

RPC assembly for the ATLAS Phase-II upgrade

Lagarde François

2024年第十届中国LHC物理会议 山东省,青岛市

Outline

- Introduction
- Readout panel production

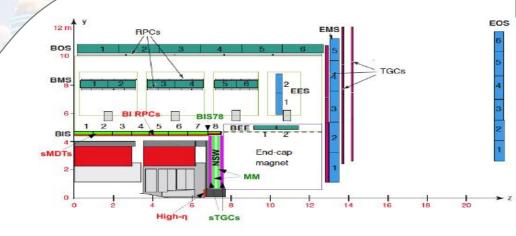
 $\mathbf{2}$

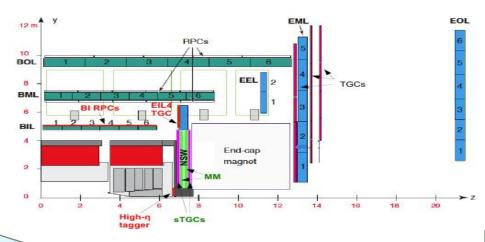
BIS singlet assembly

High-Luminosity LHC

High-Luminosity LHC (Phase-II) is expected to start in 2029 after LHC Long Shutdown 3 (LS3) :

Instantaneous luminosity is expected to increase from 2.10³⁴ s⁻¹cm⁻² up to 7.5.10³⁴ s⁻¹cm⁻².
Peak pile-up of up to 200 compared to 60 in the current run.


Upgrade of ATLAS is necessary !


For the RPC system :

Maintain low trigger momentum thresholds while keeping the trigger rates at a manageable level

Install triplets of new-generation RPCs in the inner layer of barrel chambers (BI-RPC)

- 130 BIL + 96 BIS + 80 BOR/BOM chambers.
- 1 chamber is composed of 3 singlets.
- 1 singlet = 1 gas gap + 2 readout panels.

Tasks undertaken by the Chinese cluster (USTC/SDU/SJTU)

Production and Qualification of 72 gas gaps see Dongshuo Du slides

Manufacture and test of about 5000 front-end boards

Production and Qualification 932 strip panels (50%) (BIL/BIS/BOM/BOR)

Assembly of 360 singlets

Production plan

Strip panels :

336/576 BIS panels have already been produced and qualified in China. The remained ones will be produced before the end of the the first semester 2025.

Gas Gaps :

 7 RPC gas gaps has been produced by USTC and will be delivered to CERN for Irradiation test @ GIF++ in the following days

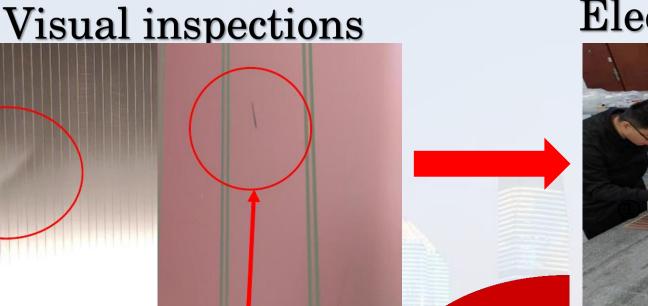
BIS Singlets :

• BIS singlets assembly without FEE will start in the coming days @ CERN

Readout Panel Production

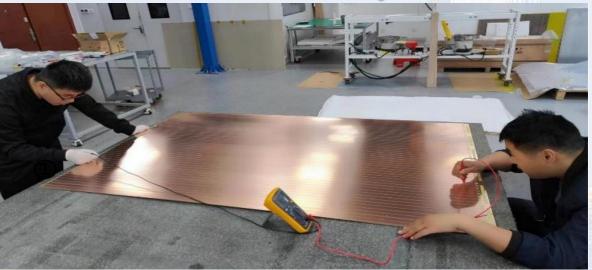
+

Material


- PBC : 1706x1072mm² (BIL) / 1706x890mm² (BIS)thickness ~0.45mm
- Honeycomb : 3 mm thick
- Glue : Araldite[®] 2011 (~180g/side)

Specifications and tolerances

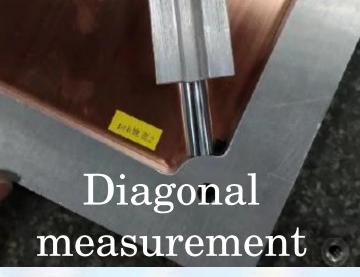
- Flatness : < 0.1mm in 7cm x 7cm range</p>
- Length and width : +/- 1mm


