


第十届中国LHC物理会议

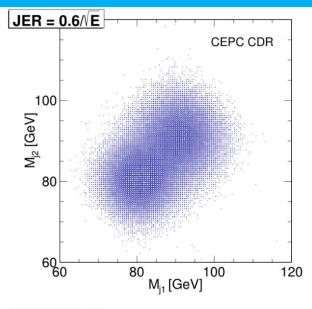
2024年11月14日-17日

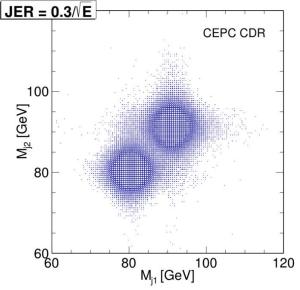
The 10th China LHC Physics Conference 山东省青岛市鳌山湾

Progress of the CEPC GS-HCAL

Hengne Li on behalf of the CEPC HCAL Group

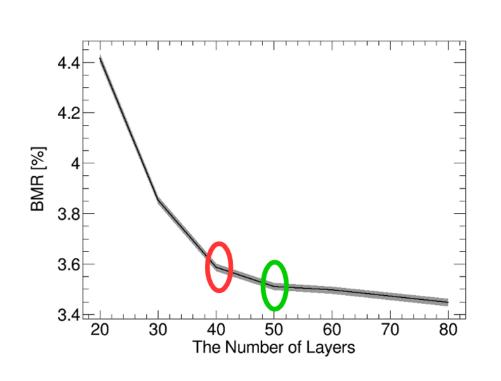
- 1. Introduction and Requirement
- 2. Technology Survey and Our Choice
- 3. GS-HCAL Performance
- 4. GS-HCAL Mechanical Design
- **5. GS-HCAL Electronics**
- 6. HCAL Research Group
- 7. Working Plan and Schedule
- 8. Summary

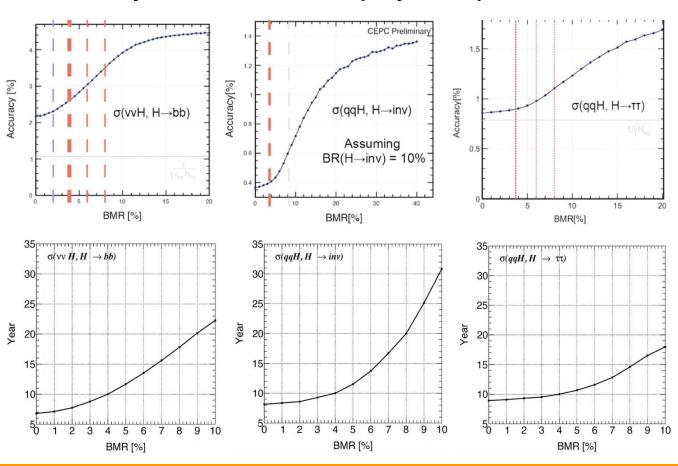

1. Introduction and Requirement


CEPC as Higgs/W/Z boson factories

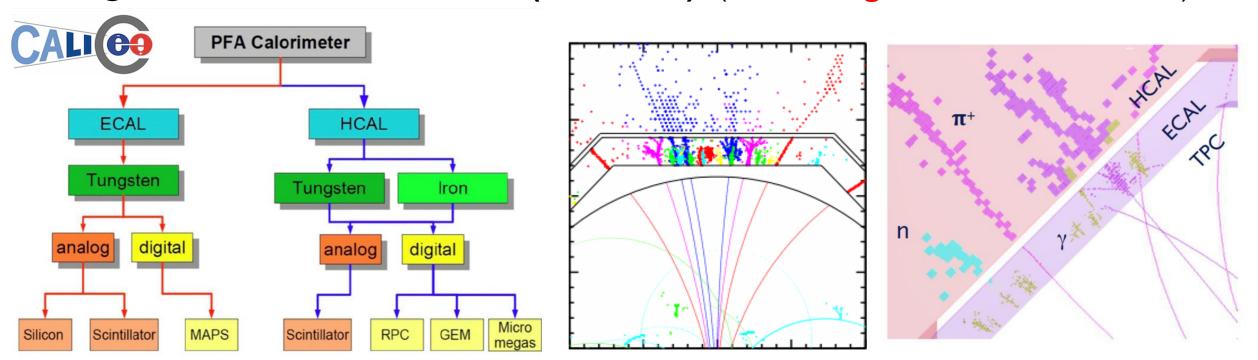
- ❖ H/W/Z decay into hadronic final states are dominant, it is crucial to design high performance calorimetry system
- ❖ Required Jet Energy Resolution o/E ~ 3-4% at 100 GeV

[CEPC CDR, arXiv:1811.10545]


Physics process	Measurands		Performance requirement
$ZH, Z \to e^+e^-, \mu^+\mu^-$ $H \to \mu^+\mu^-$	$m_H, \sigma(ZH)$ ${ m BR}(H o \mu^+\mu^-)$	Tracker	$\Delta(1/p_T) = 2 \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV}) \sin^{3/2} \theta}$
H o bar b/car c/gg	${ m BR}(H o bar{b}/car{c}/gg)$	Vertex	$\sigma_{r\phi} = 5 \oplus rac{10}{p({ m GeV}) imes \sin^{3/2} heta} (m \mu m)$
$H o qar q, WW^*, ZZ^*$	${ m BR}(H o qar q,WW^*,ZZ^*)$	ECAL HCAL	$\sigma_E^{{ m jet}}/E = 3 \sim 4\%$ at $100~{ m GeV}$
$H o \gamma \gamma$	${\rm BR}(H\to\gamma\gamma)$	ECAL	$\Delta E/E = rac{0.20}{\sqrt{E({ m GeV})}} \oplus 0.01$

