# HGTD module thermal cycle

Yulong Li, HGTD module group 14 Nov, 2024 CLHCP 2024, Qingdao



 中國科学院為能物明細胞所 Institute of High Energy Physics Chinese Academy of Sciences

14 November, 2024

#### **HGTD** module

- HGTD module=2\*sensor + 2\*ASIC (2 hybrids) + module flex
- 1 hybrid=1\*sensor bonded with 1\*ASIC using flip-chip bonding technology
- 1 hybrid=15\*15 pads (each pad has 1 bump)



#### **Thermal cycle**

- HGTD is going to work in low temperature (-30°C), a thermal cycle is a testing method to check module stability against temperature change
- During HGTD working time, estimated thermal cycles is 36 for those will never be replaced
- When we did thermal cycle on previous designed modules (thin sensor, ALTIROC-3 hybrid) they could not reach this standard
- Failures mainly happened on bumps connecting sensor and ASIC (disconnected or broke inside) in early time (mostly <30 cycles)</li>
- This problem delayed HGTD module pre-production by one year
- This work were done to improve module design and make sure they survive enough thermal cycles

Temperature in thermal cycle (blue)



|                               | Estimated | Pessimistic |
|-------------------------------|-----------|-------------|
| Surface (b180) commissioning  | 8         | 12          |
| P1 commissioning              | 4         | 12          |
| Nominal data-taking (9 years) | 18        | 26          |
| Replacement (3 times)         | 6         | 12          |
| Total                         | 36        | 62          |

Total thermal cycles for modules which will never be replaced



disconnect bump

#### **Simulation setup**

|                    | Material                    | Thickness (um) |  |  |
|--------------------|-----------------------------|----------------|--|--|
| ASIC               | Silicon                     | 300            |  |  |
| Bump               | Ag <sub>3.5</sub> Sn        | 50±5           |  |  |
| Sensor             | Silicon                     | 775            |  |  |
| Glue               | Epoxy resin (Araldite 2011) | 50±30          |  |  |
| Module flex layer1 | Kapton                      | 175            |  |  |
| Module flex layer2 | Copper                      | 200            |  |  |
| Module flex layer3 | Kapton                      | 175            |  |  |





**Ansys** 2022 RI



Real TC: -45~40°C, 2.5h



Simulated TC: -45.5~44.5°C, 2h



- Aim: predict bump connection lifetime during thermal cycle using simulation results in single cycle
- Modified Coffin-Manson equation:  $N_f = \frac{1}{2} \left( \frac{\Delta \epsilon}{2\epsilon'_f} \right)^{1/c}$  reference
  - Commonly used in estimating solder joint reliability within certain temperature range
  - Parameter explanation:
    - $N_f$ : average lifetime (50% probability failure in any bump on LGAD pad, unit in cycles)
    - $\frac{\Delta\epsilon}{2}$ : cyclic strain amplitude/ half maximum total mechanical strain in one cycle
    - $\bar{\epsilon_f'} = 0.325$ , fatigue ductility coefficient
    - c: fatigue ductility exponent, relative to thermal cycle setup:
      - $c = -0.442 6 \times 10^{-4}\overline{T} + 1.74 \times 10^{-2}\ln(1+f)$
      - $\overline{T}$ : average solder temperature in one cycle, -0.5°C in our setup
      - f: frequency of thermal cycle, in unit cycles/day, 12 in our setup
      - ≻ c=-0.3971

#### Simulation results: hybrid thickness

|                         | Both thin | Thick sensor | Thick ASIC | Both thick |
|-------------------------|-----------|--------------|------------|------------|
| Sensor thickness/um     | 300       | 775          | 300        | 775        |
| ASIC thickness/um       | 300       | 300          | 425        | 425        |
| Average lifetime/cycles | 108       | 393          | 80         | 323        |



Consider low temperature (shrinking) situation Length of arrow means deformation magnitude

Cause of bump failure: mechanical strain accumulated in thermal cycle due to mismatch in material CTE (coefficient of thermal expansion, thermal strain in 1°C temperature change)

Although CTE of bump is also large, the dimension of a single bump is too small compared to Sensor/ASIC/module flex that bump almost does not deform during thermal cycle.