PCBs Checks

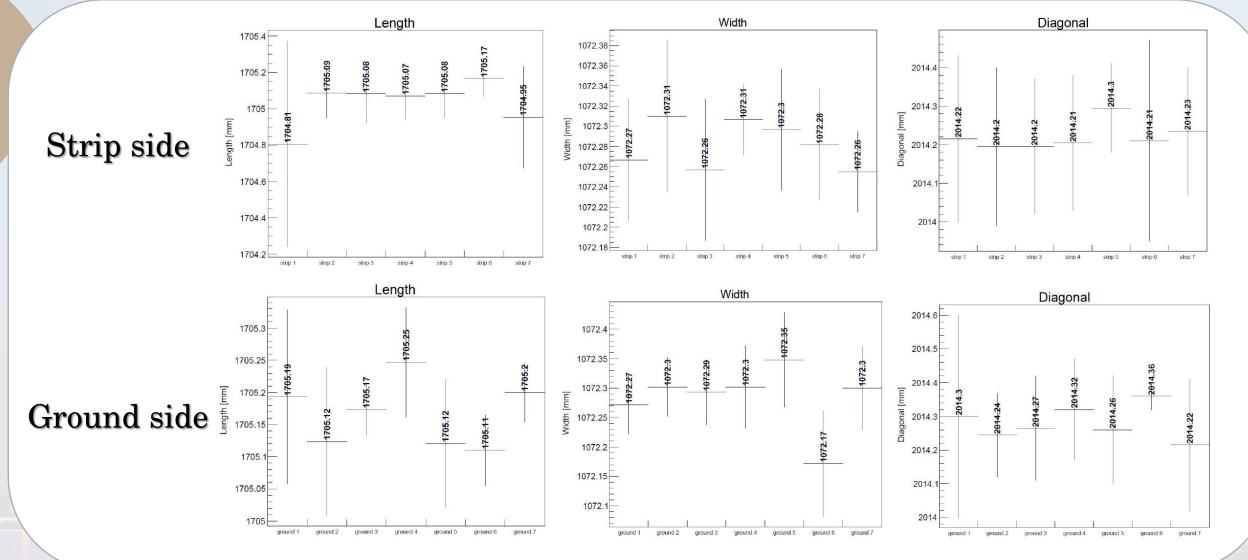
slight folds

Small scratches

Electrical continuity checks


Dimension checks

Dimension Checks

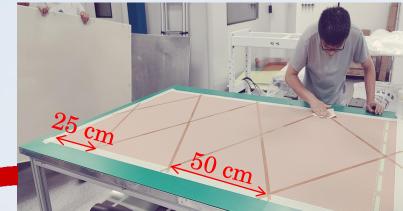


Three bars are used to perform dimension checks

Results

10

All the measurements are within the tolerances


Honeycomb Paper Dimension Check

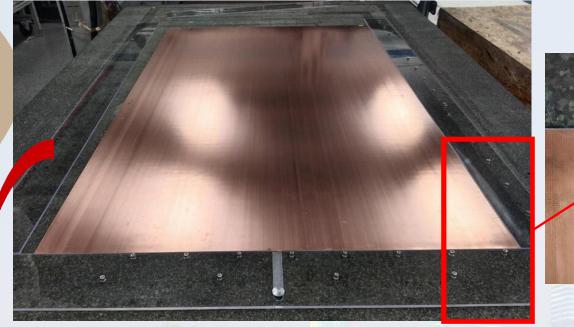
- Honeycomb paper size : 1220*2440*3mm²
- Thickness measurement is performed using a micrometer gauge on a marble table
- 5 samples has been tested : All are good quality !

