or my(25) € [3.56,3.80] GeV,

Loose vertex requirements xﬁ,l /N <40 (N =5) and Xgi—u /N < 100 (N = 2),

Vertex Xiﬂ/N <3, Li’; < 0.2 mm, |L§1Ci)',“| < 0.3 mm, my, < 11 GeV,

Vertex Xiﬂ /N > 6,

AR < 0.25 between charmonia | AR > 0.25 between charmonia ‘ or |Li§” | > 0.4 mm

® Signal region cuts:
e di-p or tri-pu triggers per year for maximum efficiency
* 4 muons with minimum p; of 3 GeV within accepance
* Vertex )(Z/N cut, J/1Y mass window cuts
L,, (distance between J/1y and PV vertices) cut
« AR < 0.25 of two J/Y’s

® SPS and DPS are estimated by MC, and are kinematically corrected by SPS and
DPS enriched 4u mass sidebands (SPS and DPS CRs)
® Non-prompt J/y background is estimated with data by reversing the L,,, or x?

/N cut



SPS
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Data/Pred.

and DPS CRs in J/Y+y(2S) channel
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Larger “others” background due to
smaller signal/background ratio for

P(25)

SPS and DPS are also corrected
through reweighting method ( after
“others” corrections in its dedicated
CR —J/1 mass sidebands)
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Fit models in di-J/y channel

® In the di-J/y channel, two models are considered

 Model A with three interfering S-wave resonances

2
4m?>
\/1— 1Y & R(6)

x2

2

fs(x) =

2 -
m? — x2 —im;T; (x)

i=0 i

where z, is fixed to unity with zero phase, and R is the mass
resolution function that the BWs convolute with

Model B with two S-wave resonances. The first interferes with
SPS, while the second is standalone

f(X)=(

where |A(x)|? reproduces the non-interfering SPS background
from the MC prediction

2

+

<0
m% —x2 —imolp(x)

+A(x)e'? 5 ‘2

® R(6
m3 — x% —imyI' (x) )

x2

2 2
) 1_4m1/¢
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Fit models in J/Y+y(2S) channel

® |n the J/Y+1)(2S) channel, two models are also considered

* Model a with two resonances. The first is the same as Model A
in di-J/1 channel (parameters fixed), and second is standalone

2 2
£ :( )\/1 ) (mJ/w +xmw(zs)) ® R(9)

* Model  with a single resonance
® The feed-down background normalization is obtained as

2

2
i
pary m? — x2 — im;T; (x)

<3
m% —x2 —im3I3(x)

3 B'€ N
CBW(2S) o up)e

where 8’ = [B((25) > J/y +X) + B ((2S) = yxes) B(xes = v 1N BU W — pp)

Ntd

Reconstruction systematics largely cancel each others in the ratio. The

only significant systematics comes from the fitted error on signal yields
Nin the J/Y+(2S) channel
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Total signal significance is 4.70 (4.30) for
Model a (£). In model a, the significance
of the second resonance alone is 3.00
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Full-beauty tetraquark?

« Atightly bound bbbb tetraquark state can have a mass below the
threshold of n,7n;, and decays to Y(1S5) + u*u~ — 4u. This possible
full-beauty tetraquark has been searched by ATLAS and other
experiments (while other theoretical interpretations, e.g. a BSM Higgs,
is also feasible)

* A potential resonance in the Y(15) + u*u~ channel have not been
established by CMS and LHCb. It deserves a further check at ATLAS

[ Phys. Lett. B 808 (2020) 135578 ]

CMS 35.9 o (13 TeV) [ JHEP 10 (2018) 086 ]
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B asS ellne CUtS [ ATLAS-CONF-2023-041 ]

 Baseline event selections for the Y(15) + u* ™ search at ATLAS:

Candidate object Requirements
Muons pr(u) >3 GeV and || < 2.5,
|zosin@| < 1 mm and |do/og,| < 6

Muon quadruplet > 3 muons passing LowPt selection criteria,
Y qu = 0, four-muon vertex fit y?/Nq.o.t < 10,
10 GeV < my, < 50 GeV

Muon doublet di-muon vertex fit y? < 3

Y (1S) candidate OS muon doublet with pr(u1.2) > 4 GeV,
9.2GeV < my+- <9.7GeV

Y(1S) + p*p~ candidate events Y (1S) candidate plus OS muon doublet with m,+,- > 1 GeV,
both muon doublets point to a common PV

 The background is modelled by a 4th-order Chebyshev polynomial and the
signal by a Gaussian with its width fixed to the detector resolution (~0.2 GeV).