Mismatch of CTE in module flex and sensor is leading to shearing between them, finally leading to a larger shrinking to the middle in sensor. When bumps stay still and sensor shrinks to the middle, the larger sensor shrinks will produce larger shear stress/strain between sensor and bump. A thicker sensor reduces the effect from module flex and leads to smaller deformation in sensor.

A thicker ASIC helps nothing on top side of bumps, the only effect is to shear the bottom of bump more which leads to larger stress in bumps.

 Major difference between pre-production (ALTIROC-A) hybrid design and previous design (ALTIROC-3)



• Purpose: protect bumps on LGAD pads

#### Simulation results: guardring bumps

|                            | Thin (300 um)<br>sensor, more bumps | Thin (300 um)<br>sensor, fewer<br>bumps | Thick (775 um)<br>sensor, more bumps | Thick (775 um)<br>sensor, fewer<br>bumps |
|----------------------------|-------------------------------------|-----------------------------------------|--------------------------------------|------------------------------------------|
|                            | ALTIROC-A                           | ALTIROC-3                               | ALTIROC-A                            | ALTIROC-3                                |
| Average<br>lifetime/cycles | 108                                 | 16                                      | 393                                  | 119                                      |

- By adding more bumps on guardring, module lifetime increases a lot
- Results for thin ALTIROC-3 module (16 cycles) matches previous thermal cycle results
- Results for thick ALTIROC-3 module (119 cycles) also matches thermal cycle results well (discuss later)

- Thermal cycle testing was done in different sites
- All the results were recorded and updated in a same shared document
- Results in different sites are similar:
  - First disconnect bump on average appears at ~110 cycles (agree with simulation prediction, 119)
  - Most disconnect bumps appear at corner part of hybrid (same as simulation prediction, right bottom plot)
  - After some disconnect bumps appear, the spread of the disconnection is slow



