

Simulation Study for LHCb UT in Upgrade II

Ji Peng¹, Mingjie Feng¹, Shuqi Sheng¹, Xuhao Yuan¹, Xiaokang Zhou², **Yanru Li²**, Zhijie Wang³ IHEP¹, Central China Normal University², Lanzhou University³

- ➢ Introduction
- Upgrade-II UT design and layout
 - CMOS Chip Options
 - Detector Structure
- ➤ The Simulation of Upgrade-II UT
 - Geometry Description in DD4hep
 - Hit Density
 - Material budget
 - UP Digitization
- Summary and Outlook

Introduction

> LHCb

- A single-armed forward spectrometer at the Large Hadron Collider
- Aiming to study flavor physics like CP violation and rare decays
- LHCb Upgrade II
 - LHCb is planning a major upgrade (Upgrade II)
 - The High-Lumi LHC ($\mathcal{L}= 1.5 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$)
- > Upgrade-II UT
 - Upstream Tracker (UT) : a key component of the tracking system
 - The current UT can't be kept for Upgrade II
 - Much increased hit density requires higher granularity
 - Bandwidth for high data rate
 - Radiation hardness
 - Therefore, Upgrade-II UT detector will use CMOS Monolithic Active Pixel

Sensors(MAPS) technology, named Upstream Pixel tracker (UP) 2024/11/16

CMOS Chip Options

> Two Design for CMOS Chip

The ongoing R&D studies indicate that monolithic active pixel sensors can be considered as very strong candidates for UP.

Two approaches are being pursued to develop CMOS chips:

- Large fill-factor or high-voltage (HV-CMOS) with large electrode
- Low fill-factor or low-voltage (LV-CMOS) with small electrode

More details in Zhiyu's talk.

Detector Structure

UP Modules Structure for HV-CMOS design

14 CMOS chips and supporting electronic components are attached to a

hybrid flex to form a UP module

- 14 CMOS sensor chips split in two rows
- VTRx+ and IpGBT: ensure the normal operation and data acquisition
- The expected data rate \rightarrow the numbers of IpGBT and VTRx+
- Dual modules \rightarrow regions located further away from the beampipe

The picture below shows the view from side. Modules are mounted on both

•

- > UP Geometry Structure for HV-CMOS design
 - Geometry modelling of the UP detector is completed, with the following hierarchy
 - Plane: 4 detector planes (layers), at Z position similar to the current UT
 - Stave: Each layer consists of **10 staves** in 4 types
 - Module: Each stave equipped with 32 modules in 5 types

match with different data rates

- Chip: 14 chips in a 7×2 array are interconnected to a flex circuit to form a module
- The central 4x4 chips are removed for beam pipe, covers (\pm 39 mm)x(\pm 37 mm)

2024/11/16

Detector Structure

- Difference between LV-CMOS design and HV-CMOS design
 - Pixel size $30 \times 30 \ \mu m^2$
 - Active size by chip $35 \times 33 \text{ mm}^2$
 - Each module consist of 8 chips in a 4×2 array
 - Only one type of module
 - Each stave consists of 20 modules
- The beam hole inefficient area covers $(\pm 34 \text{ mm})x(\pm 32.5 \text{ mm})$

Chip

Geometry Description in DD4hep

UP

- > The Simulation of UP (with HV-CMOS)
 - The detector description has been implemented in the LHCb software framework with our code
 - The plots bellow show the geometry construction using DD4hep
 - The MAPS-based UP has 4 layers, at z-positions similar to the current UT
 - Each layer consisting of 10 staves equipped with 32 modules
 - There are 5 types for module

The simulation study of the UP detector

- Using simulation samples generated under Upgrade II conditions
- Described using the DD4hep framework
- Loop through all tracks, for each track
 - Remove overlap \rightarrow Save only one MChit in one layer
 - Generate hits for Gap \rightarrow If there is no MCHit in one layer, produce one from other layers
- The average hit densities per bunch crossing in proton-proton collisions at HL-LHC is up to ~4.5 hits/cm2/BX

Material budget

> Material Budget

- Detector description has been developed both in **DetDesc** and **DD4hep** framework
- The material budget scan was performed in two frameworks with consistent results
 - Plot (a) and (b) illustrate the radiation length of the **first layer** of UP in both x/y and η/ϕ views
 - Plot (c) presents the projection map along the η axis
- A preliminary material budget estimate for one layer in the range 2<η<5 is 1.2% X₀
- A careful optimization of the material budget is still ongoing

UP Digitization

Occupancy distribution

- The distribution of the occupancy rate for the most busy chip on each module
- In the most inner region, the highest occupancy is up to 0.26×10^{-2}
- Responding efficiency
 - Particle response efficiency was treated as a function of particle momentum per layer compared with the current UT, both with efficiencies around 95%

The UPDigits based on DD4hep is currently under developed

0.004	0.004	0.005	0.004	0.005
0.003	0.004	0.008	0.006	0.006
0.004	0.009	0.006	0.006	0.006
0.008	0.006	0.008	0.007	0.010
0.005	0.007	0.005	0.006	0.007
0.005	0.006	0.008	0.009	0.009
0.005	0.006	0.009	0.010	0.015
0.005	0.009	0.009	0.011	0.013
0.008	0.006	0.008	0.013	0.017
0.006	0.007	0.011	0.020	0.019
0.006	0.009	0.012	0.020	0.025
0.006	0.010	0.013	0.024	0.032
0.006	0.009	0.015	0.031	0.057
0.006	0.009	0.017	0.034	0.088
0.011	0.009	0.018	0.049	0.256
0.008	0.016	0.021	0.047	0.225

Summary and Outlook

- > UP detector modelling and the UP part of the Upgrade II scoping document is finished
- Simulation Study
 - The average hit densities per bunch crossing in p-p collisions is up to ~4.5 hits/cm²/BX
 - In the most inner region, the highest occupancy is up to 0.26×10^{-2}
 - The average material budget for one layer is 1.2% X₀
- ➤ The LHCb Upgrade II is aiming for a TDR in 2026

≫₂4/The UPDigits based on DD4hep is currently under developed

Thank you !