

Measurements of Higgs boson production cross sections in the four-lepton final state at 13.6 TeV in CMS

Yuji Li^{1,2} for CMS Collaboration

Fudan University, Shanghai
 IHEP, Beijing

Introduction

- Measure fiducial cross section of H->ZZ->4l at 13.6 TeV using the 2022 Data collected by CMS.
- The result has been open to public(<u>ICHEP 2024</u>), and the paper will be submitted to JHEP.
- Analysis performed on 2022preEE (ECAL leak) ReReco and 2022postEE Prompt datasets
- A total of 34.7 fb-1 has been analysed, for 7.98fb-1 in preEE era and 26.67fb-1 in postEE era.
- Cross section is measured by unfolding experimental data to <u>the fiducial phase space</u> at generator level.
- Differencial XS for Higgs production are also measured with several observables.

Analysis strategy

$$\begin{split} N_{\text{obs}}^{\text{f},i}(m_{4\ell}) &= N_{\text{fid}}^{\text{f},i}(m_{4\ell}) + N_{\text{nonfid}}^{\text{f},i}(m_{4\ell}) + N_{\text{nonres}}^{\text{f},i}(m_{4\ell}) + N_{\text{bkg}}^{\text{f},i}(m_{4\ell}) \\ &= \epsilon_{i,j}^{\text{f}} \cdot \left(1 + f_{\text{nonfid}}^{\text{f},i}\right) \cdot \sigma_{\text{fid}}^{\text{f},j} \cdot \mathcal{L} \cdot \mathcal{P}_{\text{res}}(m_{4\ell}) \\ &+ N_{\text{nonres}}^{\text{f},i} \cdot \mathcal{P}_{\text{nonres}}(m_{4\ell}) + N_{\text{bkg}}^{\text{f},i} \cdot \mathcal{P}_{\text{bkg}}(m_{4\ell}) \end{split}$$

 $N_{obs}^{f,i}(m_{4\ell})$ is skimmed from Data.

 $\epsilon_{i,j}^{f} \cdot (1 + f_{\text{nonfid}}^{f,i})$ is measured from signal samples. $\mathcal{P}_{\text{res}}(m_{4\ell}) \quad \mathcal{P}_{\text{nonres}}(m_{4\ell})$ are described by signal shape.

 $\mathcal{P}_{bkg}(m_{4\ell})$ is evaluated from backgrounds

Finally, the fiducial XS can be measured with a simutanous fitting method. Similarly, the differential XS can also be fitted with suitable observables binning.

Signal process	$\mathcal{A}_{ ext{fid}}$	ϵ f_{nonfid}		$(1+f_{\text{nonfid}})\epsilon$			
	Individual Higgs boson production modes						
ggH	0.408 ± 0.001	0.625 ± 0.001	0.059 ± 0.001	0.659 ± 0.002			
VBF	0.456 ± 0.001	0.645 ± 0.002	0.043 ± 0.001	0.671 ± 0.025			
WH	0.353 ± 0.001	0.604 ± 0.001	0.113 ± 0.001	0.670 ± 0.009			
ZH	0.346 ± 0.001	0.620 ± 0.001	0.136 ± 0.001	0.701 ± 0.008			
ttH	0.355 ± 0.001	0.603 ± 0.002	0.252 ± 0.002	0.748 ± 0.009			

Object Selection

•	Electrons:	FSR Photons:
	pT > 7GeV, eta <2.5, dxy<0.5cm, dz<1cm	pT > 2GeV, eta <2.5, ISO<1.8
	SIP3d<4, BDT ID	$\Delta R(l,\gamma) < 0.5 \Delta R(l,\gamma)/(pT^2) < 0.012$
٠	Muons:	
•	Muons: pT > 5GeV, eta <2.4, dxy<0.5cm, dz<1cm	• Jets:
•	Muons: pT > 5GeV, eta <2.4, dxy<0.5cm, dz<1cm SIP3d<4, PF ID if pT<200,	 Jets: To be updated (not used in this analysis)

Electron SFs

• Electron pT/Eta/IP selection was inherited from Run2, but the BDT ID is investigated again in 2022.