| tatic Structural                    |                      |     |     |          |      |   |   |    |    |   |    |      |            |     |            |   |     |     |      |     |     |   |          |    |    |      | 8.4       | 765e        | 002  | 1  |
|-------------------------------------|----------------------|-----|-----|----------|------|---|---|----|----|---|----|------|------------|-----|------------|---|-----|-----|------|-----|-----|---|----------|----|----|------|-----------|-------------|------|----|
|                                     |                      |     |     |          |      |   |   |    |    |   |    |      |            |     |            |   |     |     |      |     |     |   |          |    |    |      | Ma        |             | -002 | 7  |
| ession: EPTOINT<br>imum Over Time s |                      |     |     |          |      |   |   |    |    |   |    |      |            |     |            |   |     |     |      |     |     |   |          |    |    |      |           |             |      | 4  |
| 4/10/8 17:47                        |                      |     |     |          |      |   |   |    |    |   |    |      |            |     |            |   |     |     |      |     |     |   |          |    |    |      | 8.3<br>Ma | 867e<br>x 5 | -002 | )  |
| 0.091601 Max                        | 9.0107e-002<br>Max 2 |     |     |          |      |   |   |    |    |   |    |      | 23e<br>x 6 | 002 | <u>)</u> , |   |     |     |      |     |     |   |          |    |    |      |           |             | Max  |    |
| 0.081467<br>0.071334                |                      |     |     |          |      |   |   |    |    |   |    | -    | -          | 1   |            |   |     |     |      |     |     |   |          |    |    |      |           | 426e        | 000  | N  |
| 0.0612                              |                      |     |     |          |      |   | ÷ |    |    | * |    |      |            |     |            |   | Ξ¥. | •   |      |     | - 3 |   |          | 2  | •  |      |           | 1ax 4       |      | J  |
| 0.051067                            |                      |     | 1.0 |          |      | * | • | 0  |    | * | •  |      |            |     |            |   | 1   | *   |      | (*) | •   | 2 |          | •  | •  |      | 100000    | 601e-       | -002 | 1  |
| 0.0308                              |                      |     |     |          |      | 0 | 1 |    |    |   |    |      |            |     | 1          | 1 |     |     |      |     |     | • | <u>_</u> | 13 | 1  |      | Ma        | ×1          | _    | ŀ  |
| 0.020667                            | ,                    | - 6 |     |          |      | - | • | •  |    |   |    |      |            |     |            | 1 |     |     | 1    |     |     | • | •        | -  |    |      |           |             | •    | *  |
| 0.010533                            |                      |     |     | - 24     | 3    |   | • | ×  | 14 |   |    |      |            | З.  |            |   |     |     |      |     | з.  | 5 | к.       | •  |    | 5    |           | - 22        |      |    |
| 0.00039965 Min                      |                      |     |     |          |      |   | • | •  |    |   | •  |      |            | э   |            |   |     | •   |      |     |     |   |          | ĸ  | •  |      |           | •           |      |    |
|                                     |                      | •   |     |          |      | - | - | 1  |    |   | 5  |      | 2          |     | 5          |   |     |     |      | 1   |     |   | <u>.</u> | •  | 2  |      |           |             | 121  |    |
|                                     |                      |     |     | ,        |      |   | • |    |    |   |    | 50   |            |     |            |   |     |     |      |     |     | 1 |          |    |    |      |           |             |      |    |
|                                     |                      |     |     | <i>.</i> | - 12 | 2 |   | 4  | 1  |   | 2  | - 20 | 12         |     |            |   |     | 2   | 12   | 12  |     | 4 | 18       |    | 12 |      | 2         |             |      |    |
|                                     |                      |     |     |          |      | ÷ | ÷ |    |    |   | 20 |      |            | ÷.  |            |   | 4   |     |      |     | 4   |   |          | ÷  |    |      |           |             |      |    |
|                                     |                      |     |     |          |      | • | • | •  | •  | ÷ |    | e.   |            |     | •          |   |     | ×   | , ic | •   | ÷   | • |          | •  |    | ×    |           | - 80        | •    |    |
|                                     |                      | e.  | •   | 2        | 2    |   | • | ÷. |    | • |    |      |            | •   |            | 1 |     | Min |      |     |     |   |          | •  |    | 3    | 3         |             |      |    |
|                                     |                      | - 1 | 1   | 4        | 1    |   |   | 16 | 1  |   | 1  | - 23 |            | 4   | 5          | 1 |     | 1   |      |     |     | 4 | 1        |    | ÷. | - 34 |           |             | - 6  | 14 |

- Data: ALTIROC-3, thick module thermal cycle results, 46 hybrids in total
- Lifetime assumptions:
  - Already failed hybrids (14 hybrids): average of last observed passing cycles and first observed failure cycles (fair)
  - > Average lifetime of already failed hybrids: 90
  - Not yet failed hybrids:
    - 90, if not yet passed 90 cycles (20,20,75,75,75,75) (fair)
    - Last cycles done, if already passed 90 cycles (26 hybrids) (conservative)
  - Try to make conservative and reasonable lifetime assumptions
- Strategy: fit a distribution with data and then use the distribution to predict failure situation in all 8032 HGTD modules
- Note: these models are based on ALTIROC-3 module thermal cycle results, believing the simulation results we are expecting a more than 3 times longer average lifetime when moving to pre-production ALTIROC-A modules (see <u>slide 8</u>)

