

# Characterization of USTC-IME LGAD preproduction sensors for the HGTD

#### Kuo Ma (University of Science and Technology of China) On behalf of the USTC HGTD Group Nov 14<sup>th</sup>, 2024

- ATLAS HGTD upgrade and sensor technology
- Radiation hardness evaluation
- Uniformity of large array sensors
- Inter-pad resistance
- Charge collection, timing resolution and hit efficiency
- Summary

# ATLAS High Granularity Timing Detector (HGTD)

- High-Luminosity phase of LHC (HL-LHC): It's hard to associate track to primary vertex in high pileup environment, especially in the forward region  $(2.4 < |\eta| < 4.0)$ .
- High-Granularity Timing Detector (HGTD): to measure high-precision time of charged particles in the forward region, complementing the Inner Tracker (ITk).





#### **HGTD** requirements:

- Withstand intense radiation environment
  - Maximum fluence: 2.5E15 n<sub>eq</sub>/cm<sup>2</sup>
  - Total Ionising Dose (TID): 2 MGy
- Collected charge per hit > 4 fC
- time resolution: 35 ps (start), 70 ps (end) per hit / 30 ps (start), 50 ps (end) per track
- Hit efficiency of 97% (95%) at the start (end)

# Timing resolution of LGAD

- $N^+$ -P-P<sup>-</sup>-P<sup>+</sup> structure with **a moderately doped P-type layer** to produce a high electric field (>300 kV/cm).
- The gain is realized by the **impact ionization** of migrating carriers which acquire enough energy in the high electric field during the collection process.
   Solid-State Electronics 18 (1975) 161
   NIMA 388 (1997) 79-90



 $\sigma_t^2 = \sigma_{litter}^2 + \sigma_{Time Walk}^2 + \sigma_{Landau}^2 + \sigma_{Distortion}^2 + \sigma_{TDC}^2$ 

- $\sigma_{Jitter} \sim \frac{t_{rise}}{S/N}$ , where  $t_{rise}$  is rise time and S/N is signal to noise ratio.  $\sigma_{Time \, Walk} \sim \left[\frac{V_{th}}{S/t_{rise}}\right]_{PMS}$ , where  $V_{th}$  is threshold.
- $\sigma_{Landau}$ : caused by non-uniform energy deposition.
- $\sigma_{Distortion}$ : caused by non-saturated velocity  $\vec{v}$  and non-uniform weighting field  $\vec{E}_W$ .
- $\sigma_{TDC}$ : TDC binning resolution, 25/ $\sqrt{12}$  (7.2) ps.



# LGAD R&D

- The reduction of effective doping in the gain layer is caused by the "acceptor removal" process after irradiation → LGADs' gain reduces. <u>NIMA 919 (2019) 16-26</u> <u>2015 JINST 10 P07006</u>
- Explored use of different designs, doping materials and C-enriched substrates  $\rightarrow$  Boron + Carbon shows largest gain after irradiation ( $C_i + O_i \rightarrow C_i O_i$  competes with  $B_i + O_i \rightarrow B_i O_i$ ).



Acceptor (B<sub>s</sub>) removal in the gain layer after irradiation

# USTC-IME LGAD pre-production sensor for HGTD



9 selected wafers



5 thinned, UBMed and diced wafers



The mechine to pick and pack the sensors



- The vender testing of USTC-IME LGAD pre-production sensors has been finished last year [link].
- > The wafer with 18 good sensors has been selected out, thinned and metalized on backside last year.
- 5 wafers of them have UBMed and diced this year.
- > This talk is focus on the recent LGADs testing results of these 5 wafers.

# CV/IV measurements of QC-TS single LGADs



- The variation of these sensors' gain-layer depletion (Vgl) is 0.2% (within specification ~1%).
- The breakdown voltage (Vbd) spread is also within specification ( $\pm$  8%).
- Positive correlation for Vbd between QC-TS and main sensors as expected.

# Evaluation of radiation hardness

- USTC-IME QC-TS sensors were exposed to fluence up to  $4 \times 10^{14}$ ,  $8 \times 10^{14}$ ,  $1.5 \times 10^{15} n_{eq}/cm^2$ , and  $2.5 \times 10^{15} n_{eq}/cm^2$  at the TRIGA reactor in Ljubljana, Slovenia with **neutrons**.
- Acceptor removal constant (c-factor) is extracted from the gain layer depletion voltages obtained from CV curves:





• Both the acceptor removal constant of the No-UBMed sensors  $(1.21 \times 10^{-16} \text{ cm}^2)$  and UBMed sensors  $(1.2 \times 10^{-16} \text{ cm}^2)$  is similar, which means the gain layer is radiation tolerant.