Corresponding Effs with tag-and-probe methods

BDT input Features

		$ \eta < 0.8$	
	Cut on BDT score	Signal eff.	Background eff.
$5 < p_T < 10 { m GeV}$	1.6339	81.64%	4.2%
$p_T > 10 \text{GeV}$	0.3685	97.45%	2.27%
	0.8	$< \eta < 1.47$	'9
	Cut on BDT score	Signal eff.	Background eff.
$5 < p_T < 10 \text{GeV}$	1.5499	80.31%	4.11%
$p_T > 10 \text{GeV}$	0.2662	96.68%	2.83%
		$ \eta > 1.479$	
	Cut on BDT score	Signal eff.	Background eff.
$5 < p_T < 10 { m GeV}$	2.0629	74.37%	2.97%
$p_T > 10 \text{GeV}$	-0.5444	96.62%	7.46%

BDT WPs for tight electron selection

Muon Efficiencies are measured under LooseID, SIP, ISO cuts with tag-and-probe method, and finally combined as the SFs.

Event Selection

Fiducial Space

• Z Candidates:

any OS-SF lepton pairs with 12 GeV<m_ll<120GeV

- ZZ Candidates:
- a) Build all possible ZZ pair

b)m_Z1>40GeV, leading Lep_pT>20GeV, sub

leading Lep_pT>10GeV, △R(l,l)>0.02

c)For each OS pair, m_ll>4GeV(QCD rejection)

d)For 4e/4mu events, reject |mZa – mZ| <|mZ1

mZ | AND mZb < 12GeV).

Requirements for the $H ightarrow 4\ell$ fiducial phase space							
Lepton kinematics and isolation							
leading lepton $p_{\rm T}$	$p_{\mathrm{T}} > 20~\mathrm{GeV}$						
next-to-leading lepton $p_{\rm T}$	$p_{\mathrm{T}} > 10 \ \mathrm{GeV}$						
additional electrons (muons) $p_{\rm T}$	$p_{\rm T} > 7(5) { m GeV}$						
pseudorapidity of electrons (muons)	$ \eta < 2.5(2.4)$						
$p_{\rm T}$ sum of all stable particles within $\Delta R < 0.3$ from lepton	$< 0.35 \cdot p_{\mathrm{T}}$						
Event topology	Event topology						
existence of at least two same flavour opposite sign lepton pairs	s, where the leptons satisfy criteria above						
inv. mass of the Z_1 candidate	$40 \text{GeV} < m(Z_1) < 120 \text{GeV}$						
inv. mass of the Z_2 candidate	$12 \text{GeV} < m(Z_2) < 120 \text{GeV}$						
distance between selected four leptons	$\Delta R(\ell_i \ell_j) > 0.02$ for any $i \neq j$						
inv. mass of any opposite sign lepton pair	$m(\ell^+\ell'^-) > 4 \text{GeV}$						
inv. mass of the selected four leptons	$105{ m GeV} < m_{4\ell} < 160{ m GeV}$						
the selected four leptons must originate from the H $\rightarrow 4\ell$ decay	I						

Fiducial phase space defined at gen-level to match closely the experimental selections at reco-level to ensure modelindependency of the measurement and easy re-interpretability.

BKG estimation

In our selection, two main kinds of bkg process should be taken into account.

- 1) Irreducible bkg with 4 prompt lepton: qqZZ4l, ggZZ4l, MC well simulated
- **2) Reducible bkg** by the misidentification of non-prompt leptons: Z+X, using Data Driven method.

Fake rate measurement:

Z+1L CR requires 2 tight OSSF lepton, and an additional loose lepton. We can count how many prompt in this CR to get Fake Rates.

Fake rate in 2022 preEE

Estimation:

For 2P2F and 3P1F CR in Z+X, once we know the probability for a "fake" lepton identified as a prompt lepton, we can evaluate how many Z+X evts in SR according to CR yields and fake rates.

$N_{SR} =$	(fr2/(1-fr2))	N3P1F -	(fr1/(1-fr1))*	<mark>(fr2/(1-fr2))</mark>	N2P2F
------------	---------------	---------	----------------	----------------------------	-------

Channel	4μ	4e	2e2µ	2µ2e
OS	10.88 ± 3.96	3.89 ± 1.31	7.38 ± 2.88	4.66 ± 1.53
SS	$8.41^{+2.75}_{-2.77}$	$3.01 \stackrel{+1.36}{_{-1.52}}$	$6.32 \substack{+2.06 \\ -2.08}$	$3.57 \substack{+1.62 \\ -1.82}$
Combination	9.19	3.47	6.67	4.15
OS/SS	1.165 ± 0.071	1.030 ± 0.028	0.966 ± 0.079	1.041 ± 0.026