#### Statistical model: data pre-processing

| Module | Hybrid | Site | First failure<br>cycle | Last no failure<br>cycle  | Applied<br>lifetime | Module          | Hybrid | Site   | First failure<br>cycle | Last no failure<br>cycle | Applied lifetime |
|--------|--------|------|------------------------|---------------------------|---------------------|-----------------|--------|--------|------------------------|--------------------------|------------------|
|        | 0      |      | 75                     | 60                        | 67.5                | M130            | 0      |        | 120                    | 120                      | 120              |
| FM028  | 1      |      | 120                    | 105                       | 112.5               |                 | 0      |        |                        | 120                      | 120              |
|        | 0      |      |                        | 180                       | 180                 | M131            | 1      |        |                        | 120                      | 120              |
| FM029  | 1      |      | 75                     | 60                        | 67.5                |                 | 0      | IFAE   |                        | 120                      | 120              |
|        | 0      |      |                        | 180                       | 180                 | M132            | 1      | IFAE   | 90                     | 60                       | 75               |
| FM031  | 1      | IHEP | 120                    | 105                       | 112.5               |                 | 0      |        |                        | 120                      | 120              |
|        | 0      |      | 75                     | 60                        | 67.5                | M133            | 1      |        |                        | 120                      | 120              |
| FM033  | 1      |      |                        | 180                       | 180                 |                 | 0      |        |                        | 20                       | 90               |
|        | 0      |      | 60                     | 60 30 45 20WMO321000002 1 |                     |                 |        | 20     | 90                     |                          |                  |
| FM034  | 1      |      |                        | 180                       | 180                 |                 | 0      |        |                        |                          | 175              |
|        | 0      |      |                        | 150                       | 150                 | IJCLab2         | 1      |        |                        | 175                      | 175              |
| FM035  | 1      |      |                        | 150 150                   |                     |                 | 0      |        |                        | 175                      | 175              |
| FM036  | 0      |      |                        | 150                       | 150                 | 20WMO321000006  | 1      |        | 175                    | 120                      | 147.5            |
|        | 0      |      |                        | 150                       | 150                 |                 | 0      |        |                        | 75                       | 90               |
| M125   | 1      |      |                        | 150                       | 150                 | IJCLab4         | 1      | IJCLab |                        | 75                       | 90               |
|        | 0      |      |                        | 120                       | 120                 |                 | 0      |        |                        | 75                       | 90               |
| M126   | 1      |      |                        | 120                       | 120                 | IJCLab5         | 1      |        |                        | 75                       | 90               |
|        | 0      |      | 240                    | 150                       | 180                 |                 | 0      |        |                        | 120                      | 120              |
| M127   | 1      | IFAE | 90                     | 60                        | 70                  | 20WMO3210000011 | 1      |        |                        | 120                      | 120              |
|        | 0      |      | 120                    | 90                        | 105                 |                 | 0      |        | 90                     | 75                       | 82.5             |
| M128   | 1      |      |                        | 120                       | 120                 | 20WMO3210000012 | 1      |        |                        | 120                      | 120              |
|        | 0      |      | 60                     | 30                        | 45                  |                 | 0      |        |                        | 120                      | 120              |
| M129   | 1      |      | 120                    | 90                        | 100                 | 20WMO3210000013 | 1      |        |                        | 120                      | 120              |

#### Statistical models: Weibull and lognormal distribution

### **Weibull distribution**

- Most commonly used reliability analysis distribution
- Flexible enough to fit into almost any distribution
- Probability density function given by:  $f(x, \lambda, k) = \frac{k}{\lambda} (\frac{x}{\lambda})^{k-1} e^{-(\frac{x}{\lambda})^k}$ , shape parameter k

and scale parameter  $\lambda$  given by fit



### Lognormal distribution

- Logarithm of a variable is normal distributed
- Widely used for reliability analysis of semiconductor devices and fatigue life analysis of some mechanical components



#### Prediction of all 8032\*2 hybrids



#### Summary

- Thermal cycle results based on 46 hybrids, indicate that ALTIROC3 modules with thick sensors can survive an average of more than 110 cycles without any disconnect pixel
- Simulation results agree well with current thermal cycle results, giving confidence to the approach
- Based on ALTIROC-3 thick module thermal cycle results, the number of pads expected to fail for the full HGTD before 36 cycles (240 or 9) is very small.
- The number of failures is expected from simulation to be even smaller with preproduction module design (thick sensors, more bumps in the guardring)
- ALTIROC-A design module has passed FDR and ready for pre-production

