

RESEARCH OF RADIATION-RESISTANT LGAD sensors For ATLAS High Granularity Timing Detector

WEIYI SUN

INSTITUTE OF HIGH ENERGY PHYSICS, CAS

2024-11

THE 10TH CHINA LHC PHYSICS WORKSHOP (CLHCP2024),

Content

LGAD & ATLAS HGTD IHEP-IME LGAD sensor R&D

Outlook & Summary

LGAD detector

Low Gain Avalanche Detectors (LGAD) is a silicon detector technology developed recently, that could measure the particle time at ps precision (~30ps).

Compared with PIN, a gain layer between P and N++ is added:

- Work in a linear mode, Gain:10~50
- Good Signal/Noise ratio without self triggering
- Thin depleted region to decrease t_{rise} (fast timing)

> Owning to its good performance, LGAD technology is chosen as detector for ATLAS HGTD and CMS ETL project.

Noise increases faster than then signal

ightarrow the ratio S/N becomes worse at higher gain

https://doi.org/10.1201/9781003131946

HGTD detector • ~3.6 million 1.3×1.3 mm² pixels(channels)

- >At High Luminosity –LHC:
 - Instantaneous luminosity up to 7.5×10^{34} cm⁻²s⁻¹ 0
 - **Pileup**: $\langle \mu \rangle$ = 200 interactions per bunch crossing ~1.6 vertex/mm on average
- >Timing information can be used to reduce pile-up and improve object reconstruction
- > A High Granularity Timing Detector (HGTD) is proposed in front of the Liquid Argon end-cap calorimeters for pile-up mitigation
 - Combining HGTD high-precision time measurement and ITk position information (vertices longitudinal impact parameter)
 - Will improve performance in the forward region
 - In addition, will provide a direct measurement on the luminosity

- Time resolution target
 - 30-50 ps /track
 - 35-70 ps/hit up to 4000fb⁻¹

Two end-caps

- $z \approx \pm 3.5$ m, Total radius: 11 cm < r < 100 cm
- Active detector region: $2.4 < |\eta| < 4.0$

LGAD sensor for HGTD

~21,000 LGAD sensors for HGTD project

Requirements:

•Size: 15x15 array, 1.3x1.3 mm² pixel size

•Active thickness: 50 um(Thin: faster rise time, lower impact from radiation)

•LGAD sensor can withstand the lifetime of the HL-LHC running: irradiation requirement

Maximum n_{eq} fluences: $2.5 \times 10^{15} n_{eq}/cm^2$

Total Ionizing Dose (TID): 2 MGy at the end of HL-LHC (4000 fb⁻¹)

•Time resolution: 35 ps (start), 70 ps (end) per hit, while 30 ps (start), 50 ps (end) per track

Collected charge per hit >4 fC (minimum charge needed by the ASIC to hold good time resolution)
Hit efficiencies of 97% (95%) at the start (end) of their lifetime

LGAD sensor for HGTD

- To improve the irradiation hardness of LGAD sensors
- IHEP USTC FBK: optimized the doping concentration adding the Carbon to gain layer
- Requirement of charge collection and time resolution is determined, and gets better with the increase of bias voltage
- Carbon enriched sensors show very low acceptor removal coefficient(1-2×10⁻¹⁶ cm²), which would reduce the required voltage for enough charge collection and avoid the SEB

Single Event Burnout (SEB) At high working voltage

Irradiation Hardness Reinforcement by Carbon Doping:

- ✓ LGAD forms defects after irradiation, and the boron in the gain layer moves
- ✓ Carbon is more active than boron, carbon fills the defective area, boron is not easily lost

ATLAS HGTD sensor status

- ➤LGAD sensors for HGTD project: ~21,000
 - IHEP design:90%USTC design:10%
- In 2023, IHEP design LGAD sensors be selected in the HGTD sensor tendering process.
- Pre-production started at June 2023.
- Sensor pre-productions finished in 2023 produced comfortably enough sensors for HGTD needs.
- HGTD group testing results show that the sensors properties fulfill HGTD specification.