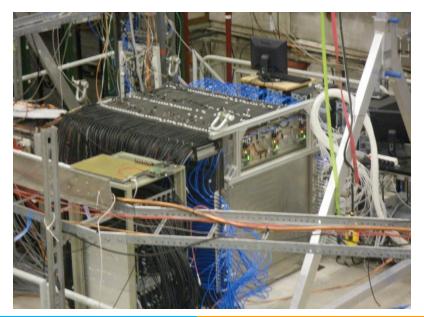


1. Introduction and Requirement

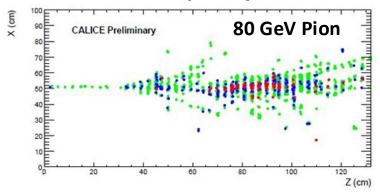

→ The increase of sampling layers (40 → 48 layers) will improve the total nuclear interaction length ($\sim 5\lambda \rightarrow 6\lambda$) and suppress hadronic shower leakage, which is beneficial to achieve better BMR and accuracy of benchmark physics processes.

2. Technology Survey and Our Choice

- Three major options for CEPC Hardronic Calorimeter
 - ① RPC-DHCAL (SDHCAL, prototype): sampling, 48-layer
 - ② Plastic Scintillator-AHCAL (PS-HCAL, prototype): sampling, 40-layer
 - ③ Glass Scintillator-AHCAL (GS-HCAL): (new design for CEPC Ref-TDR)

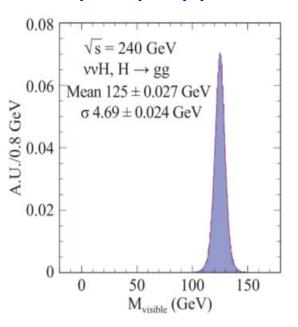

PFA calorimetry: various options explored in the CALICE collaboration in past 20 years

2.1 RPC based SDHCAL (Prototype)


■ Semi-digital HCAL (SDHCAL)

- High granularity (1cm x1cm)
- 48 layers (1m x 1m x 1.3m)
- Three thresholds readout
- Stainless-steel absorber with selfsupporting mechanical structure

TB at CERN, SDHCAL (1m³), 3 thresholds

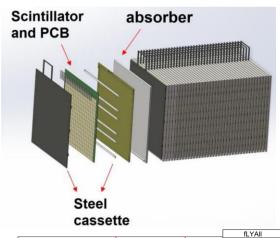


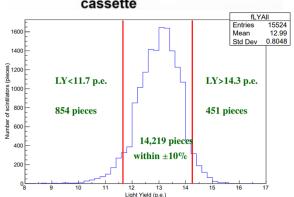
JINST 11 (2016) P04001

CALICE SDHCAL O.45 0.

CPC (2019) 43(2): 023001

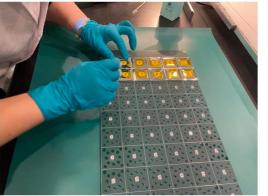
■ DHCAL performance (CDR) Boson mass Resolution:

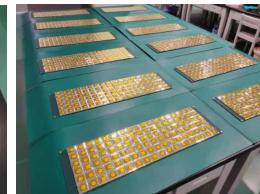

 $H \to gg: 3.75\%$

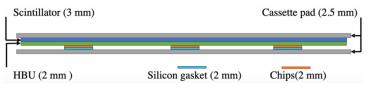

(Full Simu. + Arbor Rec.)

2.2 Plastic Scintillator HCAL (Prototype)

■ We have developed a PS-HCAL prototype in 2022 and TB at CERN


Calo	Layers	material	Absorber	Granularity	Electronics	Thickness	Resolution	Weight
PS-HCAL	40	PS+SiPM \$14160-1315	Fe	4×4 cm ²	SPIROC-2E 12960-ch	4.6 λ _I	60 %/√ <i>E</i> ⊕ 3 %	5.0 T





JINST 17 (2022) P05006

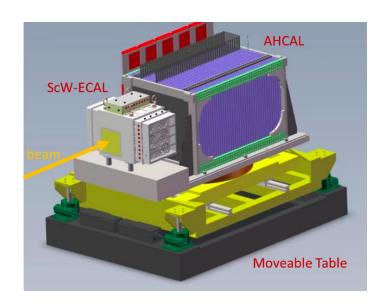
2.2 Plastic Scintillator HCAL (Prototype)