## Thanks for attention!

## Back up

#### Thin ALTIROC-3 module TC results

| Module     | Site   | Before TC | 5 TC | 15 TC | 30 TC |
|------------|--------|-----------|------|-------|-------|
| M105       | IFAE   | 0         | Mass |       |       |
|            |        | 1         | Mass |       |       |
| M107       | IFAE   | 0         |      |       | 2     |
|            |        | 2         |      |       | 4     |
| M112       | IFAE   | 0         |      |       | 0     |
|            |        | 0         |      |       | 1     |
| M117       | IFAE   | 0         |      |       | 0     |
|            |        | 0         |      |       | 1     |
| 20WMO32100 | IJCLab | 11        | 15   |       |       |
| 0005       |        | 21        | 28   |       |       |
| FM021      | IHEP   | 16        | 16   | 19    |       |
|            |        | 1         | 3    | 6     |       |
| FM023      | IHEP   | 2         |      | Mass  |       |
|            |        | 8         |      | Mass  |       |
| FM025      | IHEP   | 0         |      |       | 0     |
|            |        | 0         |      |       | 0     |

| Material             | Component    | Coefficient of linear<br>thermal expansion<br>(/°C) | Young's<br>modulus (Mpa) | Poisson's ratio          |
|----------------------|--------------|-----------------------------------------------------|--------------------------|--------------------------|
| Copper               | Module flex  | $1.8 \times 10^{-5}$                                | 110000                   | 0.34                     |
| Kapton               | Module flex  | $2 \times 10^{-5}$                                  | 2800                     | 0.34                     |
| Epoxy resin          | Glue         | $7 \times 10^{-5}$                                  | 3780                     | 0.35                     |
| Ag <sub>3.5</sub> Sn | Bump         | $1.9 \times 10^{-5}$                                | 55000                    | 0.4                      |
| Silicon              | Sensor, ASIC | $2.578 \times 10^{-6}$                              | 169000(x,y)<br>130000(z) | 0.064(xy)<br>0.36(xz,yz) |

#### Viscoplastic (Anand) model for Ag<sub>3.5</sub>Sn

$$\frac{d\epsilon}{dt} = Ae^{-\frac{Q}{RT}} \left[ \sinh\left(\frac{\xi \sigma}{S}\right) \right]^{\frac{1}{m}}$$
$$\frac{d\epsilon}{dt} = \left\{ h_0 \left| 1 - \frac{S}{S^*} \right|^a \operatorname{sign}\left(1 - \frac{S}{S^*}\right) \right\} \frac{d\epsilon_p}{dt}$$
$$S^* = \hat{S} \left[ \frac{\frac{d\epsilon_p}{dt}e^{-\frac{Q}{RT}}}{A} \right]^n$$

| Initial deformation resistance                                 | $S_0$     | 2.3165 MPa                          |
|----------------------------------------------------------------|-----------|-------------------------------------|
| Activation enengy/Universal gas constant                       | Q/R       | 10279 °C                            |
| Pre-exponential factor                                         | Α         | $1.7702 \times 10^5 \text{ s}^{-1}$ |
| Multiplier of stress                                           | ξ         | 7                                   |
| Strain rate sensitivity of stress                              | m         | 0.207                               |
| Hardening/Softening constant                                   | $h_0$     | 27782 MPa                           |
| Coefficient for deformation resistance saturation              | $\hat{S}$ | 52.4 MPa                            |
| Strain rate sensitivity of saturation (deformation resistance) | n         | 0.0177                              |
| Strain rate sensitivity of hardening or softening              | а         | 1.6                                 |

Consider low temperature (shrinking) situation Length of arrow means deformation magnitude

Although CTE of bump is almost same as module flex, the dimension of a single bump is too small compared to Sensor/ASIC/module flex that bump almost does not deform during thermal cycle.

