

GEM Chamber Assembly and Test for CMS MEO Upgrade at Peking University

Zongsheng, He
Peking University
CLHCP 2024, Qingdao
Nov-16th, 2024

Contents

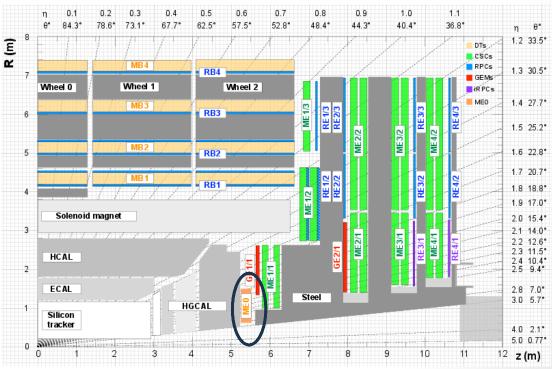
1. Overview of CMS ME0 GEM upgrade project

- position of installation
- CMS GEM detector design
- timeline of the MEO assembly

2. 1st batch of 10 GEM assembly and test at PKU

- assembly
- QC
- Resolution of issues

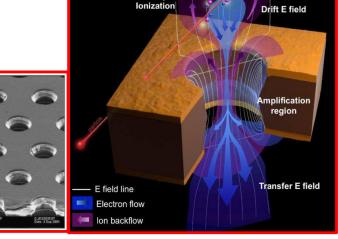
3. Summary

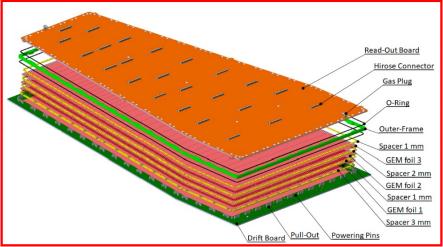


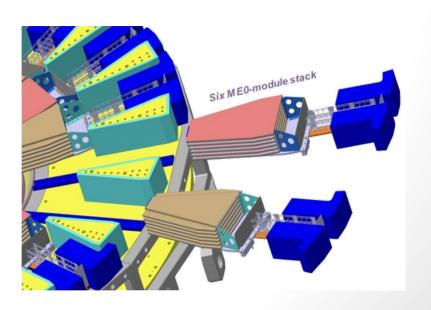
1. Overview of CMS ME0 GEM upgrade project

 The Large Hadron Collider (LHC) is being improved to higher instantaneous luminosity. To maintain the detector's sensitivity MEO to electroweak scale physics, an upgrade of the detector is necessary.

- The gas electron multiplier (GEM) in the endcap muon station will help to maintain or even improve the forward muon triggering and reconstruction.
- The ME0 is closer to the beam $(2.0 < \eta < 2.8)$
 - Rate Capability: >150kHz/cm² (much more central than GE2/1 & GE1/1: a few kHz/cm²)
 - Longevity: Survive harsh radiation environment:
 7.9C/cm²

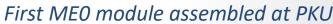






CMS GEM detector design

- The full system: 216 ME0 chambers (108 per end-cap)
 - 6 triple-GEM modules per stack
 - 18 stacks per endcap
- Performance Expectations
 - 97% module efficiency
 - Timing Resolution:8-10ns
 - Gain Uniformity: ≤15%
 - Space Resolution:<500μrad



Timeline of ME0 GEM Assembly

2. 1st batch of 10 GEM assembly and test at PKU

CERN

QC 1: material inspection

QC 2: GEM foils test (fast + long)

Production sites (e.g. PKU)

QC 2: GEM foils test (fast)