Oct 19 - Nov 2, 2022

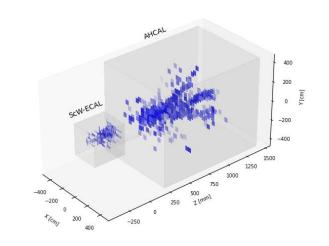
Apr 26 - May 10, 2023

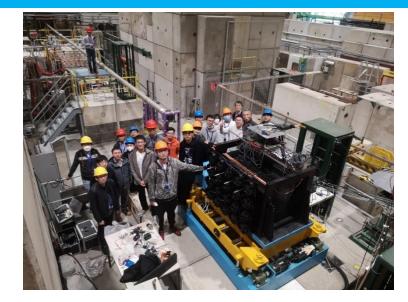
May 17 - 31, 2023

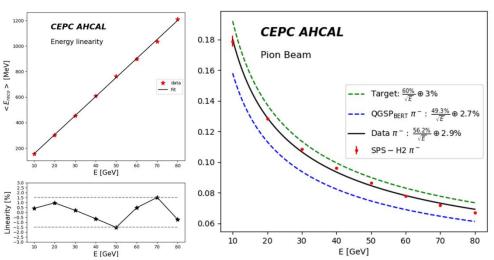
SPS H8 beamline


SPS H2 beamline

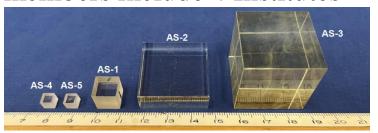
PS T9 beamline


Collected large statistics of test beam data samples


- Muons: 10 GeV (PS-T9), 108/160 GeV (H8), 120 GeV (H2)
- Electrons/positrons: 0.5 5 GeV at PS; 10 120 250 GeV at SPS
- Pions: 1 15 GeV at PS, 10 120 150 350 GeV at SPS

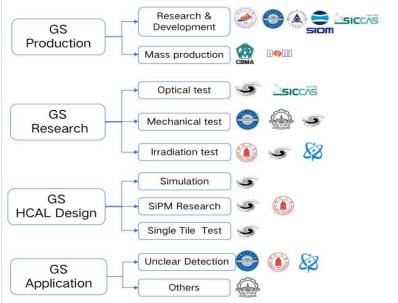

→ About 65 M test beam events

60 GeV negative pion (SPS)

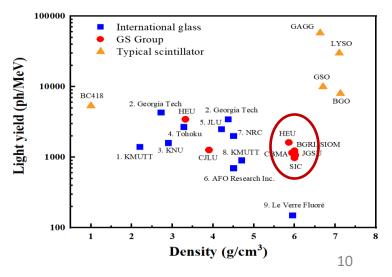


2.3 Glass Scintillator R&D

➤ The GS collaboration was established in 2021, it focuses on the large-area & high-performance glass scintillator for applications in nuclear and particle physics.

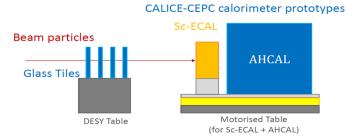

> The GS collaboration is organized by IHEP and the members include 4 Institutes

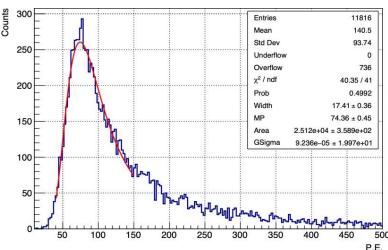
of CAS, 6 Universities, 3 Factories currently.


中核(北京)核仪器有限责任公司

2.3 Glass Scintillator R&D

5.6 g/cm³ GS1 Gd-Al-B-Si-Ce3+ 6.0 g/cm³ GS1+ Gd-Al-B-Si-Ce3+ GS3 1286 ph/MeV GS2 Gd-Ga-B-Ce3+ GS3 Gd-Ba-Al-B-Si-Ce3 GS4 Gd-Li-B-Si-Ce3+ GS5 Gd-Ga-Si-Ce3+ GC Gd-K-Y-Si-Ce3+ 6.0 g/cm3 **GS1**+ 2445 ph/M Density—6 g/cm³ 6.0 g/cm³ Light yield—1000 ph/MeV **GS1** 985 ph/MeV Decay time-100 ns 0.5 0.01.0 1.5 2.0 Target parameter


- ✓ The GS group did substantive research based on five glass scintillator types and impressive progress has been achieved
- ✓ The performance of the best glass sample approach the initial goals, i.e. 6 g/cm³ & 1000 ph/MeV & ~100 ns
- ✓ The GS group is leading R&D efforts on high density glass scintillator

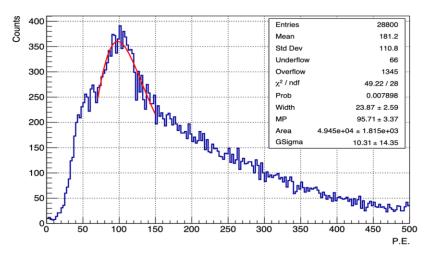


2.3 Glass Scintillator (GS1) TB Performance

CERN Muon-beam (10 GeV muon)

11 glass tiles tested at CERN (2023/5)

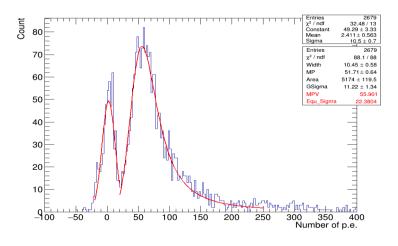




- > Typical Light Yield: 500 600 ph/MeV
- ➤ Typical MIP response: 60 70 p.e./MIP

DESY Electron-beam (5 GeV electron)

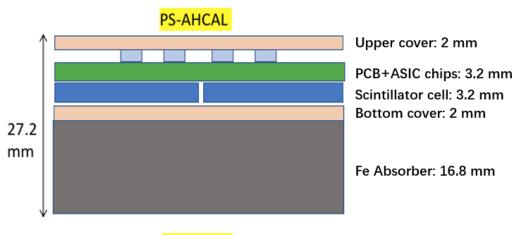
9 glass tiles tested at DESY (2023/10)