Vendor		Percent
IHEP-IME	CERN	54%
	China in-kind	24%
	Spain in-kind	12%
USTC-IME	China in-kind	10%

ATLAS HGTD sensor status Pre-Production

- Acceptance of sensors has been set up based on pre-production results
- 117 wafers have been fabricated
- About 1000 good sensors are checked in this phase
- Production Readiness Review passed on July 25,2024
- Final production started after the PRR

 Table 4: Required electrics properties of produced Sensors at room temperature

 (* applies also to irradiated sensors, ¤for irradiated sensors at -30°C)

		Pad leakage current (Vbd condition)	< 500 nA	
		Break-down voltage (Vbd)	$V_{bd}\!\!>\!\!V_{fd}+D\cdot\!\!2~V\!/\!\mu m$	
Over one sensor	Device total leakage current	${<}20~\mu\text{A/cm}^2$ at bias voltage ${<}V_{bd}$		
	or	$V_{gl,pad}$ spread over the Sensor*	$RMS(V_{gl,pad}) / < V_{gl,pad} > < 0.005$	
		$V_{bd,pad}$ spread over the Sensor*, $^{\bowtie}$	$RMS(V_{bd,pad}) / < V_{bd,pad} > < 0.05$	
Among sensors		Pad leakage current spread at $0.8 \cdot V_{bd}$	Peak-to-Peak within a factor of 3x	
		Variation of the V_{fd} between different sensors	$\pm 10\%$ from the average V_{fd}	
	rs	Variation of the Vgl between different sensors	$\pm 1\%$ from the average V_{gl}	
		Variation of the V _{bd} between different sensors	$\pm 8\%$ from the average V_{bd}	

Pre-production	Wafers		Sensors		
	IHEP-IME	USTC-IME	IHEP-IME	USTC-IME	Total
Fabricated	90	27	4680	1404	6084
Passing preproduction requirements	52	13	1702	208	1910
Pre-production with UBM, diced and tested by HGTD	23	5	789	118	907

ATLAS HGTD sensor status

The 15x15 array sensors have good IV performance and uniformity

Breakdown voltage deviation for 225 pads is less than 5% : $RMS(V_{bd,pad})/\langle V_{bd,pad} \rangle < 5\%$

The ratio of the maximum and minimum leakage current is less than 3 (Pad leakage current spread at 0.8V_{bd}), peak to peak within a factor of 3X.

> Yield: pad yield: >99%, sensor yield: ~64%

ATLAS HGTD sensor status

Performance of pre-production sensors: Beam test results

- Collected charge: The sensors can collect more than 15 fC charge before irradiation and >4 fC charge after irradiation at bias voltage <550 V (SEB limit)
- Timing resolution: The timing resolution is better than 35 ps (50 ps) before(after) irradiation(fluence $2.5 \times 10^{15} n_{eq}/cm^2$)
- The collected charge and timing performance of sensors from pre-production fulfills HGTD requirement.

ATLAS HGTD sensor Beam Test

- Performance of pre-production sensors: Beam test results
- **Efficiency : 95%~100% for sensors before and after irradiation, fulfills HGTD project requirement**

ATLAS HGTD sensor status (Module)

Module on support unit

LGAD sensors are connected with ASIC (Altiroc) chip using bump bonding

>Then two hybrids are placed on module flex(one module), the module is supported by support unit

Good sensors picked

Altiroc wafer with ball for bump bonding

ATLAS HGTD sensor Beam Test

Pre-production LGAD Sensor + ALTIROC-A (ASIC) hybrids Tested at SPS

- Timing resolution can reach 50 ps for the sensor/ASIC module
- The efficiency is larger than 98%
- Long term stability is proved

ATLAS HGTD sensor Beam Test

irradiation

- 47.5 ps of timing resolution is achieved !
- Good homogeneity among modules
- No significant change is observed after irradiation

And beyond: AC-LGAD as timing detector

AC-LGAD microstrip sensor is the choice for CEPC OTK baseline to provide both spatial resolution (bending direction) and timing resolution.

The outer silicon tracker (OTK) requirement:

- Spatial resolution: 10 μ m (with a strip pitch of 100 μ m)
- Time resolution: 30-50 ps

AC-LGAD (AC-coupled LGAD)

- metal AC readout electrode and a thin dielectric layer (Si₃N₄, SiO₂) above the N+ layer
- Less dead area and better position resolution
- Research institute: FBK, HPK, INFN, BNL, CNM, USTC, IHEP...