Assembly preparation + Assembly

QC 3: gas leak test

QC 4: HV test

QC 5: gas gain calibration

CERN

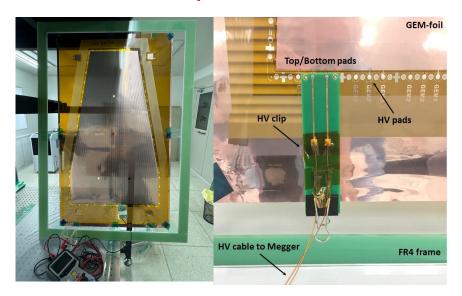
QC 6: HV stability test

QC 7: electronics connectivity test

QC 8: cosmic ray test

6

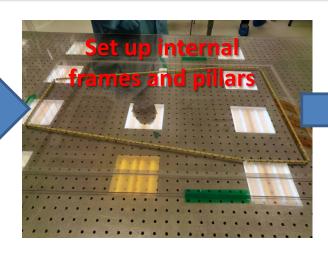
Workshop at PKU

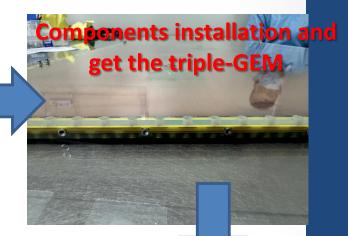


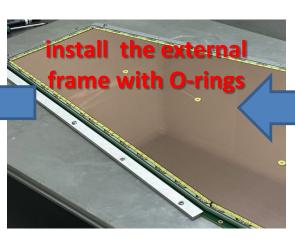
QC2 Fast Impedance Test

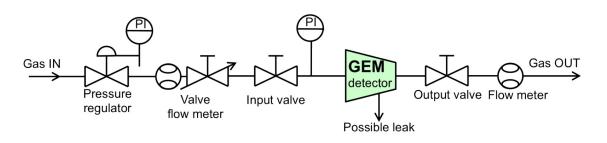
QC2

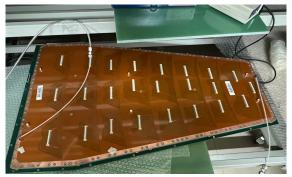
Test the impedance of the foil by the Megger connected to the HV pads beside the foil. If there's a short on the foil, use an electrostatic scroll to clean where the spark is.