# Uniformity of unirradiated main sensors (CV)

CV curves



- Tested by 15×15 probe card, Temperature: 20 °C, Frequency: 10 kHz, VAC: 0.51 V, GR floating.
- The dashed lines in  $1/C^2$ -V curves are the fitted lines.
- The Vgl spread over this sensors is 0.0008 which meets the specification (<0.005).
- And the full depletion voltage voltage (Vfd) spread over this sensor is about 0.002 which also shows the uniformity is good.

# Uniformity of unirradiated main sensors (IV)

• Tested by probe needles while other pads and GR are floating, R.T.







Tested by 15×15 probe card while other pads are grounded and GR is floating, chuck at 20 °C



I@0.8 minimum Vbd / (I@0.8 minimum Vbd)<sub>min</sub>

| 1,3- | 1.3 | 1.5 | 1.4 | 1.7 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 12  |
|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1.3  | 1.4 | 1.4 | 1.5 | 1.7 | 1.4 | 1.4 | 1.3 | 1.3 | 1.4 | 1.3 | 1.4 | 1.2 | 1.4 | 1.8 |
| 1.3  | 1.4 | 1.4 | 1.5 | 1.7 | 1.4 | 1.3 | 1.2 | 1.3 | 1.3 | 1.2 | 1.3 | 1.2 | 1.4 | 1.7 |
| 1.4  | 1.4 | 1.5 | 1.5 | 1.6 | 1.4 | 1.1 | 1.2 | 1.3 | 1.2 | 1.3 | 1.3 | 1.4 | 1.4 | 1.6 |
| 1.4  | 1.5 | 1.6 | 1.5 | 1.6 | 1.2 | 1.1 | 1.2 | 1.2 | 1.2 | 1.3 | 1.2 | 1.5 | 1.4 | 1.5 |
| 1.4  | 1.6 | 1.6 | 1.4 | 1.6 | 1.1 | 1.1 | 1.2 | 1.2 | 1.2 | 1.2 | 1.4 | 1.5 | 1.5 | 1.4 |
| 1.5  | 1.7 | 1.5 | 1.4 | 1.6 | 1.1 | 1.2 | 1.2 | 1.1 | 1.2 | 1.2 | 1.4 | 1.5 | 1.4 | 1.4 |
| 1.6  | 1.6 | 1.4 | 1.4 | 1.5 | 1.2 | 1.3 | 1.2 | 1.1 | 1.2 | 1.2 | 1.4 | 1.5 | 1.3 | 1.4 |
| 1.6  | 1.5 | 1.3 | 1.5 | 1.4 | 1.3 | 1.3 | 1.2 | 1.2 | 1.1 | 1.3 | 1.3 | 1.4 | 1.1 | 1.4 |
| 1.4  | 1.3 | 1.4 | 1.4 | 1.5 | 1.3 | 1.3 | 1.2 | 1.2 | 1.1 | 1.3 | 1.3 | 1.2 | 1.2 | 1.3 |
| 1.3  | 1.3 | 1.4 | 1.4 | 1.5 | 1.3 | 1.2 | 1.1 | 1.2 | 1.1 | 1.2 | 1.2 | 1.3 | 1.4 | 1.1 |
| 1.3  | 1.3 | 1.4 | 1.3 | 1.5 | 1.3 | 1.1 | 1.2 | 1.1 | 1.1 | 1.2 | 1.1 | 1.3 | 1.3 | 1.1 |
| 1.4  | 1.4 | 1.4 | 1.3 | 1.5 | 1.2 | 1.1 | 1.3 | 1.1 | 1.1 | 1.1 | 1.2 | 1.4 | 1.2 | 1.1 |
| 1.4  | 1.4 | 1.4 | 1.2 | 1.4 | 1.1 | 1.2 | 1.2 | 1.0 | 1.1 | 1.1 | 1.3 | 1.5 | 1.1 | 1.2 |
| 1.4  | 1.5 | 1.4 | 1.3 | 1.3 | 1.1 | 1.3 | 1.1 | 1.0 | 1.0 | 1.4 | 1.5 | 1.3 | 1.1 | 1.2 |

- The blank boxes represent pads which don't break down at maximum applied bias voltage and the spread of obtained Vbd is good enough which is smaller than 0.05.
- The IV curves tested by probe card are more uniform after the full depletion voltage and the peak-to-peak I@0.8 minimum Vbd variation can be smaller than 3.