2022 preEE Z+X yield in SR

Channel	4μ	4e	2e2µ	2µ2e
OS	22.23 ± 7.42	10.40 ± 3.24	19.80 ± 6.57	9.97 ± 3.11
SS	$21.49 \substack{+6.66 \\ -6.67}$	$9.29 \substack{+3.70 \\ -3.95}$	$17.69 \substack{+5.48 \\ -5.49}$	$11.57 \substack{+4.60 \\ -4.91}$
Combination	21.82	9.92	18.56	10.47
OS/SS	0.997 ± 0.039	0.990 ± 0.017	1.039 ± 0.043	1.016 ± 0.016

2022 postEE Z+X yield in SR

BKG Modeling

Both kind of Bkg can be fitted with the histogram template of reconstructed mass4l.

- 1) Irreducible bkg qqZZ4l, ggZZ4l extracted this shape from MC simulation
- 2) **Reducible bkg** Z+X is filled from the reweighted distribution from CR

qqZZ was generated in NLO, but the diff. XS was computed as NNLO. (Consider for both EW & QCD) The NNLO/NLO k-factors are applied for qqZZ as a part of the event weight.

Similarly, ggZZ can only be generated in LO, so the NNLO/LO or NNLO/LO k-factors should applied for ggZZ as a part of the event weight.

Signal Modeling

Signal of resonance 4l can be fitted with Double CB functions, where a set of parameters can be determined. Meanwhile, the non-resonance (VH, ttH) 4l will be described by Landau shape.

$$\mathcal{P}_{res}(m_{4\ell}|m_H) = N \cdot \begin{cases} A \cdot (B+|\xi|)^{-n_L} & \text{if } \xi < \alpha_L \\ \exp(-\xi^2/2) & \text{if } \alpha_L \le \xi \alpha_R \\ A \cdot (B+|\xi|)^{-n_R} & \text{if } \xi > \alpha_R \end{cases}$$
$$\xi = (m_{4\ell} - m_H - \Delta m_H) / \sigma_m$$

Systematic Uncertainties

Systematic Uncertainties can be traced from

experimental source and theoretical source.

Summary of relative systematic uncertainties						
Common experimental uncertainties						
Luminosity 1.4 %						
Lepton id/reco efficiencies	0.8 - 16.8 %					
Background related uncertainties						
Reducible background (Z+X) 25 – 45 %						
Signal related uncertainties						
Lepton energy scale $0.05 \%(\mu) - 0.2 \%(e)$						
Lepton energy resolution	5 %(µ) - 12 %(e)					

Summary of inclusive theory uncertainties					
QCD scale (gg)	\pm 3.9 %				
PDF set (gg)	\pm 3.2 %				
$gg \rightarrow ZZ$ k-factor (gg)	\pm 10 %				
QCD scale ($q\bar{q} \rightarrow ZZ$)	+3.2/-4.2 % %				
PDF set $(q\bar{q} \rightarrow ZZ)$	+3.1/-3.4 %				
Electroweak corrections ($q\bar{q} \rightarrow ZZ$)	\pm 0.1 %				

1	CMG_44_4	······································	
2	K2Din0	1.00+0.23	
3	K1Bin0	1.00+0.30	
4	CMG_zzH_signa_e_sig		
5	kam(_13TeV_2022		
6	CMS_eft_m		
7	QCDecale_W		
8	pdf_qqber		
9	CMS_hzzkimu_Zjets_2022E.E		
10	CMS_hzz2w2ms_Zjets_2022EE		
11	CMS_ze4Uxigme_m_xig		
12	CMS_hzzknu_Zjete_2022		
13	CM0_tzz2+2mi_2(+ts_2022		
14	CMS_tzz4e_Zjete_2022EE		
15	CMS_224(_1_42_1_2022EE		
16	CMS_12246_23ets_2022		
17	CMS_224(_1_4)_2_2022EE		
18	CMS_224U_0_42_1_2022		
19	CMS_224UnwerLeurig		
20	CMS_224(_n_42_2,2022		
21	CMS_zzH_mean_mukig		
22	CM0_224(_n_42_5_2022		
23	Mactor_ggz		
24	CMS_224(65_2022EE		
25	QCDecale_ggW		
26	pd_20		
27	CM0_324_mean_e_em	0.0%	
28	CMS_zz4Umean_m_err	0.0	
29	мн	125.4%	

Electron Efficiency is the most relevant!