#1	X ₁	X ₂	2	#	‡2	X	\mathbf{X}_1	\mathbf{X}_2		#:	3	\mathbf{X}_{1}		X ₂
\mathbf{Y}_1	3.03 3.06		3 7	Y_1		3.102		3.091	1	Y	1	3.062		3.043
\mathbf{Y}_2	3.05 3.0		7	Y		3.087		3.076		\mathbf{Y}_2		3.066		3.065
\mathbf{Y}_3	3.036 3.00		57		<i>Z</i> ₃ 3.0)72	3.049)	\mathbf{Y}_3		3.057		3.049
Y_4	3.022	3.0'	74	Y_4		3.078		3.067		Y_4		3.064		3.044
\mathbf{Y}_5	3.05	3.00	37		Y_5	3.07		3.041		\mathbf{Y}_5		3.06		3.057
Y_6	3.038 3.0		55	Y_6		3.071		3.043	3	Y	6	3.068		3.059
Iean	3.038	3.00	3.067		Mean		08	3.061	61 M		an	in 3.063		3.053
		#4	X	X ₁		\mathbf{X}_{2}		#5		X 1		X ₂		
- 1 1		Y ₁		3.039		3.076		\mathbf{Y}_1		3.107		3.103		
		Y_2		3.063		3.074		Y_2		3.096		099		
		Y_3		3.054		82		\mathbf{Y}_3	3.0		3.0	097		
1		Y_4		3.061		92		\mathbf{Y}_4	3.079		3.097			
		Y ₅ 3.0'		75 3.0		88		\mathbf{Y}_5	3.	106 3.1		107		
		Y_6		3.078		79		Y_6	3.	106	3.	119	_ 11	
	M	Mean		3.062		3.082		Mean		3.095		104		

Strip panel production

1) Create X shapes with tape on the strip and ground panels

- Distance between parallel tapes : 50 cm
- PCB egdes are protected with 3mm tape mask


2) Apply the alradite glue on PCB

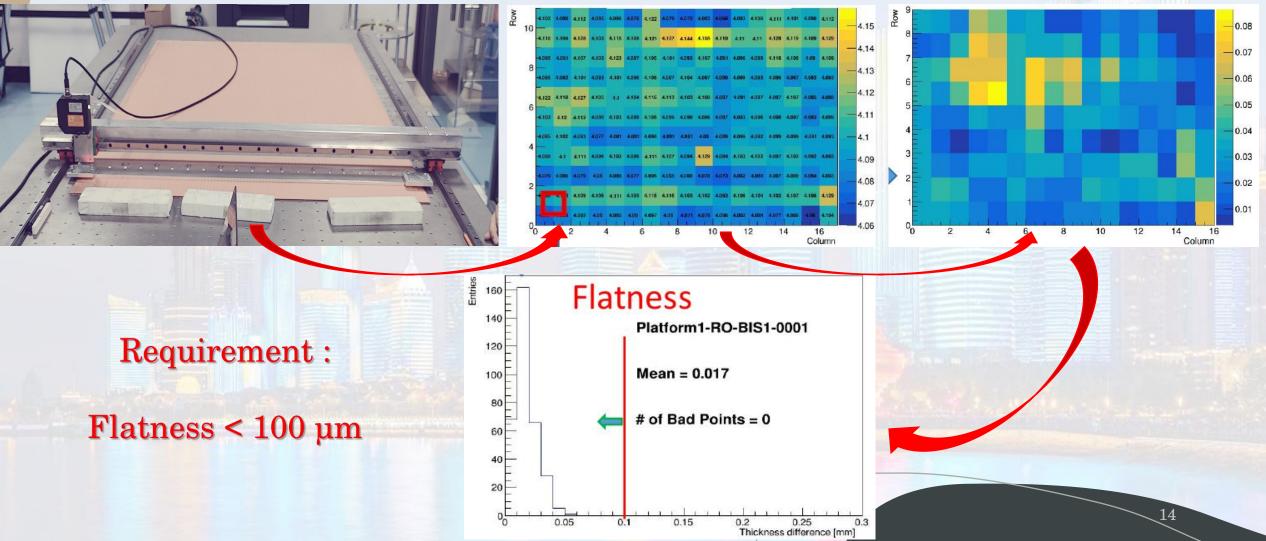

- Plastic spatula (yellow one) is used to spread the Araldite glue
- Plastic toothed spatula (white one) is used to improve glue layer uniformity.

