

CEPC Electromagnetic Calorimeter R&D: status and highlights

Yong Liu (IHEP), for CALICE/DRD6 and CEPC calorimeter teams

CLHCP2024 in Qingdao, Nov. 14, 2024

High granularity calorimetry

- Future Higgs/EW/top factories
 - Requires unprecedented energy resolution for jet measurements
 - A major calorimetry option: highly granular (imaging) + particle flow algorithms (PFA)
- PFA calorimetry: various options explored in the CALICE collaboration
- Focus in this talk: scintillator-SiPM ECAL prototype and new crystal ECAL

Scintillator-tungsten ECAL in a nutshell

- Scintillator-strip Tungsten ECAL (ScW-ECAL)
 - Technical option for CALICE PFA-oriented high-granularity calorimeter
 - Scintillator strip (45mm×5mm×2mm) read out by SiPM
 - Effective segmentation of 5×5mm² by strips aligned alternately in horizontal and vertical orientations
- Significant reduction of readout channels $(10^8 \rightarrow 10^7)$ retaining performance
 - Cost reduction
 - Power consumption reduction → advantageous especially for CEPC

Scintillator-tungsten ECAL prototype

Scintillator-SiPM readout scheme

Sensitive layer arrangements

scintillator strip

SiPM

90mm

- ScW-ECAL prototype: developed in 2016-2020
 - Transverse area of ~22x22 cm, 32 longitudinal sampling layers
 - 6,720 channels, ~350 kg, SPIROC2E (192 chips)
- Beamtest campaigns at CERN in 2022-2023
 - Along with CEPC-AHCAL prototype

(in the rear part)

CERN beamtests in 2022-2023

 Oct 19 - Nov 2, 2022
 Apr 26 - May 10, 2023
 May 17 - 31, 2023

 SPS H8 beamline
 SPS H2 beamline
 PS T9 beamline

- Successful beamtest campaigns
 - Two prototypes (ScW-ECAL and AHCAL)
 - Both mounted on a motorised stage (XYZ+U)
 - Impressions: a few cubic meters and ~10 tons

CERN beamtests in 2022-2023

- Collected decent statistics of testbeam data samples
 - Muons: 10 GeV (PS-T9), 108/160 GeV (H8), 120 GeV (H2)
 - Electrons/positrons: 0.5 5 GeV at PS; 10 120 GeV at SPS (also up to 250 GeV)
 - Pions: 1 15 GeV at PS, 10 120 GeV (also 150 350 GeV) at SPS

Overlapped energy points (10-15 GeV) at PS and SPS

ScW-ECAL: calibration in beamtests

- Pedestal calibration
 - Stable pedestal during beam tests.
- ASIC gain calibration (SPIROC2E)
 - Large dynamic range with high-gain/low-gain mode
 - Inter-calibration btw high-gain/low-gain
- SiPM gain calibration
 - SiPM gain calibration with LED data

ScW-ECAL: beamtest data analysis

- MIP calibration
 - Position scans with 106GeV muon for all channels
 - Excluding noise hits especially for 10um SiPM with muon track fit
 - Not well calibrated for 30% of channels (10um)
- Comparison between data and simulation
 - Need to understand discrepancy in data/MC

10⁴

 10^3

Crystal ECAL: compatible with PFA

- CEPC reference detector design
- New electromagnetic calorimeter
 - Crystal ECAL with high-granularity for PFA
 - To achieve optimal EM energy resolution

High-Granularity Crystal Calorimeter (HGCCAL)

- HGCCAL proposed for future Higgs e⁺e⁻ factories
 - Optimal EM resolution: $2 \sim 3\% / \sqrt{E}$
 - Fine segmentations for particle-flow algorithm
- Two designs and features
 - Short crystals: naturally compatible with PFA
 - Long crystals (major focus): minimize dead materials between longitudinal layers and readout channels
- Challenges
 - Integration: light-weighted materials of mechanics, cooling and readout boards
 - Pattern recognition: how to resolve ambiguities
 - Readout scheme
 - Large dynamic range for SiPM + ASIC
 - Front-end ASIC: low-power (millions of channels), continuous readout (high rate at circular colliders)

DRD6: Calorimetry (CERN-DRDC-2024-004)

Crystal module in 2023 CERN beamtest

- Successfully developed the first HGCCAL module
 - Tested in parasitic runs with CALICE scintillator calorimeter prototypes at CERN PS-T09
- Data taking with muons and electrons
 - Successful commissioning for all 72 channels, scans of ASIC parameters (shaping time, threshold, ...)