Summary

LGAD is chosen as detection sensors for HGTD project as it has good time resolution <30ps to improve pile-up.</p>

Carbon enriched LGAD sensors show good radiation performance. The sensors fill the HGTD requirement, including charge collection, time resolution and hit efficiency.

For ATLAS HGTD project, LGAD sensors' pre-production is finished, and sensors fulfills the project requirement. Review passed and final production started. Final production is in progress.

> The beam test of module (sensor + asic) reaches a timing resolution of better than 50 ps.

Further study of AC-LGAD as well as application on the future colliders is ongoing, to make it a 4D detector.

Backup

And beyond: Monolithic LGAD?

Monolithic LGAD: Fermilab, University of Geneva, CERN, INFN, CNM, FBK...

Monolithic silicon sensors with very high time resolution will enable making 4D measurements better and in a single and costeffective silicon tracker, and will also influence how future particle-physics experiments will be designed and constructed.

---G. lacobucci et al 2022 JINST 17 P10040

MAPS detector timing information: $10ns \rightarrow < 50ps$

➢ Researches at IHEP:

- Simulation by using TCAD tools is ongoing.
- LGAD with MOSFET transistor be fabricated and tested. Amplifier design ongoing.

(China) ...

LGAD sensor for HGTD

9

>LGAD sensors from many vendors have been studied during the R&D phase of the HGTD project.

>Active vendors include: HPK (Japan), FBK (Italy), CNM (Spain), IHEP-IME (China), USTC-IME (China), IHEP-NDL

HGTD detector

➤The High Granularity Timing Detector (HGTD) is designed to provide precise timing information to mitigate pile-up in HL-LHC.

- \circ ~3.6 million 1.3 \times 1.3 mm² pixels(channels)
 - \circ 6.4 m² active area
- Time resolution target
 - 30-50 ps /track
 - 35-70 ps/hit up to 4000fb⁻¹
- Luminosity measurement
 - Count number of hits at 40 MHz (bunch by bunch)
 - Goal for HL-LHC: 1% luminosity uncertainty

Two end-caps

- $\,\circ\,$ z $\approx \pm 3.5$ m from the nominal interaction point
- Total radius: 11 cm < r < 100 cm
- $\,\circ\,$ Active detector region: 2.4 < $|\eta|$ < 4.0
- Each end-cap
 - $^\circ~$ Two instrumented disks, rotated by 15 $^\circ~$ for better coverage

HGTD detector Modules

2 disks, each Disk:

- Double-sided layers mounted on a cooling plate
- 3 rings layout regarding to the fluence received
 Overlap between modules on inner, middle and outer ring
- Replacement of inner ring every 1000 fb⁻¹ and middle ring at 2000 fb⁻¹ to maintain performance

- Two bare modules be connected with one module FLEX
- Module Flex be connected via flex tails, arranged in rows, to the Peripheral Electronics Boards (PEB) @ 660 < r < 920 mm

Future collider: CEPC

- CEPC--huge measurement potential for precision tests of SM: Higgs, electroweak physics, flavor physics, QCD/Top
- Produce 10¹² Z boson at Z pole: Rich flavor physics program
- The LGAD based OTK (+TOF) detector will be placed between TPC and ECAL
- Timing detector is complementary to gas detector: improves the separation ability: 0 - 4 GeV for K/pi separation, 0 – 8 GeV for K/p separation
- Barrel : 70 m², Endcap 20 m²

AC-LGAD as timing detector

AC-LGAD microstrip sensor is the choice for CEPC OTK baseline to provide both spatial resolution (bending direction) and timing resolution.

The outer silicon tracker (OTK) requirement:

- Spatial resolution: 10 μ m (with a strip pitch of 100 μ m)
- Time resolution: 30-50 ps

LGAD (Low-Gain Avalanche Diode)

Segmented gain layer

 The read-out electrode is placed and connected to the N++ layer. 5cm-9cm length

AC-LGAD (AC-coupled LGAD)

- metal AC readout electrode and a thin dielectric layer (Si $_3N_4$, SiO $_2$) above the N+ layer
- Less dead area and better position resolution
- Research institute: FBK, HPK, INFN, BNL, CNM, USTC, IHEP...