Mismatch of CTE in module flex and sensor is leading to shearing between them, finally leading to a larger shrinking to the middle in sensor. When bumps stay still and sensor shrinks to the middle, the larger sensor shrinks will produce larger shear stress between sensor and bump. A thicker sensor reduces the effect from module flex and leads to smaller deformation in sensor.

A thicker ASIC helps nothing on top side of bumps, the only effect is to shear the bottom of bump more which leads to larger stress in bumps.



 Simulation shows that rectangle module flex makes module much weaker in thermal cycle

#### Simulation results: glue thickness

|                                      | 20 um   | 50 um   | 80um    |
|--------------------------------------|---------|---------|---------|
| Maximum Von-<br>Mises stress/MPa     | 50.61   | 51.52   | 51.53   |
| Maximum equivalent<br>plastic strain | 0.02330 | 0.02642 | 0.02683 |
| Average<br>lifetime/cycles*          | 535     | 393     | 378     |

- Module with thinner glue can live a little longer
- Glue thickness within specification (20-80 um) does not make too much difference in lifetime

- Current cycle: -45°C~40 °C, 2 hours (simulated: -45.5 °C~44.5 °C, 2 hours)
- Longer cycle: -55 °C~60 °C (simulated: -53 °C~59.5 °C, 2.5 hours)

|                            | Curren                   | it cycle                  | Longer cycle             |                           |  |  |  |
|----------------------------|--------------------------|---------------------------|--------------------------|---------------------------|--|--|--|
|                            | ALTIROC-A,<br>more bumps | ALTIROC-3,<br>fewer bumps | ALTIROC-A,<br>more bumps | ALTIROC-3,<br>fewer bumps |  |  |  |
| Average<br>lifetime/cycles | 393                      | 119                       | 248                      | 77                        |  |  |  |

- During a longer cycle, average module lifetime decreases by about 1/3
- Testing results showed that a cycle to larger temperature range did not affect the results obviously

| Middle layer                            | Copper  | Copper         | Tungsten | Tungsten |
|-----------------------------------------|---------|----------------|----------|----------|
| Outer layers                            | Kapton  | 1/2 CTE kapton | Kapton   | Ceramic  |
| Maximum Von-<br>Mises stress/MPa        | 51.52   | 51.19          | 25.91    | 31.53    |
| Maximum<br>equivalent plastic<br>strain | 0.02642 | 0.02512        | 0.00286  | 0.00428  |
| Average<br>lifetime/cycles              | 393     | 445            | 83838    | 31565    |

- Just changing Kapton does not make a big difference
- Changing copper for tungsten can make module survive much longer, but:
  - Tungsten cannot be matched with Kapton for technical causes
  - Combination of tungsten and ceramic is much more expensive
  - Ceramic cannot be as thin as before for technical causes, requiring more vertical space

| Maximum Von-Mises<br>stress/MPa       | 51.52     | 45.40     | 50.63     |
|---------------------------------------|-----------|-----------|-----------|
| Maximum equivalent<br>plastic strain  | 0.02642   | 0.01144   | 0.02538   |
| Average<br>lifetime/cycles            | 393       | 3029      | 566       |
| Reference glue weight<br>on hybrid/mg | 9.41±5.45 | 3.32±1.99 | 3.37±2.02 |

- By reducing glue area lifetime can be much longer
- Glue pattern in the middle column has been tested by IFAE and did not cause wire-bonding problem
- Pattern between second and third one can be used

#### **Testing results of longer cycle**

- Thick module M126, M128 and M130 from IFAE
- Tested after 120 regular cycles of -45°C~40 °C
- Continue doing some more cycles of -55 °C~60 °C

|      |        | 120<br>cycles | +1<br>cycle | +1<br>cycle | +3<br>cycles | +1<br>cycle | +1<br>cycle | +1<br>cycle | +1<br>cycle | +1<br>cycle |
|------|--------|---------------|-------------|-------------|--------------|-------------|-------------|-------------|-------------|-------------|
|      | Chip 0 | 0             | 0           | 0           | 0            | 0           | 0           | 0           | 0           | 0           |
| M126 | Chip 1 | 5             | 5           | 7           | 7            | 7           | 8           | 7           | 8           | 9           |