- Typical Light Yield:
 600 700 ph/MeV
- > Typical MIP response: 70 80 p.e./MIP

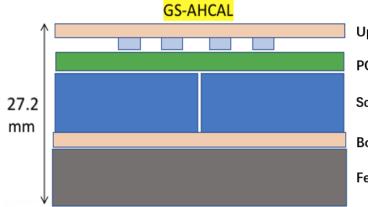
IHEP Cosmic Muon (3 GeV muon)

4 glass tiles tested at IHEP (2024/4)



- Typical Light Yield: 500 – 700 ph/MeV
- ➤ Typical MIP response: 60 80 p.e./MIP

3.1 GS-HCAL vs PS-HCAL


Sampling fraction of PS-HCAL and GS-HCAL

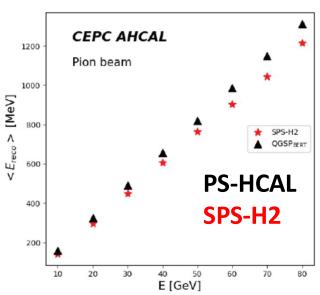
PS-HCAL (6.15 λ_1)

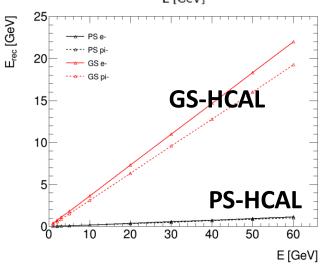
Fe: 20.8mm/171.5mm=0.1213 λ_l PS: 3mm/688.7mm=0.0044 λ_l PCB: 1.2mm/492.2mm=0.0024 λ_l

Sampling fraction ~ 1.6% (π - TB, MC)

Upper cover: 2 mm

PCB+ASIC chips: 3.2 mm

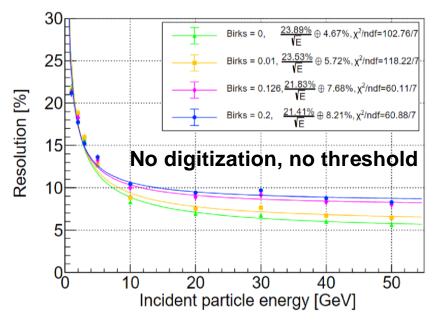

Scintillator cell: 10.2 mm

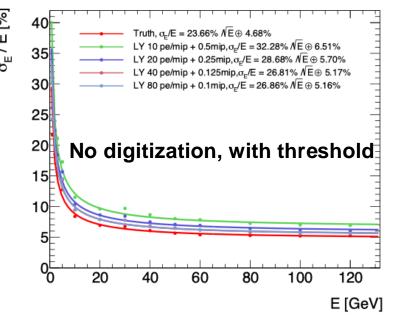

Bottom cover: 2 mm

Fe Absorber: 9.8 mm

GS-HCAL $(6.02\lambda_{\parallel})$

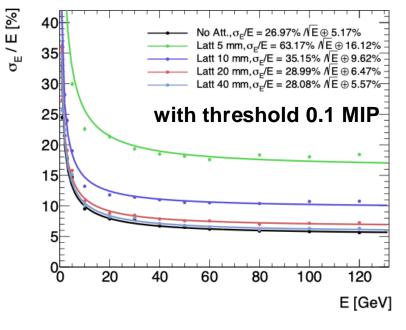
Fe: 13.8mm/171.5mm= $0.0805 \lambda_I$ GS: 10.2mm/242.8mm= $0.0425 \lambda_I$ PCB: 1.2mm/492.2mm= $0.0024 \lambda_I$ Sampling fraction ~ 31% (MC)




3.2 GS-HCAL Energy Resolution

A full detector geometry constructed with DD4hep in CEPCSW

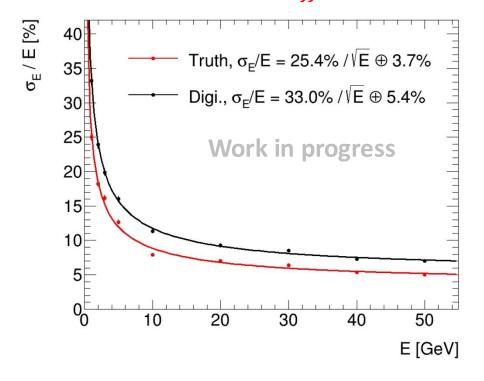
- GS1 (Gd-Al-B-Si-Cs): density 6 g/cm^3 , $\lambda_I = 242.8$ mm, attenuation length ~ 23mm
- Geometry: follow the mechanics design, with simplified supporting structures.
- GS cell size $4 \times 4 \times 1$ cm³, 2.72cm / layer, 48 layers, $6\lambda_I$ in total

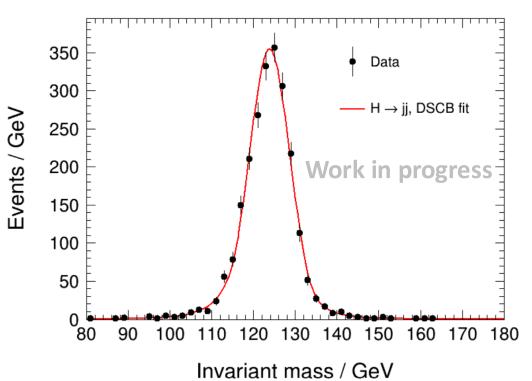


Scintillator non-linearity in light output caused by quenching, Birks constant : $C_{birks} \sim 0.01 \ (GS) \ vs \sim 0.008 \ (BGO)$