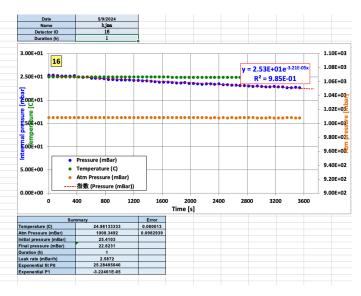


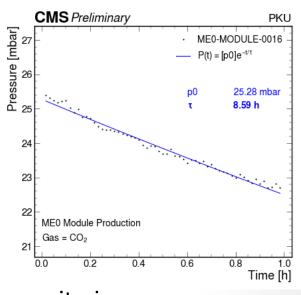



Assembly





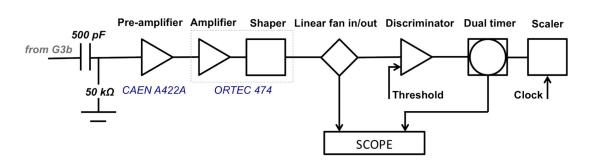

QC3 Gas Leak Test



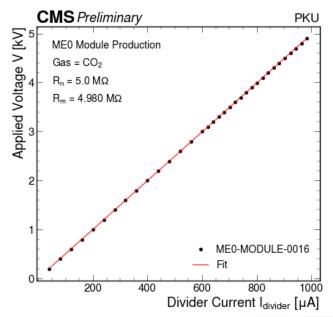
record

Time				Atm Pressure (mBar)
11:46:24	0.00	2.54E+01	2.50E+01	1.01E+03
11:47:24	60.00	2.54E+01	2.50E+01	1.01E+03
11:48:24	120.00	2.53E+01	2.50E+01	1.01E+03
11:49:24	180.00	2.52E+01	2.50E+01	1.01E+03
11:50:24	240.00	2.52E+01	2.50E+01	1.01E+03
11:51:24	300.00	2.52E+01	2.50E+01	1.01E+03
11:52:24	360.00	2.52E+01	2.51E+01	1.01E+03
11:53:24	420.00	2.50E+01	2.51E+01	1.01E+03
11:54:24	480.00	2.49E+01	2.50E+01	1.01E+03
11:55:24	540.00	2.50E+01	2.51E+01	1.01E+03
11:56:24	600.00	2.48E+01	2.50E+01	1.01E+03
11:57:24	660.00	2.48E+01	2.50E+01	1.01E+03
11:58:24	720.00	2.47E+01	2.50E+01	1.01E+03
11:59:24	780.00	2.46E+01	2.50E+01	1.01E+03
12:00:24	840.01	2.45E+01	2.50E+01	1.01E+03
12:01:24	900.01	2.44E+01	2.50E+01	1.01E+03
12:02:24	960.00	2.44E+01	2.50E+01	1.01E+03
12:03:24	1020.01	2.44E+01	2.50E+01	1.01E+03
12:04:24	1080.01	2.44E+01	2.50E+01	1.01E+03
12:05:24	1140.01	2.43E+01	2.50E+01	1.01E+03
12:06:24	1200.01	2.43E+01	2.50E+01	1.01E+03
12:07:24	1260.01	2.42E+01	2.50E+01	1.01E+03
12:08:24	1320.01	2.42E+01	2.50E+01	1.01E+03
12:09:24	1380.01	2.42E+01	2.50E+01	1.01E+03
12:10:24	1440.01	2.41E+01	2.50E+01	1.01E+03
12:11:24	1500.01	2.39E+01	2.50E+01	1.01E+03
12:12:24	1560.01	2.39E+01	2.50E+01	1.01E+03
12:13:24	1620.01	2.39E+01	2.50E+01	1.01E+03
12:14:24	1680.01	2.39E+01	2.50E+01	1.01E+03
12:15:24	1740.01	2.38E+01	2.50E+01	1.01E+03
12:16:24	1800.01	2.37E+01	2.50E+01	1.01E+03
12:17:24	1860.01	2.37E+01	2.50E+01	1.01E+03
12:18:24	1920.01	2.38E+01	2.50E+01	1.01E+03
12:19:24	1980.01	2.36E+01	2.50E+01	1.01E+03
12:20:24	2040.01	2.36E+01	2.50E+01	1.01E+03
12:21:24	2100.01	2.35E+01	2.49E+01	1.01E+03
12:22:24	2160.01	2.34E+01	2.49E+01	1.01E+03
12:23:24	2220.01	2.35E+01	2.49E+01	1.01E+03
12:24:24	2280.01	2.35E+01	2.49E+01	1.01E+03
12:25:24		2.34E+01	2.49E+01	1.01E+03
12-26-24	2400.01	2 35E±01	2.49E±04	1.01E±03