Kuo Ma

•

# Summary of unirradiated main sensors' measured values

| ATLAS HGTD<br>ID | <v<sub>bd,pad&gt;<br/>[V]</v<sub>                                                                                                                                                                                                                                                              | RMS(V <sub>bd,pad</sub> )<br>/ <v<sub>bd,pad&gt;</v<sub>                                                                                                                                                                                           | Max/Min(I@0.8<br>minimum V <sub>bd</sub> )                                                                                                                                                                                                                                                                                                                | <v<sub>gl,pad&gt;<br/>[V]</v<sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RMS(V <sub>gl,pad</sub> )/<br><v<sub>gl,pad&gt;</v<sub>                                                                                                                                                                                                                                                                                                                                                                  | <v<sub>fd,pad&gt;<br/>[V]</v<sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20WS3001000305   | 176.07                                                                                                                                                                                                                                                                                         | 0.0164                                                                                                                                                                                                                                             | 1.6                                                                                                                                                                                                                                                                                                                                                       | 24.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0008                                                                                                                                                                                                                                                                                                                                                                                                                   | 25.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 20WS3001000309   | 172.8                                                                                                                                                                                                                                                                                          | 0.0169                                                                                                                                                                                                                                             | 1.7                                                                                                                                                                                                                                                                                                                                                       | 24.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0008                                                                                                                                                                                                                                                                                                                                                                                                                   | 25.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 20WS3001000403   | 166.8                                                                                                                                                                                                                                                                                          | 0.0122                                                                                                                                                                                                                                             | 1.7                                                                                                                                                                                                                                                                                                                                                       | 24.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0003                                                                                                                                                                                                                                                                                                                                                                                                                   | 25.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 20WS3001000406   | 170.34                                                                                                                                                                                                                                                                                         | 0.0173                                                                                                                                                                                                                                             | 1.7                                                                                                                                                                                                                                                                                                                                                       | 24.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0008                                                                                                                                                                                                                                                                                                                                                                                                                   | 25.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 20WS3001000505   | 180.7                                                                                                                                                                                                                                                                                          | 0.0138                                                                                                                                                                                                                                             | 1.8                                                                                                                                                                                                                                                                                                                                                       | 24.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0009                                                                                                                                                                                                                                                                                                                                                                                                                   | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 20WS3001000508   | 170.65                                                                                                                                                                                                                                                                                         | 0.0162                                                                                                                                                                                                                                             | 1.9                                                                                                                                                                                                                                                                                                                                                       | 24.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0007                                                                                                                                                                                                                                                                                                                                                                                                                   | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 20WS3001000605   | 171.12                                                                                                                                                                                                                                                                                         | 0.0129                                                                                                                                                                                                                                             | 2.1                                                                                                                                                                                                                                                                                                                                                       | 24.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0011                                                                                                                                                                                                                                                                                                                                                                                                                   | 25.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 20WS3001000608   | 170.42                                                                                                                                                                                                                                                                                         | 0.0189                                                                                                                                                                                                                                             | 1.7                                                                                                                                                                                                                                                                                                                                                       | 24.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0006                                                                                                                                                                                                                                                                                                                                                                                                                   | 25.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 20WS3001000706   | 166.53                                                                                                                                                                                                                                                                                         | 0.0126                                                                                                                                                                                                                                             | 2.5                                                                                                                                                                                                                                                                                                                                                       | 24.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                   | 25.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 20WS3001000709   | 161.43                                                                                                                                                                                                                                                                                         | 0.0127                                                                                                                                                                                                                                             | 1.8                                                                                                                                                                                                                                                                                                                                                       | 24.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0007                                                                                                                                                                                                                                                                                                                                                                                                                   | 25.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                  | ATLAS HGTD         20WS3001000305         20WS3001000309         20WS3001000403         20WS3001000403         20WS3001000406         20WS3001000508         20WS3001000605         20WS3001000605         20WS3001000605         20WS3001000605         20WS3001000706         20WS3001000706 | ATLAS HGTD<br>ID <v<br></v<br> bd,pad><br>[V]20WS3001000305176.0720WS3001000309172.820WS3001000403166.820WS3001000406170.3420WS3001000505180.720WS3001000508170.6520WS3001000605171.1220WS3001000605170.4220WS3001000706166.5320WS3001000709161.43 | ATLAS HGTD<br>ID <v<br></v<br> bd,pad><br>[V]RMS(V<br>bd,pad><br>/ <v<br></v<br> bd,pad>20WS3001000305176.070.016420WS3001000309172.80.016920WS3001000403166.80.012220WS3001000406170.340.017320WS3001000505180.70.013820WS3001000505170.650.016220WS3001000605171.120.012920WS3001000605170.420.018920WS3001000706166.530.012620WS3001000706161.430.0127 | ATLAS HGTD<br>ID $< V_{bd,pad} > V_{bd,pad} >$ | ATLAS HGTD<br>ID $< V_{bd,pad} > [V]$ $RMS(V_{bd,pad} > Max/Min(I@0.8 minimum V_{bd})$ $< V_{gl,pad} > [V]$ 20WS3001000305176.070.01641.624.1120WS3001000309172.80.01691.724.1520WS3001000403166.80.01221.724.320WS3001000404170.340.01731.724.1620WS3001000505180.70.01381.824.120WS3001000505171.120.01292.124.1420WS3001000605170.420.01891.724.1920WS3001000605166.530.01262.524.3420WS300100709161.430.01271.824.37 | ATLAS HGTD<br>ID<br><br>(V)RMS(V<br>bd,pad><br>(V)Max/Min(I@0.8<br>minimum V<br>bd)<br>(V)<br>(V)RMS(V<br>sl,pad><br>(V)20WS3001000305176.070.01641.624.110.000820WS3001000309172.80.01691.724.150.000820WS3001000403166.80.01221.724.30.000320WS3001000406170.340.01731.724.160.000820WS3001000505180.70.01381.824.10.000920WS3001000505171.120.01291.924.170.000720WS3001000605171.120.01292.124.140.001120WS3001000608170.420.01891.724.190.000620WS3001000608166.530.01262.524.340.001020WS3001000709161.430.01271.824.370.0007 |