Crystal modules: 2023 DESY beamtest

- Crystal calorimeter modules $(21X_0)$
- DESY beamtest: electron beam (1-6 GeV) at TB22 beamline
 - Motivations: system integration, EM shower performance
 - EM Performance: dominated by TB22 beam momentum spread
 - DESY beamline momentum spreads
 - TB21: measured with dipole magnet and beam telescope ~16% (at 1GeV)
 - **TB22: no direct measurements**, expected at ~8% at 1 GeV from our testbeam data; but spread seems not to follow 1/p function as in TB21

The DESY II test beam facility

Crystal modules: 2024 CERN beamtest

- 2 weeks at PS-T9: data taking with muon and electron beams
 - MIP calibration (5 GeV muons), EM performance (1–10 GeV electrons)
 - Extensive studies on detector calibration, simulation digitisation, beam momentum

Crystal Calorimeter Prototype: EM performance

- Studies based on electron data in 1 10 GeV
 - Data taken with ALL beam instrumentation in upstream: Cherenkov detectors (XCET), SciFi trackers (beam profilers)
- EM response linearity within $\pm 1\%$
 - Better understanding of calibration precision (~0.5%) and corrections of crosstalk in ASIC neighbouring channels

EM energy resolution

- CERN expert confirmed our observation: larger beam momentum spread in data than expected from beamline lattice (~1%)
- Calorimeter EM performance majorly dominated by beam spread in lower energy (typically ~3% at 1GeV)
- Extensive studies on PS-T9 beamline (with kind help of CERN expert) to quantify momentum spread due to beam instrumentation
- Preliminary EM performance after excluding beam momentum spread: $< 2\%/\sqrt{E} \oplus 1\%$

Crystal ECAL: EM performance in simulation

- Singe photon: EM resolution
 - <2% EM resolution with Geant4 simulation + digitisation</p>
 - Ongoing studies to further improve digitisation, by including more realistic factors
- Neutral pions: mass resolution
 - Crystal ECAL shows better performance at lower energies (<15 GeV)

10/31/24

Crystal ECAL: two-particle separation power

- New PFA reconstruction software for the long-bar design
 - Integrated in CEPCSW to evaluate separation power, which is crucial to PFA performance
 - Preliminary results look quite promising

Summary and prospects

- Scintillator-Tungsten Calorimeter
 - Technological prototype successfully developed during 2016 2021
 - Smooth beam test campaigns at CERN PS/SPS during 2022-2023
 - Collected sufficient statistics of data samples in a wide energy range
 - Detector performance evaluation and shower studies
- High-Granularity Crystal Calorimeter
 - A novel calorimeter design, as the baseline option for CEPC reference detector
 - Aim for compatibility with PFA and optimal EM performance
 - Steady progress in several aspects: simulation, reconstruction and prototyping
- Preliminary results look promising and encouraging
 - More detailed studies are also ongoing
- International collaborations: previously CALICE and now DRD6

Thank you!

Backup

Particle-flow algorithm

Components in jets	Sub-Detectors	Energy fraction (average) within a jet	Detector Resolution
charged particles (X^{\pm})	Tracker	60% E _j	$10^{-4}E_{X}^{2}$
photons (γ)	ECAL	30% E _j	$0.15 \sqrt{E_{\gamma}}$
neutral hadrons (h)	ECAL+HCAL	10% E _j	$0.55 \sqrt{E_h}$

- Particle Flow Algorithm (PFA)
 - To achieve unprecedented jet energy resolution of $\sim 30\%/\sqrt{E_{jet}}$
 - (Reminder: multiple particles within a jet)
 - Choose a sub-detector best suited for each particle type
 - Charged particles measured in tracker
 - Photons in ECAL and neutral hadrons in HCAL
- Separation of close-by particles in the calorimeters
- PFA-oriented calorimeters: high granularity (1~10 million channels)

ECAL

tracker

HCAL

Simulation and digitisation

- Geant4 simulation including detailed geometry of ScW-ECAL and AHCAL prototypes
- Digitisation: energy depositions (Geant4) \rightarrow digits in ADC
 - Same technology: scintillator-SiPM and ASIC in two prototypes
 - Procedure implemented for each readout channel

