

Performance studies on benchmarking physics channels for LHCb ECAL Upgrade II

Yiheng Luo

On behalf of the LHCb ECAL Upgrade II R&D group November 15th, 2024 @Qingdao, China

ECAL Upgrade II scenarios

- Run1-3: $4 \times 4/6 \times 6/12 \times 12$ cm² Shashlik
- Run 5 Baseline of Upgrade II:
 - ➢ Innermost: 1.5×1.5 cm² SpaCal-W + GAGG fibers
 - > Second inner: 3×3 cm² SpaCal-Pb + Poly fibers
 - \blacktriangleright Outer: $4 \times 4/6 \times 6/12 \times 12$ cm² Shashlik
 - ➤ With longitudinal segmentation: front and back sections
 - SpaCal modules rotated
- Run 5 Downscoped of Upgrade II:
 - Derived from the Baseline with single-side readout except for SpaCal regions
- Simulation based on Hybrid-MC framework
 > Pile-up included

Benchmarking physics modes

- To cover physics modes involving photons and π^0 and with different energy coverage, background level...
 - Single photons
 - > Photons from $B^0 \to K^{*0}\gamma$ decays
 - > Neutral π^0 from $D^{*+} \to D^0 (\to \pi^+ \pi^- \pi^0) \pi^+$ decays

Reconstruction algorithm

- The 2×2 clustering method with longitudinal segmentation information is used against pile-up
- L-correction: to correct the longitudinal barycenter position *z* in reconstruction, taken to be ECAL surface *z*-coordinate

 \succ z = z₀ + slope×ln(E) + offset

• S-correction: to correct the transverse cluster positions $(x_{cluster}, y_{cluster})$

- E-correction: to correct the energy leakage
 - depends on E, distance to seed cell center
- Using single photons for calibration purposes

$B^0 \to K^{*0} \gamma$ photon truth match

- Truth-matched photons are used to study energy and timing resolution
 - photon match works well
 - signal mass peaks well reproduced without background

4

$B^0 \rightarrow K^{*0} \gamma$ corrected position and energy

• Both reconstructed position and energy after L, S and E-corrections are closer to the true values

$B^0 \rightarrow K^{*0} \gamma$ performance study

- To study the overall performance, additional $K^+\pi^-$ backgrounds are added
 - > $K^+\pi^-$ background fraction is fixed according to Run 2 data assuming the same tracking performance
 - \succ 792 < M(K⁺π[−]) < 992 MeV/c²
 - kaons and pions have $p_{\rm T}$ >500 MeV and momentum smeared as $\frac{\delta p_{x,y,z}}{p_{x,y,z}} = 1\%$
- Several background components are considered
 > signal K^{*0} + background photon
 > background K^{*0} or combinatorial K⁺π⁻ + signal/background photon

Mass distributions with backgrounds

- The background level increases significantly after adding $K^+\pi^-$ backgrounds
- With the application of the photon $E_{\rm T}$ cut, the signal peak can be effectively seen

$B^0 \to K^{*0} \gamma$ timing resolution

Timing resolution obtained as weighted average of front & back section time for Baseline
Timing resolution degrades notably in Downscoped single-sided readout regions

 $B^0 \to K^{*0} \gamma$ timing cut

• A cut on the arrival time of the photon is effective to reduce the background

Performance of $B^0 \to K^{*0} \gamma$

- The performance of B⁰ → K^{*0}γ is compared between different PicoCal scenarios
 > significance = S/√S + B
- Higher peak luminosity in the Run 5 Baseline slightly reduces significance
- Downscoped configuration's poorer time resolution leads to decreased performance compared to the Baseline
- Run 5 scenarios, with timing cut, generally perform better than Run 3 without it.
- It is promising to achieve the target performance of Run 2 with Upgrade II.

$B^0 \to K^{*0} \gamma$ mass fit

• Run 5 Baseline, lumi1.0

M = 5277.49 ± 0.65 MeV σ = 85.99 ± 0.72 MeV
Mass resolution close to the Run 2 result
Mass peak shifted upwards due to pile-up

- Neutral pion could be reconstructed from ECAL, here only consider resolved $\pi^0(\rightarrow \gamma \gamma)$
- Same simulation & reconstruction with L, S and E-corrections from single photons
- Combine two clusters $\rightarrow m_{\gamma\gamma}$ spectrum

Two clusters

Fig: $m(\gamma\gamma)$ with and without time cut (Run 5 Baseline)

Fig: Comparison between middle (Run 5 Baseline) and low scenario (Run 5 Downscoped)

Summary and Prospects

- The $B^0 \to K^{*0}\gamma$ and $D^{*+} \to D^0(\to \pi^+\pi^-\pi^0)\pi^+$ decays are studied based on hybrid-MC framework
 - ► L, S and E-corrections for Upgrade II scenarios are calculated and applied
 - > Good timing resolution is achieved and proven effective in reducing backgrounds
 - Performance studies outlined in the scoping document indicate the PicoCal design holds promise for achieving good performance
- Prospects
 - Clustering should fully harness the potential of longitudinal segmentation and timing information
 - The impact of timing resolution from the tracking system is being investigated through joint VELO-ECAL simulation

Thank you!