#### < 0.05

< 0.005

| Parameters                                          | Specification                               | Measured values | Statistics/Total measured sensors |
|-----------------------------------------------------|---------------------------------------------|-----------------|-----------------------------------|
| Variation of the $V_{fd}$ between different sensors | $\pm 10\%$ from the average V <sub>fd</sub> | ± 0.8%          | 8/8                               |
| Variation of the $V_{gl}$ between different sensors | $\pm 1\%$ from the average $V_{gl}$         | ± 0.7%          | 10/10                             |
| Variation of the $V_{bd}$ between different sensors | $\pm 8\%$ from the average V <sub>bd</sub>  | ± 5.9%          | 10/10                             |

• Besides the spread of all the measured sensors, the variation of the Vgl, Vfd and Vbd between different sensors also meet the specification.

# Uniformity of irradiated main sensor

• Tested by  $15 \times 15$  probe card, Temperature: -30 °C, Compliance: 600  $\mu$ A

#### W3\_P2@2.5E15 $n_{eq}/cm^2$



Tested by 15×15 probe card, Temperature: 20 °C, Compliance: 1.5 mA



- The V1 $\mu$ A/Vgl spread over this sensor is about 0.022/0.017 including the contribution from the non-uniformity of irradiation fluence across the large array sensors. And the I@550 V of all pads is smaller than 5  $\mu$ A.
- The power consumption is smaller than  $< 37 \text{ mW/cm}^2$  and the total maximum leakage curent is smaller than  $< 74 \text{ }\mu\text{A/cm}^2$  (Here we consider the Vop, min is V1µA and the sensor's area is 2×2 cm<sup>2</sup>).

# Inter-pad resistance of irradiated main sensors

- Tested by 5×5 probe card, Temperature: -30 °C, Compliance: 600  $\mu$ A
- Irradiate to 2.5E15  $n_{eq}/cm^2$  at Jožef Stefan Institute (JSI) with reactor neutrons.





> Configuration (Inter-pad resistance):

- Apply negative high voltage to sensor's backside.
- Apply **0 or 1 V** to the central pad (H09) and measure the current of neighboring pads, respectively.



• The difference of current is lower than 100 nA which indicates that the inter-pad resistance is **larger than 10 M** $\Omega$ .