GS light yield: > 50 p.e/MIP

Threshold: 0.1 MIP (> 5 p.e)

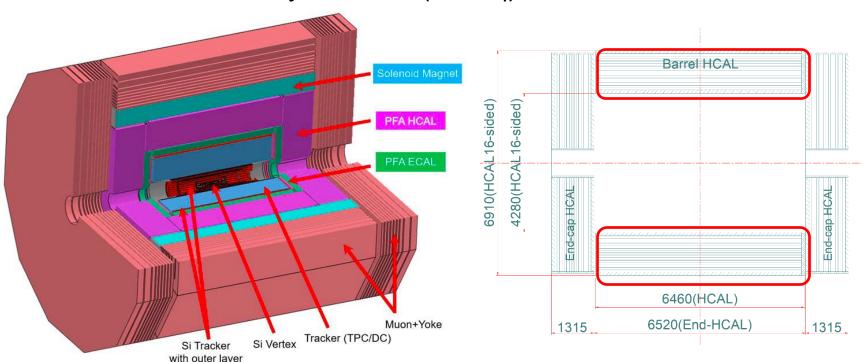

GS attenuation length: ~23mm

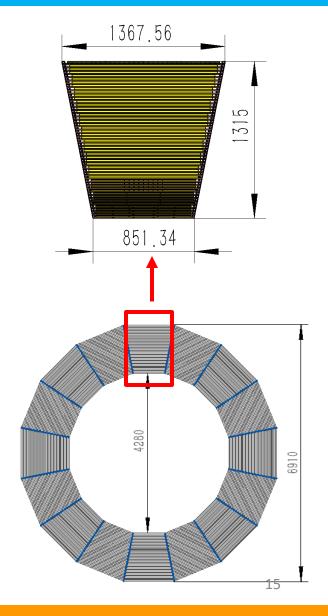

3.3 GS-HCAL Physics Performance

Hadron Energy Resolution (full sim + digi) :

$$\sigma_E/E=\frac{33.0\%}{\sqrt{E}}\oplus 5.4\%$$

- **PFA** Reconstruction for ee → ZH → vvgg events:
 - Tracker + Crystal ECAL + GS-HCAL (barrel only)
 - Improvements are expected with further optimizations (e.g. tracking, clustering, calibrations)
 - BMR = $3.95\pm0.10\%$ ($m_{jj}=123.81\pm4.89$ GeV).

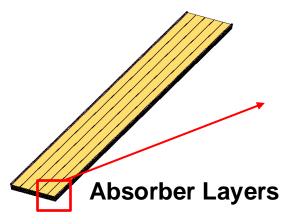


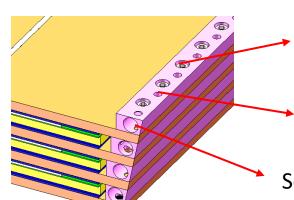


4. GS-HCAL Design Total channels: 3.38 M,GS buget: 378 M RMB


☐ GS-HCAL: Barrel (16 sectors) and two Endcaps

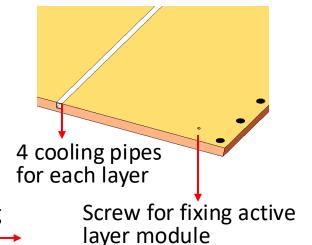
- Thickness of the Barrel: 1315 mm
- Inner radius of the Barrel : 2140mm (D_{in}=4280 mm)
- o Barrel Length along beam direction: 6460 mm
- \circ Number of Layers : 48 (~ 6 λ_1)



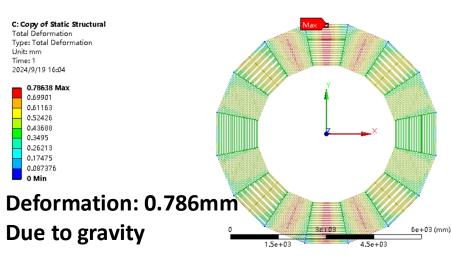

4.1 GS-HCAL Mechanical Design (Barrel)

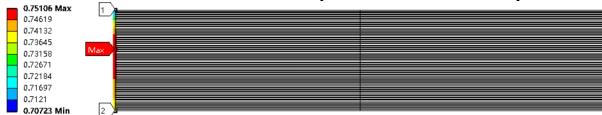
4.1 GS-HCAL Mechanical Design (Barrel)