result


criteria: pressure decrease < 7mbar/h

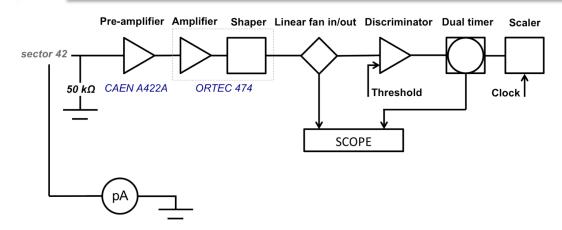
QC4 Linearity Test of the HV



record

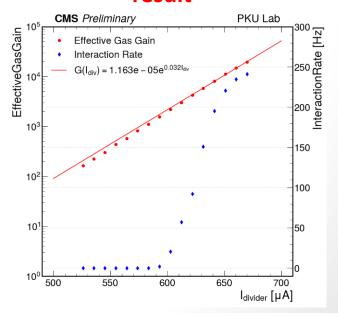
	Q	C4 HV tes	st		6.00E+03							1.	2	HV C	ircuit
Vmon	Iset	Imon	R calc	R norm										R_Equiv (Mohm)	4.9
(V)	(uA)	(uA)	(Mohm)	(Mohm)											
2.00E+02	40.16064	######	5.01256294	1.0065387	5.00E+03			0770	. 7 2262			1			
3.99E+02	80.32129	######	5.00627371	1.0052758	51002105		y = 4.		+ 7.3262					Pream	plifier
5.99E+02	120.4819	######	5.00417723	1.0048549				R ² = 1	1					Make & Model	User Provides
8.00E+02	160.6426	######	5.00939831	1.0059033	4.00E+03							0.0	R		User Provides
9.99E+02	200.8032	######	5.0075188	1.0055259	Ξ						•			Amp	lifier
1.20E+03	240.9639	######	5.00835073	1.0056929	80+30@ltage								-	Make & Model	User Provides
1.40E+03	281.1245	######	5.0053647	1.0050933	3.900E+03							0.	ıΞ	Coarse Gain	User Provides
1.60E+03	321.2851	######	5.00312882	1.0046443	Pa								Rate	Fine Gain	User Provides
1.80E+03	361.4458	######	5.00277993	1.0045743	2.00E+03			, ,					-		
2.00E+03	401.6064	######	5.00125078	1.0042672	2.00F+03							0.	4	Int. Time (ns)	User Provides
2.20E+03	441.7671	######	5.00000007	1.0040161				•						Diff Time (ns)	User Provides
2.40E+03	481.9277	######	5.00000006	1.0040161											
2.60E+03	522.0884	######	4.99807692	1.0036299	1.00E+03					 IV C 	urve	0.	,	Discrin	ninator
2.80E+03	562.249	######	4.99642974	1.0032991	21002.00		7							Make & Model	User Provides
3.00E+03	602.4096	######	4.99583552	1.0031798						线性	£ (IV Curv	2)		Threshold (mV)	User Provides
3.10E+03	622.49	######	4.99516422	1.003045	0.00F+00	•									
3.20E+03	642.5703	######	4.99453552	1.0029188	0.00	E+00.00E+02.0	0E+03.00E	+02.00E+02.00	00E+0B.00E+02	.00E+08.0	0E+09.00E+	02.00E+03		Sca	ılar
3.30E+03	662.6506	######	4.99318819	1.0026482				Current	Drawn (uA)					Make & Model	User Provides
3.40E+03	682.7309	######	4.99338907	1.0026886										Acquisition Time (s)	User Provides
3.50E+03	702.8112	######	4.99286538	1.0025834	1.008										
3.60E+03	722.8916	######	4.99167822	1.002345											
3.70E+03	742.9719	######	4.99122942	1.0022549	1.006	• • •	•							Summ	
3.80E+03	763.0522	######	4.99014706	1.0020376	21.004	•	- 0	•						V_Max (V)	4898
3.90E+03	783.1325	######	4.98912194	1.0018317	91.002				00000	Page 1				Vdrift_Max (V)	4625. 269887
4.00E+03	803.2129	######	4.98814885	1.0016363	ta.					000	000			I_Max (uA)	984. 099976
4.10E+03	823.2932	######	4.98722324	1.0014505	resistance (%)				• ••••••		000			R_Equ_MSRD (Mohm)	4. 98
4.20E+03		######	4.98574822	1.0011543	0.998									R_Equ_Slope (Mohm)	
4.30E+03		######	4.98550395	1.0011052	<u>20</u> .996									R_Diff (%)	0. 044563296
4.40E+03	883.5341	######	4.98413598	1.0008305	P0.998 Normalized									SPR_Signal_Rate (H	#VALUE!
4.50E+03	903.6145	######	4.98283126	1.0005685	≥0.994									SPR_Signal_Rate_Er	#VALUE!
4.60E+03	923.6948	######	4.98212351	1.0004264	0.992										
4.70E+03	943.7751	######	4.98038995	1.0000783	0.99										
4.80E+03	963.8554	######	4.97872776	0.9997445	0.55	100	00	2000	3000	4000	5000	6	000		
			4.97713659												