* Since the run-1 data did not follow a blind/unblind procedure, various
modified selections w.r.t. the baseline cuts are applied to check the stability of
the peak around 18 GeV (backup)

17



Events /0.2

Y 4+ uu search with 13 TeV run-2 data

Signal yields around 18 GeV are much smaller than in run-1, so the
Gaussian width is fixed to 0.2 GeV, and the mass in 2015-2017 (2018)
is floated (fixed to 18.05 GeV)

Fitted signal yields are 48 =25 and -4 3-22 in the two periods, while
the backgrounds are ~2.5 times larger per unit integrated luminosity in
run-2 than in run-1
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Y + uu search limits

Limits/measurements on oy ,5.Br(X(18)-Y(1 S)[-u )

ATLAS Preliminary—
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e 8 TeV cross-section limit corresponding to 13 TeV combined observed limit
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CMS rzseudoscalar

Expected 95% inclusion B Expected 68% inclusion

CLs limits on 0 XBR of the 18 GeV peak are calculated with different signal

models: ‘Low &’ and ‘high €’ refer to the limits derived from signal models with

lowest (Higgs-like scalar) and highest (pseudoscalar tetraquark) predicted
selection plus reconstruction efficiencies, respectively

Further study with increased statistics from Run-3 data is needed
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Summary

ATLAS is not only a discovery machine for high energy physics, but can
also make low energy hadron measurements owing to its excellent
tracking

B, — uu lifetime result is competitive with existing ones from other
experiment, and the 18 GeV peak in Y 4+ uu has not been established
by ATLAS

ATLAS searched for full-charmed tetraquarks decaying into a pair of

J/W’s, or into J/PY+(2S), in the 4 final state
v" Two models are used to fit the significant excess in the di-J/{ channel,
one of which is consistent with X(6900) by LHCb and CMS
v" Two models are used to fit the excess in the J/Pp+{(2S) channel. More
data is needed to measure its parameters

We look forward to new results combing Run-3 of LHC
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Introduction — exotic hadrons

Traditional quark models: m

Meson Baryon

Diquark-diantiquark

D®
Pentaquark

Meson + baryon “molecule”
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Full heavy tetraquark

(CC);* —(a‘)g‘

L S JEC Mass (GeV)
{ 0 1~ 6.55
1 0-*, 17+ 27+
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1 2=F. 377471
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First mention of the 4c state (6.2 GeV,

1975): Prog. of Theo. Phys. Vol. 54, No. 2

First calculation of the 4c mass
(diquark+antidiquark): Z. Phys. C 7 (1981) 317
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Fig.4

Full heavy tetraquark is
different from heavy-+light
quark composition
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Signal and Backgrounds

® Signal process
 Signal samples for process: pp — X — di-J /Y — 4u
— TQ mass = 6.9 GeV, width = 0.1 GeV, spin = 0 with JHU
® Background processes:
* Prompt di-J /1y background: Single Parton Scattering (SPS), Double
Parton Scattering (DPS) with Pythia8
 Non prompt di-J /i background: bb — ]/ J /1 with Pythia8
 Single /1y background
— Prompt or nonprompt J /1, plus fake muons from the primary vertex

« Non-peaking background containing no real / /1 candidates

Single J /1 background and non-peaking background are collectively called
“others”, and are estimated from data by reversing one muon’s ID

24



SPS and DPS CRs in di-J/y channel
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Discrepancies in some kinematics
distributions are resolved by event
reweighting in the SPS and DPS CRs
without AR cut

v' SPS CR: 7.5 GeV < my, < 12.0 GeV

v' DPS CR: 14.0 GeV < my, < 24.5 GeV
After reweighting, other kinematic
distributions are also improved
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Control region (AR > 0.25)
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The control region has the same cuts as the signal region, but with AR > 0.25
between two ]/{’s. It serves two purposes
v’ Correct and validate the SPS 4u mass shape. Pythia8 pTOtimesMPI
parameter is first tuned to data in SPS CR in m,, > 7.5 GeV, and validated
in the control region with m,, < 7.5 GeV
v The total background yields in the CR are used in the fit to constrain the
background yields in the signal region
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Maximum Likelihood

Unbinned maximum likelihood fits are made to extract the signal
information from data in the 4p mass spectra

The likelihood reads:

K
L= Lk (.8) - Ler @) [ ]G (afap0y).
j=1
b pNcr
Lsr = (s+ )7 fs(xl a.p) + —f/,(x, a)|, Lcr= %e"’“‘, with bcr = b - t(ay),

[ are the parameters of interest, a are the nuisance parameters (NP)
accounting for systematics shared between the two regions

Each NP has a Gaussian constraint with a subsidiary measurement a]f,
a mean @; and a width g;

In the di-J/Y channel, feed-down from J/yY+(2S) is included as an
additional background
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Fit models

The signal probability density function (PDF) consists of several
interfering S-wave Breit-Wigner (BW) peaks convoluted with a mass

resolution function
)
= 4m>
\/1 ¥ & R(a),
X=

In general, the BW function for orbital angular momentum Lis (F is
the Blatt-Weisskopf form factor, R = 3 GeV-1)