|       |        | 120 cycles                            | +1 cycle | +1 cycle | +3 cycle |  |
|-------|--------|---------------------------------------|----------|----------|----------|--|
| 14400 | Chip 0 | 1                                     | 2        | 2        | 3        |  |
| M128  | Chip 1 | 0                                     | 1        | 1        | 1        |  |
|       | Chip 0 | 0                                     | 0        | 0        | 0        |  |
| M130  | Chip 1 | No chip communication since beginning |          |          |          |  |

• Summary: no catastrophic failure with thermal cycle to larger temperature range

#### Statistical model: data pre-processing

| Number of<br>cycles for first<br>disconnect | Bumps first<br>disconnected | Total # cycles<br>survived | Assumed<br>lifetime |
|---------------------------------------------|-----------------------------|----------------------------|---------------------|
| 75                                          | 1                           | 60                         | 67.5                |
| 120                                         | 1                           | 105                        | 112.5               |
|                                             |                             | 180                        | 180                 |
| 75                                          | 4                           | 60                         | 67.5                |
|                                             |                             | 180                        | 180                 |
| 120                                         | 1                           | 105                        | 112.5               |
| 75                                          | 1                           | 60                         | 67.5                |
|                                             | _                           | 180                        | 180                 |
| 60                                          | 1                           | 30                         | 45                  |
|                                             | -                           | 180                        | 180                 |
|                                             |                             | 150                        | 150                 |
|                                             |                             | 150                        | 150                 |
|                                             |                             | 150                        | 150                 |
|                                             | x                           | x 150                      | X                   |
|                                             | ~                           | 150                        | ^ 150               |
|                                             |                             | 150                        | 150                 |
|                                             |                             | 130                        | 130                 |
|                                             |                             | 120                        | 120                 |
| 0.40                                        |                             |                            |                     |
| 240                                         | 3                           | 150                        | 180                 |
| 90                                          | 3                           | 60                         | 70                  |
| 120                                         | 1                           | 90                         | <br>105             |
|                                             |                             | 120                        | <br>120             |
| 60                                          | 1                           | 30                         | 45                  |
| 120                                         | 3                           | 90                         | 100                 |
|                                             |                             | 120                        | <br>120             |
|                                             | х                           | x                          | x                   |
|                                             |                             | 120                        | 120                 |
|                                             |                             | 120                        | 120                 |
|                                             |                             | 120                        | 120                 |
| 90                                          | 1                           | 60                         | 75                  |
|                                             |                             | 120                        | 120                 |
|                                             |                             | 120                        | 120                 |
|                                             |                             | 20                         | 90                  |
|                                             |                             | 20                         | 90                  |
|                                             |                             | 175                        | 175                 |
|                                             |                             | 175                        | 175                 |
|                                             |                             | 175                        | 175                 |
| 175                                         | 1                           | 120                        | 147.5               |
|                                             |                             | 75                         | 90                  |
|                                             |                             | 75                         | 90                  |
|                                             | 75                          | 90                         |                     |
|                                             |                             | 75                         | 90                  |
|                                             |                             | 120                        | 120                 |
|                                             |                             | 120                        | 120                 |
| 90                                          | 1                           | 75                         | 82.5                |
|                                             |                             | 120                        | 120                 |
|                                             |                             | 120                        | 120                 |
|                                             |                             | 120                        | 120                 |

- No failures before 30 cycles
- Early failures: 45\*2, observed to fail between 30 and 60 cycles, one from IHEP one from IFAE
- Normal failures: 67.5\*3, 70, 75, 82.5, 90\*6, 100, 105, 112.5\*2 (16)
- Long lived: 120\*14, 147.5, 150\*5, 175\*3, 180\*5 (28)



Weibull prediction failure hybrids out of 8032\*2

Lognormal prediction failure hybrids out of 8032\*2