result





QC5(stage1) effective gas gain test with X-ray



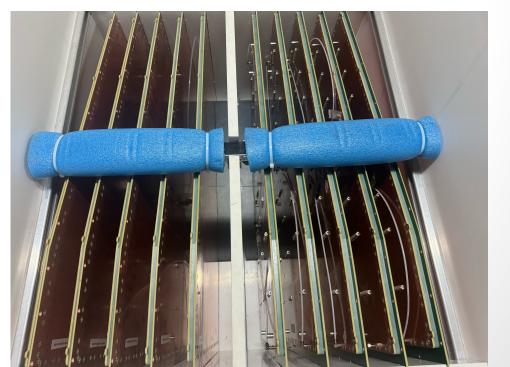
record

	Environment						For Measuring F		For Measuring Current				
	Vnon	Imon	Time	Pressu	re	Temp	Source Off		Source On	Source Off		Source On	
							Counts	Err	Counts Err	Current	Err	Current	Err
	(V)	(uA)	(HH:MM)	(mbar	•)	(Deg C)	(N)	(N)	(N) (N)	(A)	(A)	(A)	(A)
	3. 50E+03	7. 02E+02			1017	26.1	2:	4.690	16 868408 931.884	1 -4.56E-11	2.73E-12	-9.88E-09	5. 19E-1
	3. 45E+03	6. 92E+02						2.8284	27 844661 919. 054	4 -3.72E-11	3.10E-12	-7.63E-09	3.65E-1
8	3. 40E+03	6.82E+02							2 794895 891.568	8 -3.92E-11	2.78E-12	-5. 70E-09	2.32E-1
ã	3. 35E+03	6. 72E+02						1, 4142	14 703277 838. 616	1 -3, 25E-11	3.44E-12	-4. 13E-09	1.93E-1
Range	3. 30E+03	6. 61E+02						1.4142	14 543368 737. 13	5 -3.33E-11	2.73E-12	-2.98E-09	1.35E-1
	3. 25E+03	6. 51E+02							0 332713 576, 812	8 -3.50E-11	2.80E-12	-2.18E-09	7.96E-1
2	3. 20E+03	6. 41E+02						2, 2360	168 206383 454, 29	4 -3.13E-11	2.59E-12	-1.55E-09	6.99E-1
~	3, 15E+03	6. 31E+02							1 74182 272.363		2.57E-12	-1.14E-09	4.99E-1
2	3. 10E+03	6. 21E+02							1 7796 88, 2949		2.53E-12	-8, 30E-10	4, 49E-1
•	3, 05E+03	6. 11E+02					111	10, 862	78 642 25. 3377	2 -3.38E-11	2.57E-12	-5. 94E-10	4.41E-1
Ar/CO2:70/30		6. 01E+02							0 117 10.8166		2.39E-12	-4.46E-10	3.04E-1
8		5. 91E+02							0 60 7, 74596		2.46E-12	-3, 25E-10	3,45E-1
-		5.81E+02							0 55 7.41619		2.35E-12	-2.51E-10	2.61E-1
¥	2, 85E+03	5. 71B+02					1	4. 123			2.27E-12	-1.87E-10	2.34E-1
-	2.80E+03	5. 61E+02						10, 723			2.35E-12	-1, 49E-10	2.20E-1
		5. 51B+02							0 63 7, 93725		2.45E-12	-1.14E-10	2.65E-1
							TE+03		— 指數 (Gain)		y = 3E-05e ^{0.0076} R ² = 0.9976	-	Rate (Hz) 0000
							1.E+02						0 -2000
								00	2750 2800 285	o 2900 29 rift Voltage (V		3050 310	

result

Resolution of Issues

- > Short after the assembly
 - It is likely that the dust has fallen onto the foil
 - If the short is on the 3rd foil (close to the RB), remove the RB and use a scroll to clean the foil
 - If the short is on the 1st or 2nd foil, remove the RB and DB, then use a hook to apply a HV on the sector where the short is.
- Gas leak
 - Use a mini-tracer to confirm where the gas leak is
 - Replace the screw with the gasket
 - Apply more AB glue around the gas nozzle
- Screw strip
 - If only one screw in a pair strips, remove the RB and DB, and throw the pull-out where the screw connected
 - If both the screws in a pair strip, remove the RB and DB, and use a drill to destroy the cap of the screw



Summary

- The assembly of the first batch of MEO at PKU is completed.
- All the ME0 GEM modules have passed the QCs and will be sent back to CERN for further testing.
- Preparation for the next batch of MEO is going on.

End

Thank you

15

Backup

16