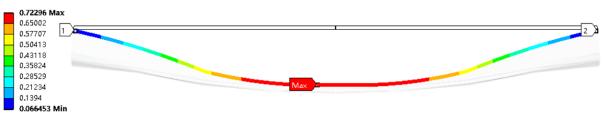
Absorber layer structure



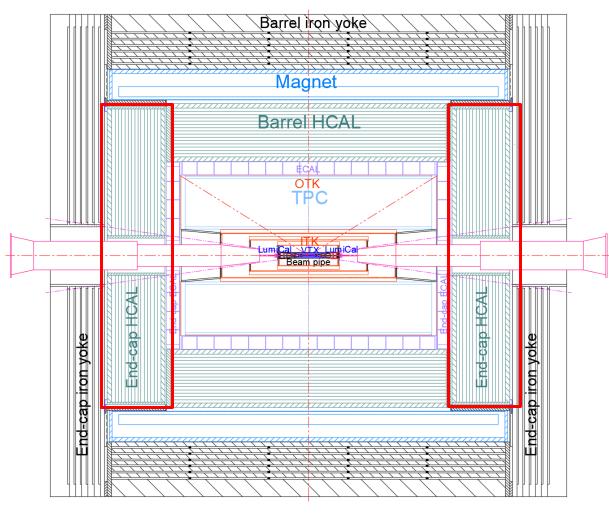
The bolts go through the upper trapezoid plate, the lower absorber layer and fix it with the lower trapezoid plate


Screws used for fix the upper absorber plate and upper trapezoid plate

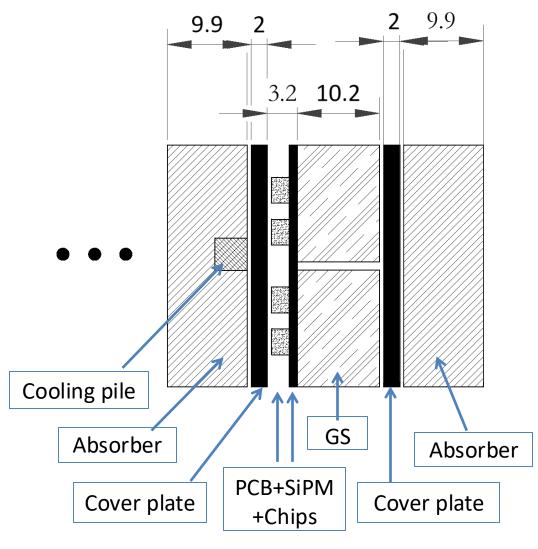

Screws used for fix the edge sealing


module (320mm × 646mm)

Simulation of absorber structure

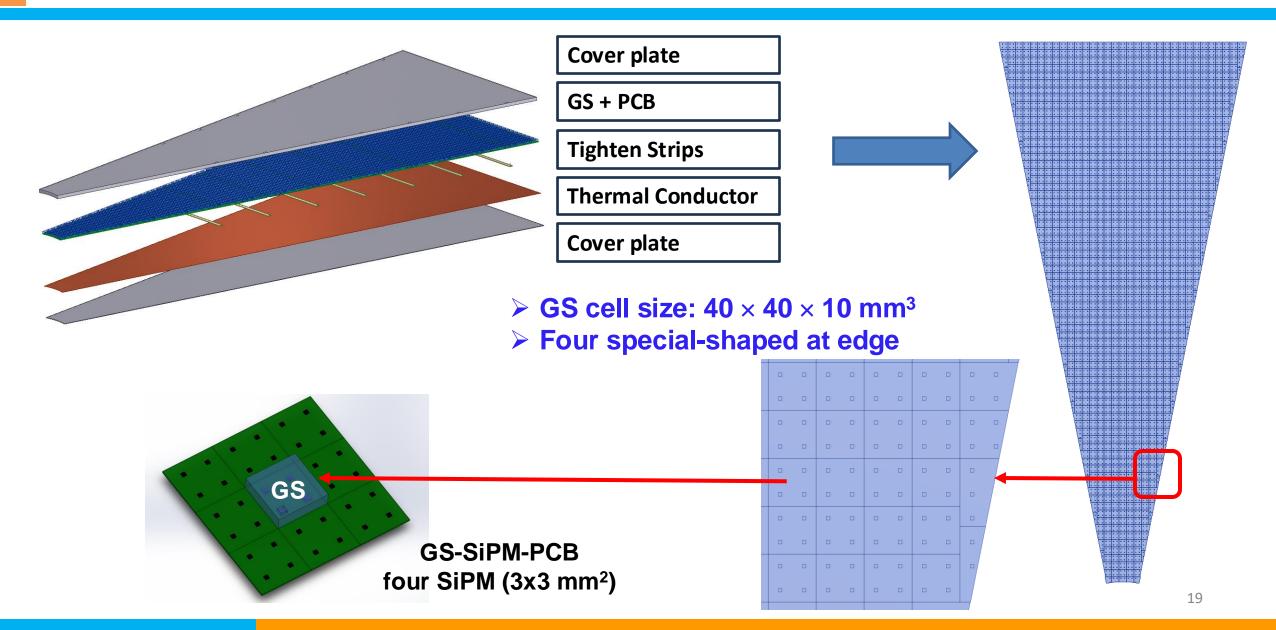


Deformation difference between 48 layers is lower than 0.05mm



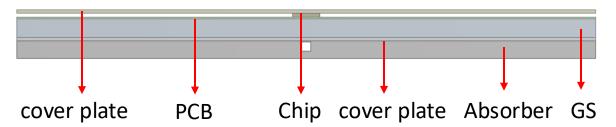
Deformation difference within 1 layer is lower than 0.7mm