13

# Charge collection, timing resolution and hit efficiency



- The irradiated USTC sensor performance is evaluated at the 120 GeV pion beam at CERN-SPS.
- Hit Efficiency = (Rescontructed tracks with  $q > Q_{cut}$ )/(Total rescontructed tracks).
- The collected charge, efficiency and time resolution after irradiation can fulfill the requirement of HGTD well.

### Summary

- The LGAD, as a **fast timing as well as radiation hard** silicon based detector, has reached a mature state in recent years.
- The characterization of USTC-IME LGAD pre-production sensors for the HGTD have been studied both in **laboratory** and **test beam**:
  - The uniformity of unirradiated main sensor is very well and the it can be affected by the non-uniformity of irradiation fluence.
  - The inter-pad resistance of sensors irradiated by reactor neutrons is larger than  $10 \text{ M}\Omega$ .
  - Sensors irradiated at fluences of  $2.5 \times 10^{15} n_{eq}/cm^2$  achieved the objectives of:
    - Collected charge of more than 4 fC while guaranteeing an optimal timing resolution better than 50 ps.
    - An efficiency larger than 95% over sensors' surface is obtained with a charge threshold of 2 fC.
- All these results meet the HGTD specification and verify the good quality of USTC-IME LGAD pre-production sensors.

# Thanks for your attention!

# Back up

### Probe station testing systems at USTC



- Semi-Automatic probe station (Room Temperature, R.T.)
  - Vender testing
  - Cascade Summit 200 + Keysight B1500
  - Three pads were measured simultaneously so it took less time (~ 4 hours for one wafer)
  - Step: 2 V, Compliance: 60 µA (The current can reach to compliance when **at least one** of three pads is bad)
- Mannual probe station (Generally, chuck at 20 °C)
  - Cross-check vender testing results
  - Test the main sensors by probe card and compare results with three probe needles
  - Apollowave alpha-200CS + Keithley 2410 and 6482 (IV)/Keithley 2410 and Aglient E4980A (CV)
  - For single LGADs, step: 2 V, compliance: 10 μA. For 15x15 LGADs, step: 5 V, compliance: 600 μA

# VBD Histogram (take W3 for example)



# Yield estimation (take W3 for example)



# IV/CV measurements of QC-TS LGADs



- Breakdown voltage (Vbd) spread within specs ( $\pm$  8%) and leakage current @ 0.8 VBD spread within specs (< 3x).
- Gain-layer depletion (Vgl) RMS of 2.3-2.5% outside specs (1%); ~1% within wafers includes systematics from fit.
- Narrow distributions of depletion voltage Vfd (< 4%) within specs (10%).
- Good correlation for Vbd between QC-TS and main sensors. Kuo Ma
   CLHCP2024, Qingdao

# Correction of break-down voltage with position on wafer



• Clear correlation of Vbd with position on wafer

### HGTD UBMed main sensors at USTC

USTC-IME UBMed unirradiated sensors





#### USTC-IME UBMed irradiated sensors



#### IHEP-IME UBMed irradiated sensors



### CV curves of unirradiated main sensors (I)



0.05

0.04

0.03

0.02





labprob-Data-CV-USTCIMEPre-15x15-UBMed-W3\_P9 [Linear]

500 r

celpF



111111

.....

25

Bias Voltage [V]

20

H19 VFD:25.0

15

10

#### CV curves of unirradiated main sensors (II)



- Tested by 15×15 probe card, Temperature: 20 °C, Frequency 210 deltz, VAC: 0.51 V, GR floating.
  - The dashed lines in  $1/C^2$ -V are the fitted lines.

### CV curves of unirradiated main sensors (III)



- Tested by 15×15 probe card, Temperature: 20 °C, Frequency 21@ddHz, VAC: 0.51 V, GR floating.
- The dashed lines in 1/C<sup>2</sup>-V are the fitted lines.

### VGL spread over the sensors (I)



- Tested by 15×15 probe card, Temperature: 20 °C, Frequency: 10 kHz, VAC: 0.51 V, GR floating.
  - 1D and 2D distribution are shown here (The  $1/C^2$ -V curves can be found in backup slides).
- The VGL spread over these sensors is 0.0008, 0.0008, 0.0003 and 0.0008, respectively which meets the specification.

Kuo Ma

### VGL spread over the sensors (II)



- Tested by 15×15 probe card, Temperature: 20 °C, Frequency: 10 kHz, VAC: 0.51 V, GR floating.
  - 1D and 2D distribution are shown here (The  $1/C^2$ -V curves can be found in backup slides).
- The VGL spread over these sensors is 0.0009, 0.0007, 0.0011 and 0.0006, respectively which meets the specification.