3) Removing of the X shapes and the 3mm edge tape mask

Strip panel production

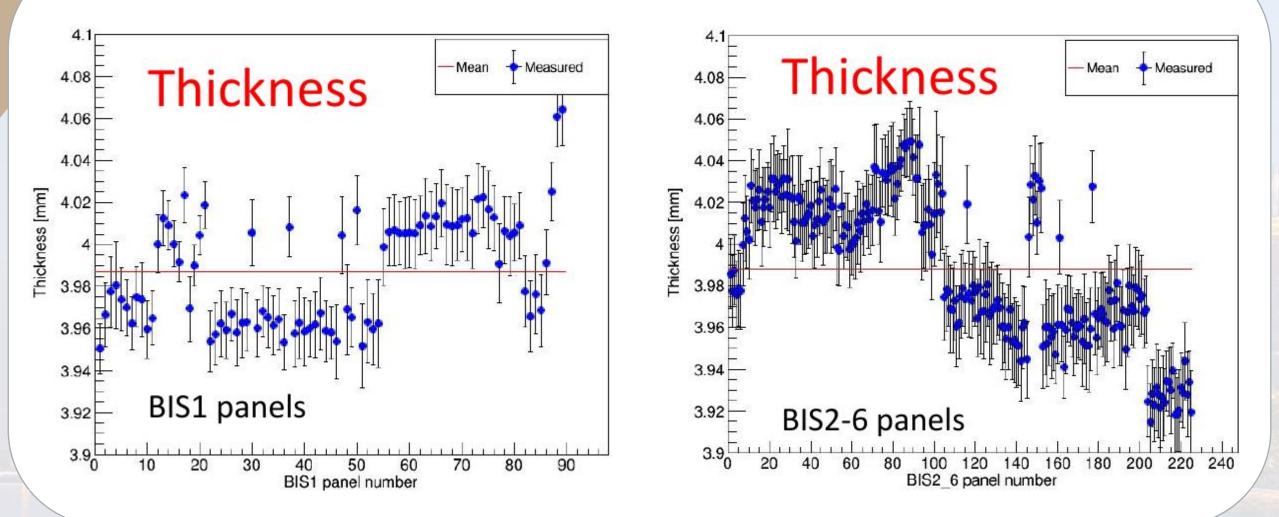
4) Alignment of the 3 layers (2PCBs +Honeycomb)

Very good alignment All the layers glued at once


5) Gluing of the layers

- 1 atm vacuum
- 6 hours of curing within the vacuum bag

Good pressure uniformity all along the panel


Overall Panel Thickness Measurement

- The 3D thickness map is measure on 7*7cm² cells basis by laser sensors
- The 2D Flatness (Maximum variation of 4 adjacent 7*7cm² cells)
- Histogram of 1D Flatness

Panel Thickness Measurement

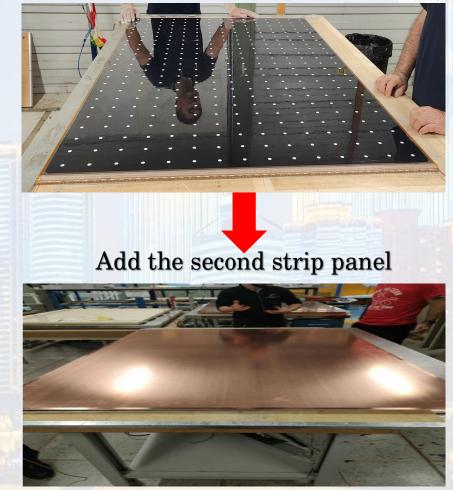
More than 300 readout panels have already been built by an external company :

BIS Singlet Assembly

BIS singlet assembly

- 1. Connect the border of strips side to the ground side.
- 2. Solder the resistance at the 2 ends of the strips : time consuming 1 strip panels 194 resistors (~1.5h), 1 singlet 388 resistors, one chamber 1164 resistors ! Moving to a new method using masks

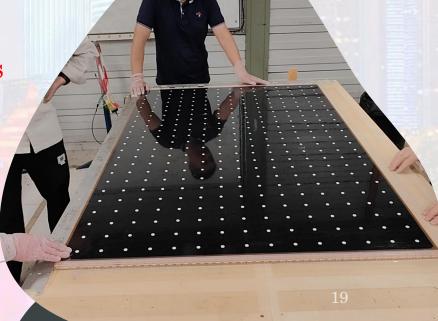
BIS singlet assembly


Put the readout panel on the table

Cover the borders with aluminium tape

Place the RPC chamber on top of the strip panel

Production will start next week at CERN with a first batch of 24 BIS singlets !



Readout panel :

- The vaccum-bag method has been setup at USTC and further optimized.
- More than 500 readout panel have been produced in an external company
- The flatness is bellow the specification (<100 um)
- Gas gap production at USTC : see Dongshuo Du slides
- 7 130*68 cm² gas gap prototypes has been produced
- Ready to be tested under irradiation at GIF++, CERN

BIS Singlet Assembly :

• Singlet assembly training will start next week at CERN

Thank You