CMOS R&D for LHCb UT in Upgrade II

Zhiyu Xiang (项治宇) On behalf of COFFEE team

10th CLHCP @Tingdao

16th November 2024

UT @ Upgrade II

- The future of LHCb, Run5, will evolve into high-luminosity. Increased multiplicity require a finer grained and more radiation-hard Tracker
- For Upstream Tracker (UT),max hit density up to 5.92 Hits/cm2/BX, or 4.0 averaged over all bunch crossings
 - $\bullet\,$ The occupancy (max $\sim\,10\%)$ can not handle by current UT
- A new UT for the Upgrade II is mandatory: Si-strip \rightarrow Si-pixel

FTDR for the LHCb Upgrade II @LHCB-TDR-023

CMOS MAPS as Possible Solutions

Large collection electrode

Small collection electrode

UT needs: radiation hardness $3\times10^{15}n_{\rm eq}/{\rm cm}^2$, 240 Mrad TID, time resolution 8ns, power consumption 100-300 $~\rm mW/{\rm cm}^2$ HVCMOS for UT:

- Front-end circuit inside the charge collection well for individual pixel
- Large uniform electric field
- On average shorter drift path, faster signal collection
- High radiation tolerance (less trapping)

Choice of HVCMOS with 55nm Process

- The international mainstream technology is 180/150 nm process. HV-CMOS pixel sensor has been applied to Mu3e experiment
- Motivation of chip R&D in 55nm process:
 - Supporting concern: 55nm process should provide stable support for mass production in next decades
 - Technological benefits: lower power, higher irradiation tolerance ...

CMOS sensOr in Fifty-FivE nm procEss (COFFEE)

 \bullet COFFEE1 chip, $3\times 2mm^2,$ verify the feasibility of 55nm process

- Variation of passive diode arrays with pixel size of $25/50\times 150 \mu m^2$
- Similar deep N well inserted
- Simple amplifier circuit added
- Sensor can responds to red laser, test with IDE1140 read-out chip

CMOS sensOr in Fifty-FivE nm procEss (COFFEE)

The first HVCMOS chip in 55nm process

- COFFEE2 chip (4 \times 3mm²): (test results shown today)
 - Real validation of the sensor structures with electronics included
 - $\bullet\,$ Variation of passive diode arrays with pixel size of $40\times80\mu\mathrm{m}^2$
 - Integral analog amplifier and switch circuit to select certain pixel
 - Discriminator and DAC unit added

NIMA Volume 1069 P169905 (2024)

Typical IV/CV Test

- Verified the low leakage 55nm process
- ullet Breakdown voltage \sim 70V, leakage \sim 10pA
- $\bullet\,$ At 70V, the capacitance of single pixel due to depletion $\sim 30-50 {\rm fF}$

TCAD Simulation

- Test results confirmed by TCAD simulation
- Current substrate resistivity $(10\Omega\cdot\mathrm{cm})$ limits the break down voltage
- Breakdown voltage close to 70V with low leakage $\sim pA$ (mainly edge breakdown)

 Not fully depleted. The capacitance also takes into account parasitic effect (i.e. metal electrode/routing wire)

Glance at Irradiation Effect

- Proton beam @80MeV of CSNS
- \bullet Irradiation up to $1.6\times 10^{14}~{\rm n_{eq}/cm^2}$ at room temperature
- Leakage current increased to 1nA after irradiation

Test of Passive Sensors

- Clear response to both laser ($\lambda \sim 650 \mathrm{nm}$) and α radioactive source
 - 54 pixels read out at a time, via external charge sensitive amplifier

Active Pixel Matrix

- 32 × 20 active pixel matrix, peripheral modules including analogue buffer, DACs and row/column switch
- CSA, discriminator for individual pixel
- Circuit simulation performance
 - CSA: ${\sim}140e$ ENC, gain ${\sim}~57\mu\mathrm{V/e}$
 - CMOS discriminator: Time walk $\sim 2ns;$ Time over threshold $\sim 5\mu s$
 - NMOS discriminator: Time walk $\sim 9 n s;$ Time over threshold $\sim 5 \mu s$

Active Pixel Matrix Test System

PC + ZC706 + Caribou board + specific carrier board

Caribou system architecture

Control and Readout (CaR) board

Feature	Description
Adjustable Power Supplies	8 units, 0.8 - 3.6 V, 3 A
Adjustable Voltage References	32 units, 0 – 4 V
Adjustable Current References	8 units, 0 – 1 mA
Voltage Inputs to Slow ADC	8 channels, 50 kSPS, 12-bit, 0 – 4 V
Analog Inputs to Fast ADC	16 channels, 65 MSPS, 14-bit, 0 - 1 V
Programmable Injection Pulsers	4 units
Full-Duplex High-Speed GTx Links	8 links, <12 Gbps
LVDS Links	17 bidirectional links
Input/Output Links	10 output links, 14 input links, 0.8 - 3.6 V
Programmable Clock Generator	Included
External TLU Clock Reference	Included
External High-Voltage (HV) Input	Included
FEAST Module Compatibility	Supported
FMC Interface to FPGA	Included
SEARAY Interface to Detector Chip	320-pin connector

Resources for various target applications

20 CaR boards v1.4 produced and distributed within RD50 common project

Active Pixel Test Results (preliminary)

 CSA output calibrated with charge injection. Response curve similar as pre-simulation

• Discriminator works well, in green while yellow for amplifier output

Active Pixel Test Results (preliminary)

Clear signal response to red laser (left) and radioactive source (right)
For ⁵⁵Fe, signal amplitude consistent with expectation (1640e-)

Summary & Future

- Frist HVCMOS prototyping chip in 55nm process for UT@Upgrade II
- Test results for COFFEE2 chip, show encouraging diode properties (breakdown> 70V, leakage $\sim 10 pA$)
- Promising results from test with laser and radioactive source (α , X-ray). Digital circuit works as expected
- Looking for opportunity of MPW with high resistivity substrate
- COFFEE3 is currently being designed to validate the pixel array readout architecture