AC-LGAD sensor simulation: Optimization of process and structure parameters

Process parameter: n+ layer dose, AC dielectric material and thickness

Structure parameter: pad shape, pad-pitch size

TCAD model of AC-LGAD for simulation

Lower n+ dose \rightarrow Large resistivity \rightarrow good spatial resolution

Design of AC-coupled low gain avalanche diodes (AC-LGADs): a 2D TCAD simulation study, JINST, 2022.9, DOI:<u>10.1088/1748-0221/17/09/C09014</u>

AC-LGAD development at IHEP

AC-LGAD R&Dv1:

Pixeled AC-LGAD

With different pad-pitch size
 1000-2000um
 100-500um

100-200um

50-100um

wafers: with different n+ dose: 10P to 0.2P

Process parameters be studied.

The performance of large-pitch AC-LGAD with different N+ dose, Trans. Nucl. Sci., 2023.6

AC-LGAD R&Dv2:

Pixeled and strip AC-LGAD

 With different pad-pitch size 1000-2000um pixel 100-250um strip 100-150um strip 50-100um strip

• wafers: with different n+ dose:0.2P to 0.01P

The performance of AC-coupled Strip LGAD developed by IHEP, NIMA, Volume 1062, May 2024, 169203

Spatial resolution: Laser testing

0.2

0

-0.2

-0.4

-0.6

-0.8

Pitch 150um: Best spatial resolution~8um

The performance of AC-coupled Strip LGAD developed by IHEP, NIMA, Volume 1062, May 2024, 169203

Amplitude information

• Strip length 5.6mm

pad-pitch size:

100-250 um

100-200 um

100-150 um

Timing resolution

Timing resolution:

The time resolution does not change significantly, ~15-17 ps.

Beam testing for spatial resolution: low noise board design ongoing

> Timing performance of LGAD with long strip:

- Large capacitance: effect to the timing resolution and power consumption
- Long transmission lines: signal delay, impedance, capacitance between strips Process control and yield
- Prototype design for the CEPC application:
- ✓ Pitch as 50 um, 75 um, 100 um, 200 um, and the strip length as 1cm, 2cm, and 4cm..
- \checkmark optimized design for reduction of the sensor capacitance
- ✓ Process design for better spatial resolution

Pitch: 0.05 mm-0.5mm

CEPC OTK Barrel Design (AC-LGAD Strips)

CEPC OTK Endcap Design (AC-LGAD Strips)

- OTK endcap consists of 14 rings, arranged into 4 groups.
- Each group contains 2-4 types of trapezoid sensors, which can be fitted to one 8" silicon wafer.
- Each group of sensors is aligned to a 1/16 sector.
- The long sensor contains 2 sets of short-strip sensors.

B3

Maximize the use of silicon wafers and facilitate detector assembly.

A1

B2

B4

Backup

Picosecond laser testing system

- Automated scanning
- Displacement accuracy: 1 µm
- Picosecond laser: 1064nm
- Laser spot size: $2 \sim 5 \ \mu m$

Pico-second laser testing system for AC-LGAD

4 channels readout board with fast amplifiers

Position reconstruction, spatial resolution and timing performance of AC-LGAD be calculated based on the results from 4 pads.

reconstructed 6x6 positions

0

50

150

Recon-Laser [µm]

100

200

Spatial resolution: reconstruction - laser

$$X = X_0 + k_x \left(\frac{q_A + q_B - q_C - q_D}{q_A + q_B + q_C + q_D}\right) = X_0 + k_x m$$

$$Y = Y_0 + k_y \left(\frac{q_A + q_D - q_B - q_C}{q_A + q_B + q_C + q_D}\right) = Y_0 + k_y n$$

Correction factor: $k_x \ k_y$ $k_x = L \frac{\sum (m_{i+1} - m_i)}{\sum (m_{i+1} - m_i)^2} \qquad k_y = L \frac{\sum (n_{i+1} - n_i)}{\sum (n_{i+1} - n_i)^2}$

Discretized Positioning Circuit model (DPC)

Spatial resolution :

• the sigma of the difference between the laser and the reconstructed position

 $\sigma_{spatial} = \sigma_{reconstruction-laser}$

-150

-100

-50

Discretized Positioning Circuit model Machine learning method ongoing

IHEP AC-LGAD