Yields in SR(Pre-fit)

Channel	4μ	4 <i>e</i>	2e2µ	41
qqZZ	379.62	209.12	504.43	1093.18
ggZZ	71.93	46.47	110.33	228.72
ZX	33.97	13.77	42.31	90.04
Sum backgrounds	485.52	269.36	657.07	1412
Signal ($m_H = 125 \text{ GeV}$)	27.05	12.91	33.56	73.52
Total expected	512.57	282.26	690.63	1485
Data	506	277	674	1457

Channel	4μ	4 <i>e</i>	2e2µ	41
qqZZ	33.28	13.1	38.49	84.86
ggZZ	3.92	1.86	3.92	9.7
ZX	15.77	4.25	16.74	36.76
Sum backgrounds	52.97	19.22	59.15	131
Signal ($m_H = 125 \text{ GeV}$)	25.28	11.69	30.87	67.84
Total expected	78.25	30.9	90.02	199
Data	59	32	93	184

Final Results

Inclusive fiducial XS fitting result, and the x-axis of the left plots is represented by signal strength. The uncertainy of XS can be extracted by 1-d likehood scanning.

Correlation of different final states.

Different XS for Higgs Production could be measured as a function of transverse momentum and rapidity.

- Same analysis strategy as Run2 is performed.
- The performace of electron and muon are well measured in Run3 2022 data.
- Fiducial XS are measured with unbinned max-likelihood method, and the result is:

 $\sigma_{\rm fid} = 2.94^{+0.53}_{-0.49} \text{ (stat.)}^{+0.29}_{-0.22} \text{ (syst.) fb}$

- Comparing with Run1 and Run2 results, they are corresponding with SM predictions.
- Differential XS can also be measured with this framework, whichwill bring more information when we have more statistics in Run3.(2022-2025)

Thanks!

Backup

BKG estimation

qqZZ was generated in NLO, but the diff. XS was computed as NNLO. (Consider for both EW & QCD) The NNLO/NLO k-factors are applied for qqZZ as a part of the event weight.

Similarly, ggZZ can only be generated in LO, so the NNLO/LO or NNLO/LO k-factors should applied for ggZZ as a part of the event weight.

Simutanous fits

CMS Integrated Luminosity, pp, 2024, $\sqrt{s} = 13.6 \text{ TeV}$

Date included from 2024-04-05 16:25:46 to 2024-10-16 11:05:48 UTC

Dataset and MC Samples

Primary Dataset	DAS Path	Runs	Luminosity	Flag	HIT Paths
SingleMu2022C	/SingleMuon/Run2022C-22Sep2023-v1/NANOAOD			nassSingleUle	ULT Flo20 WDTight Cof
DoubleMu2022C	/DoubleMuon/Run2022C-22Sep2023-v1/NANOAOD			passoingienie	HLI_EIESO_WFIIGHC_GSI
Muon2022C	/Muon/Run2022C-22Sep2023-v1/NANOAOD	355862 - 357482	6.3 fb ⁻¹		
MuonEG2022C	/MuonEG/Run2022C-22Sep2023-v1/NANOAOD	\		passSingleMu	HLT_IsoMu24
EGamma2022C	/EGamma/Run2022C-22Sep2023-v1/NANOAOD				
				man Di Di	HLT_Ele23_Ele12_CaloIdL_TrackIdL_IsoVL
Muon2022D	/Muon/Run2022E-22Sep2023-v1/NANOAOD			passibilitie	HLT_DoubleEle25_CaloIdL_MW
MuonEG2022D	/MuonEC/Run2022D-22Sop2023-v1/NANOAOD	357538 - 357900	3.3 fb ⁻¹		
EGamma2022D	/EGamma/Run2022D-22Sep2023-v1/NANOAOD			passDiMu	HLT Mul7 TrkIsoVVL Mu8 TrkIsoVVL DZ Mass3p8
				Pubbling	mi_mi/_intoffi_into_finitoffi_bulnabopo
Muon2022E	/Muon/Run2022E-22Sep2023-v1/NANOAOD				ULT My22 TeklapUUL Fla12 Calaldi Teachidi JapU
MuonEG2022E	/MuonEG/Run2022E-22Sep2023-v1/NANOAOD	359356 - 360327	6.1 fb ⁻¹		
EGamma2022E	/EGamma/Run2022E-22Sep2023-v1/NANOAOD				HLI_MU8_ITKISOVVL_EIE23_CaloIdL_ITACKIdL_ISOVL_U2
				passMuEle	<pre>IILT_Mu12_TrkIsoVVL_Ele23_CaloIdL_TrackIdL_IsoVL_DZ</pre>
Muon2022F	/Muon/Run2022F-22Sep2023-v2/NANOAOD			1	HLT_Mu23_TrkIsoVVL_Ele12_CaloIdL_TrackIdL_IsoVL_DZ
MuonEG2022F	/MuonEG/Run2022F-22Sep2023-v1/NANOAOD	360335 - 362167	18.4 fb ⁻¹		HLT_DiMu9_Ele9_CaloIdL_TrackIdL_DZ
EGamma2022F	/EGamma/Run2022F-22Sep2023-v1/NANOAOD				HLT_Mu8_DiEle12_CaloIdL_TrackIdL_DZ
Muon2022G	/Muon/Run2022C-22Sep2023-v1/NANOAOD				HLT TripleMu 10 5 5 DZ
MuonEG2022G	/MuonEG/Run2022G-22Sep2023-v1/NANOAOD	362353 - 362760	3.2 fb ⁻¹	passTriMu	ULT_TriploMu 12 10 5
EGamma2022G	/EGamma/Run2022G-22Sep2023-v2/NANOAOD				unt_tribleud_ts_to_5