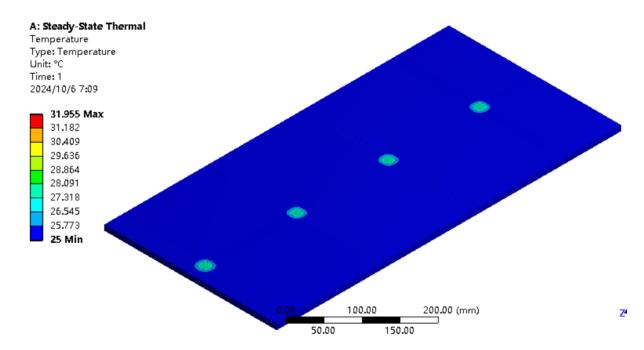
4.2 GS-HCAL Mechanical Design (Endcap)



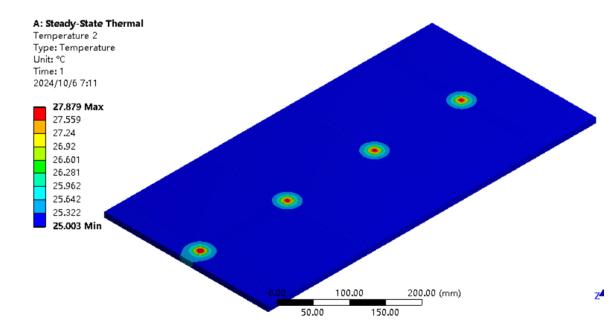
Two GS-HCAL endcap, 360 tons / each

Schematic of one layer

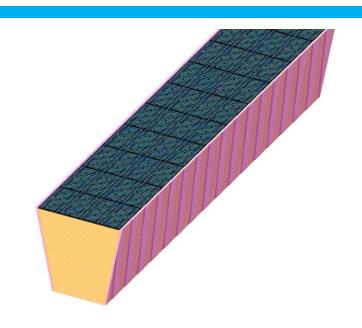

4.2 GS-HCAL Mechanical Design (Endcap)

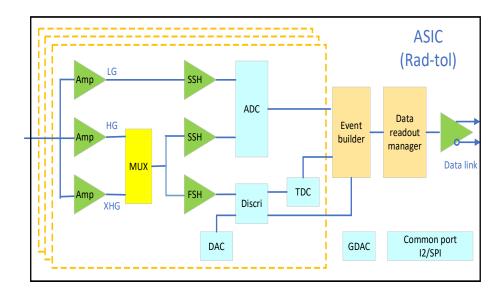


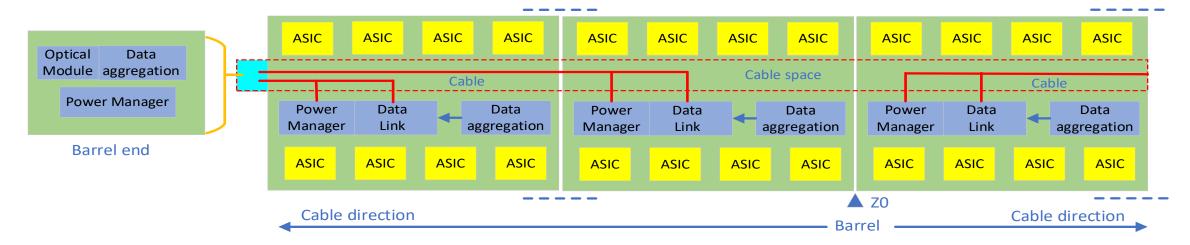
4.3 GS-HCAL Cooling Simulation


> Cooling simulation of 1 active layer module (320mm × 646mm)

- Heat source (chip): 15 mW/ch
- coefficient of heat conduction: 5000W/m² K;
- Inlet water 25°C, environment temperature is 25°C
- Thermal contact resistance: 500W/m²






Temperature difference (GS vs SiPM): 2.8 ^oC

5. GS-HCAL Readout Electronics

- Thickness: 3.2mm
 - PCB 1.2mm
 - ASIC Chip 2mm
- Power: 15 mW/ch
- Aggregation board at the end of barrel

6. HCAL Research Group

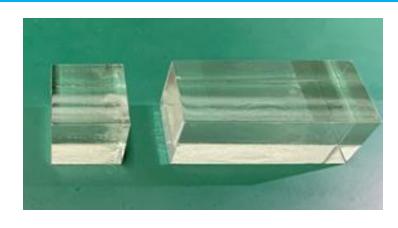
- CEPC-HCAL team:
 - IHEP, USTC, SJTU, XJTU, SCNU, SCU, HEU, ZZU
 - Detector for PS/GS-AHCAL: Staff(9) + Student(~6)
 - **Electronics**: Staff(5)
 - Mechanics: Staff(3)
- The Glass Scintillator Collaboration
 - Institute (13) + Staff (26)+ Student (10)

7. Working Plan and Schedule

-				-	
		2021-2023	2024-2025	2026	2027
	Physics+ Software+ Design+ Mechanics	Design TDR	Optimization calibration	New Design; calibration; beam test	Glass 10mm Steel
The live	Glass Scintillator	R&D 5X5X5 mm ³	R&D 40X40X10 mm ³	10K pieces mass production batch test	Assembly the cell;
, 7	SiPM	Test samples	Performance test, choice	40K pieces batch test	Finish the Module for performance test;
	Electronics	The design of ASIC and FEE, power supply	V1, V2 performance test	V2 mass production batch test	The cosmic ray test; the beam test;