9

<4

fs(x) =

2 By B e
3 m; — x= —im;T(x)

"

2L+1 mo FE(RQ)
X F}(Rqo)

( g )" Fr(Rq)

qo] FrL(Rqo) o
q0 L(Rqo I'(x) = T ( q )

m} — x2 —impI'(x)’ q0

BW(x;mo,Tp) =

For S-wave, this is simplified to

1 1

7 s oy e
mg — x= — impl'(x) g
mg — x= — imq[

BW(x;my, ) =
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Systematics

Since normalizations are freely floating,

only systematics affecting the signal Systematic JJy+(2S)
and background shapes are considered: Uncertainties (MeV) m3 T
. t Muon calibration <1 +1
muon momentum SPS model parameter <1
. SPS di-ch i 1
* J/Y mass resolution eArmonTim pr )
Background MC sample size +1 <1
* MC simulation statistics Mass resolution 14
Fit bias -13 +10 | ¥, %
* SPS theory and di-charmonium pr Shape inconsistency +4 6
Transfer factor +5 +23
* bac kg round transfer factor Presence of 4th resonance —
y ) Feed-down —
* others” non-closure Interference of 4th resonance =32 -11
P and D-wave BW <1 +1
([ ] -
P-and D-wave BW AR and muon p requirements tlz -2
e Feed-down Lower resonance shape t37 ’jﬂ




Y 4+ uu search with 8 TeV run-1data

* Since the run-1 data did not follow a blind/unblind procedure, various
modified selections are applied to check the stability of the peak around 18
GeV

Selection criteria Np Mass (GeV) Ng Significance (o)
Baseline 1994 + 47 18.05+0.05 83+17 55
Selection variations from the baseline
> 2 LowPt muons 3124 +59 18.09+£0.06 94 +20 5.0
= 4 LowPt muons 689 +28 18.03+0.07 37+10 4.1
mZ‘i‘l‘;f_"S > 0 GeV 2515+53 18.00+0.06 8119 4.7
mZ‘i‘;f_"S > 0.5 GeV 2306 +£51 18.00+0.05 87 +18 5.3
mZ‘?}l‘f_"S > 2 GeV 1696 +43 18.05+0.07 5815 4.3
Vertex fit y2/Ngos < 4 1705 £43 18.03 £0.05 69 +15 5.0
Vertex fit y?/Ng.o.f < 20 2077 +48 18.04 +0.05 8117 5.0
my(1s) £ 205, window 3705 +64 18.09 £0.06 90 +22 4.5
Y (1S) mass correction 1998 +47 18.02+0.08 64 +17 4.1
m;‘ﬁ‘;{"'s < my(is) 1418 +40 18.06+0.05 94 +17 6.3
pr > 2.5 GeV non-res. muons 2741 +£55 18.05+0.05 70+19 4.1
pr > 4 GeV non-res. muons 982+33 18.06+0.08 35=+11 3.6
Tight IP cuts 1469 +40 18.01 £0.05 71«15 5.5
Lifetime |7/0;| < 3 1873 +45 18.04+0.05 8617 5.6
MBS < 3 1749 +44 18.05+0.04 8316 5.8
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Events / 0.4 GeV

Y 4+ uu search with 8 TeV run-1data

 In8TeV run-1data, three potential peaks are found at about 18.05
GeV, 21.4 GeV, and 31.7 GeV with local significances of 5.5, 2.4, and
260
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. cre . %’Q 102 ;rATLAS Preliminary & Observed
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1k o
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10?7
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data, are investigated. No artificial e v
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Events / 0.4 GeV

Events / 0.4 GeV

Y 4+ uu search with 13 TeV run-2 data

* Selection cuts for 13 TeV run-2 data were restricted to those used for
the 8 TeV data. It serves as an independent check of the observed
peaks in run-1

* Inrun-1, both di-muon
and tri-muon triggers are
Tﬁf ,Yiwiw 2015-2017 used. No charge or mass
% e requirements are
S g imposed in the latter

ATLAS Preliminary —— Y(1S) +u'w

(5=13TeV, 515" ¢ Y(18) +pp

00°

2 3% 3% 2 'm;[e'ew * Inrun-2 datain years
2015-2017, similar trigger

ATLA Prellmlnarv —— Y(1S) +p'W .
E crarwaas o Y09 as run-1. But in run-2
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2018
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o° 4 so?wo . .
wfé Tt ot cause a shape difference
eyl 90 20003 .
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Y 4+ uu search with 13 TeV run-2 data

. . . 013TeV
* With other things equal and assuming — = 1.4, the expected
8TeV
signal yield in 2015-2017 (2018) data is 89 (101), whereas the fitted
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