Process	MC Generator(s)	$\sigma \times BR(\times \epsilon_{filter})$
$gg \rightarrow H \rightarrow ZZ \rightarrow 4\ell$	Standard	14.34 fb
$qq \rightarrow Hqq \rightarrow ZZqq \rightarrow 4\ell qq$	Standard	1.12 fb
$q\bar{q} \rightarrow Z\hat{H} \rightarrow ZZZ \rightarrow 4\ell + \hat{X}$	POWHEG 2.0 (minlo HZJ)	0.775 fb
$q\bar{q} \rightarrow W^+H \rightarrow W^+ZZ \rightarrow 4\ell + X$	POWHEG 2.0 (minlo HWJ)	0.244 fb
$q\bar{q} \rightarrow W^-H \rightarrow W^-ZZ \rightarrow 4\ell + X$	POWHEG 2.0 (minlo HWJ)	0.156 fb
$gg \rightarrow ttH \rightarrow ttZZ \rightarrow 4\ell + X$	Standard	3.12 fb

Process	Dataset Name	$\sigma \cdot BR$
$qq \rightarrow ZZ \rightarrow 4\ell$	/ZZTo4L_TuneCP5_13p6TeV_powheg_pythia8/	1.39 pb
$gg \rightarrow ZZ \rightarrow 4e$	/GluGlutoContinto2Zto4E_TuneCP5_13p6TeV_mcfm-pythia8	0.003 pb
$gg \rightarrow ZZ \rightarrow 4\mu$	/GluGlutoContinto2Zto4Mu_TuneCP5_13p6TeV_mcfm-pythia8	0.003 pb
$gg \rightarrow ZZ \rightarrow 4\tau$	/GluGlutoContinto2Zto4Tau_TuneCP5_13p6TeV_mcfm-pythia8	0.003 pb
$gg \rightarrow ZZ \rightarrow 2e2^{-}$	/GluGlutoContinto2Zto2E2X_TuneCP5_13p6TeV_mcfm-pythia8	0.006 pb
$gg \rightarrow ZZ \rightarrow 2e2\phi$	/GluGlutoContinto2Zto2E2X_TuneCP5_13p6TeV_mcfm-pythia8	0.006 pb
$Z \rightarrow \ell \ell + jets$	DYJetsToLL_M-50_TuneCP5_13p6TeV-madgraphMLM-pythia8	5558.0 pb
$t\bar{t} \rightarrow 2\ell 2\nu$	TTto2L2Nu_TuneCP5_13p6TeV_powheg-pythia8	762.1 pb
$WZ \rightarrow 3\ell\nu$	WZto3LNu_TuneCP5_13p6TeV_powheg-pythia8	4.924 pb