### VGL spread over the sensors (III)



- Tested by 15×15 probe card, Temperature: 20 °C, Frequency: 10 kHz, VAC: 0.51 V, GR floating.
- 1D and 2D distribution are shown here (The  $1/C^2$ -V curves can be found in backup slides).
- The VGL spread over these sensors is 0.0010 and 0.0007, respectively which meets the specification (<0.005).

Kuo Ma

#### Variation of VGL between different sensors



• The variation of VGL between sensors is within  $\pm 1\%$ .

### VFD spread over the sensors (I)



- Tested by 15×15 probe card, Temperature: 20 °C, Frequency: 10 kHz, VAC: 0.51 V, GR floating.
- 1D and 2D distribution are shown here (The  $1/C^2$ -V curves can be found in backup).

### VFD spread over the sensors (II)



- Tested by 15×15 probe card, Temperature: 20 °C, Frequency: 10 kHz, VAC: 0.51 V, GR floating.
- 1D and 2D distribution are shown here (The  $1/C^2$ -V curves can be found in backup).

Kuo Ma

#### Variation of VFD between different sensors



• The variation of VFD between sensors is within  $\pm 10\%$ .

### VBD and pad leakage current spread over sensors (I)



- Tested by 15×15 probe card while other pads are grounded and GR is floating, chuck at 20 °C
- The blank boxes represent pads which don't break down at maximum applied bias due to the compliance of total current.
- The VBD spread over the pads which are break down is 0.0164, 0.0169, 0.0122 and 0.0173, respectively.
- The Max(I@0.8VBD)/Min(I@0.8VBD) over the pads which are break down is 1.32, 1.40, 1.34 and 1.49, respectively. Kuo Ma
  CLHCP2024, Qingdao
  34

#### VBD and pad leakage current spread over sensors (II)



- Tested by 15×15 probe card while other pads are grounded and GR is floating, chuck at 20 °C.
- The blank boxes represent pads which don't break down at maximum applied bias due to the compliance of total current.
- The VBD spread over the pads which are break down is 0.0138, 0.0162, 0.0129 and 0.0189, respectively.
- The Max(I@0.8VBD)/Min(I@0.8VBD) over the pads which are break down is 1.49, 1.45, 1.46 and 1.61, respectively. Kuo Ma
   CLHCP2024, Qingdao

#### Variation of VBD between different sensors



• The variation of VBD between sensors is within  $\pm 8\%$ .

# IV measurements of irradiated main sensor

Tested by  $15 \times 15$  probe card, Temperature: -30 °C, Compliance: 600 µA



- The V1µA spread over this sensor is about 0.022 including the contribution from the non-uniformity of irradiation fluence across the large array sensors. And the I@550V of all pads is smaller than 5  $\mu$ A.
- The power consumption is smaller than  $< 37 \text{ mW/cm}^2$  and the total maximum leakage curent is smaller than  $< 68 \ \mu\text{A/cm}^2$  (Here we consider the Vop,min is V1µA and the sensor's area is 2×2 cm<sup>2</sup>). Kuo Ma

# Uniformity of irradiated main sensor

• Tested by  $15 \times 15$  probe card, Temperature: -30 °C, Compliance: 600  $\mu$ A



- The V1 $\mu$ A spread over this sensor is about 0.022 including the contribution from the non-uniformity of irradiation fluence across the large array sensors. And the I@550 V of all pads is smaller than 5  $\mu$ A.
- The power consumption is smaller than  $< 37 \text{ mW/cm}^2$  and the total maximum leakage curent is smaller. than  $< 74 \mu \text{A/cm}^2$  (Here we consider the Vop, min is V1µA and the sensor's area is 2×2 cm<sup>2</sup>). Kuo Ma CLHCP2024, Qingdao 38

# Vgl spread over irradiated main sensor

• Tested by 15×15 probe card, Temperature: 20 °C, Compliance: 1.5 mA

W3\_P2@2.5E15  $n_{eq}/cm^2$ 



• Tested by 5×5 probe card, Temperature: 20 °C, Compliance: 1.5 mA





• The VGL spread over this two sensors is 0.017 and 0.0134, respectively, which is larger than the spread over unirradiated sensors probably due to the contribution from the non-uniformity of irradiation fluence across the large array sensors.

# Summary of main sensors' measured values

| Daman stars                                                     | Sa as <b>if</b> i astian                              | UTSC-IME                        |                         |  |
|-----------------------------------------------------------------|-------------------------------------------------------|---------------------------------|-------------------------|--|
| rarameters                                                      | Specification                                         | Measured values                 | Statistics              |  |
| Pad leakage current (V <sub>bd</sub> condition)                 | < 500 nA                                              | < 500 nA                        |                         |  |
| Break-down voltage (V <sub>bd</sub> )                           | $V_{bd}\!\!>\!\!V_{fd}+D\cdot\!\!2~V\!/\mu m$         | VBD > 150V > 125.20V            | 4 sensors / 118 sensors |  |
| Device total leakage current                                    | $< 20 \ \mu\text{A/cm}^2$ at bias voltage $<\!V_{bd}$ | < 1.78 µA/cm <sup>2</sup> @150V | 5 sensors               |  |
| $\mathbf{V}_{\mathbf{gl},\mathbf{pad}}$ spread over the Sensor* | $RMS(V_{gl,pad}) / < V_{gl,pad} > < 0.005$            | < 0.0011                        | 5 sensors               |  |
| $V_{bd,pad}$ spread over the Sensor <sup>*,<sup>a</sup></sup>   | $RMS(V_{bd,pad}) / < V_{bd,pad} > < 0.05$             | < 0.0164                        | 5 sensors               |  |
| Pad leakage current spread at $0.8 \cdot V_{bd}$                | Peak-to-Peak within a factor of 3x                    | $\pm 4.9\%$                     | 5 sensors               |  |
| Variation of the $V_{fd}$ between different sensors             | $\pm 10\%$ from the average $V_{fd}$                  | $\pm 0.7\%$                     | 4 sensors               |  |
| Variation of the $V_{gl}$ between different sensors             | $\pm 1\%$ from the average $V_{gl}$                   | $\pm 0.6\%$                     | 5 sensors               |  |
| Variation of the V <sub>bd</sub> between different sensors      | $\pm 8\%$ from the average V <sub>bd</sub>            | $\pm 4.9\%$                     | 5 sensors               |  |

Required electrics properties of produced Sensors at room temperature (\* applies also to irradiated sensors, ¤ for irradiated sensors at -30°C)

| Parameters                                 | Specification                                                                                                                             | USTC-IME                          |            |  |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------|--|
|                                            |                                                                                                                                           | Measured values                   | Statistics |  |
| Power consumption at V <sub>op,min</sub>   | < 100 mW/cm <sup>2</sup>                                                                                                                  | $< 37 \text{ mW/cm}^2$            |            |  |
| Total maximum leakage current<br>(D=50 μm) | <160 µA/cm <sup>2</sup>                                                                                                                   | $< 72 \ \mu A/cm^2$               |            |  |
| Pad leakage current at $V_{op,min}$        | <5 µA                                                                                                                                     | < 5 µA                            | 2 sensors  |  |
| Interpad-resistance at V <sub>op,min</sub> | >10 MΩ                                                                                                                                    | >10 MΩ                            |            |  |
| Leakage current stability                  | to remain stable within +/-5% when<br>corrected for temperature exhibiting no<br>long-term drifts (on days scale) or<br>prompt excursions | within ± 1.0%<br>(on hours scale) |            |  |

# Preliminary long term stability measurements

- Tested by 15×15 probe card with all pads GND
- Temperature: -30 °C, Scanned all pads (225) with switching matrix







• The preliminary results (on hours scale) tested by  $15 \times 15$  probe card shows that the total current stability is within  $\pm$  5%.

# Comparison of single LGADs (IV)

• Repeated testing on Cascade probe station at **R.T.** (vender test)



• Testing on Apollowave probe station at different temperature of chuck (cross-check)



- The repeated vender test and cross check results is steady, respectively
- The difference of VBD is also in order of 10 V, which is **related to the temperature of the chuck**
- The ratio of I@0.8VBD is about 1.73

# Collected charge and timing resolution – irradiated

#### Beta-scope ( $^{90}$ Sr) @ -30 °C

Measured by JSI



• The collected charge can be greater than 4 fC and timing resolution can be better than 70 ps after irradiation (fluences up to  $1.5 \times 10^{15} \, n_{eq}/cm^2$ ) at safe bias

Kuo Ma