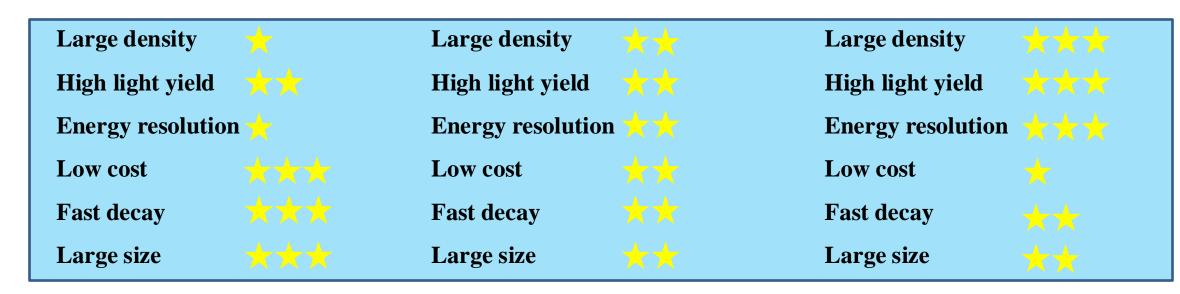
8. Summary

- Overview of three HCAL options and R&D activities in the past decade
- GS-HCAL is selected as a baseline option for CEPC reference detector
 - First design of GS-HCAL: mechanics, cooling and readout electronics
 - Intensive R&D on high quality GS
 - Preliminary performance study with CEPCSW
- More efforts needed to address critical issues for reference detector TDR
 - Optimization of granularity, GS-SiPM coupling, mechanics, cooling, electronics etc.
 - GS-HCAL full simulation and reconstruction for benchmark physics
- Further R&D efforts beyond TDR
 - Developing technique for mass production of high quality GS cost-wise
 - Developing full-scale GS-HCAL prototype with integrated electronics for beam test

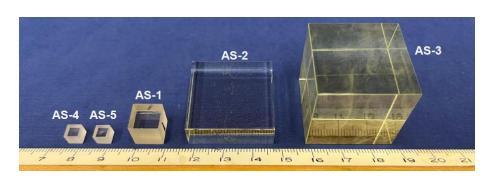


Thanks for your attention!

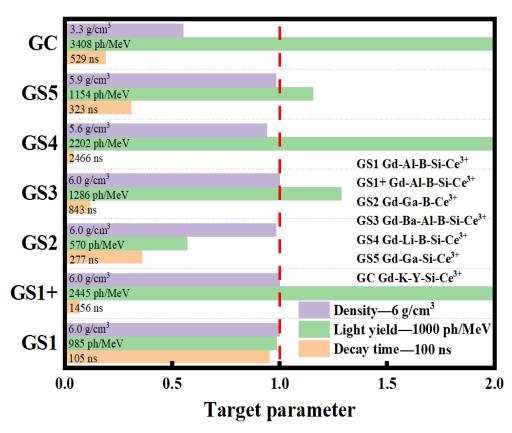
3.3 Comparison of Scintillators

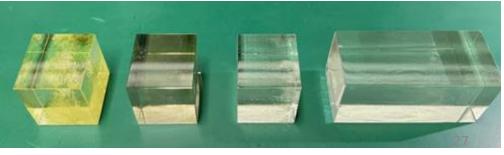

Plastic Scintillator

Glass Scintillator



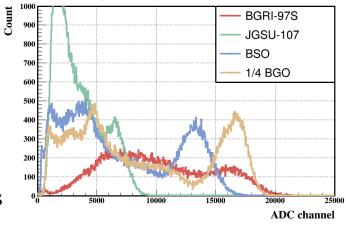
Crystal Scintillator



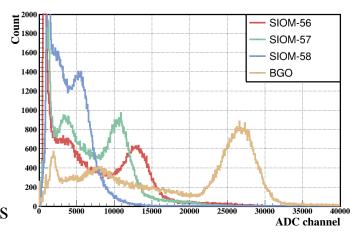

1. GS-HCAL: Sample test

Parameters	Unit	BGO	GS1	GS1+	GS5
Cost		1	0.1 ?		
Density	g/cm ³	7.13	6.0	6.0	5.9
Transmittance	%	82	70	80	80
Refractive Index		2.1	1.74	1.71	1.75
Emission peak	nm	480	400	390	390
Light yield, LY	ph/MeV	8000	985	2445	1154
Energy resolution, ER	%	9.5	30.3	25.8	25.4
Decay time	ns	60, 300	36, 105	101,1456	90, 300

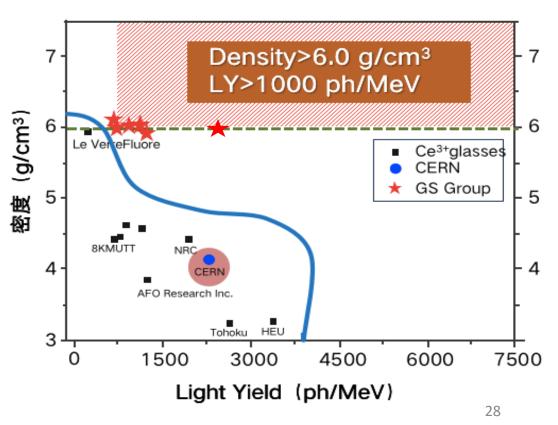
The samples (called AS glass) post to EIC for the test.



1. GS-HCAL: Sample test


Small-Size Sample

- **Size**=5*5*5 mm³
- Density~6.0 g/cm³
- LY~2445 ph/MeV
- ER=25.8%
- LO in 1μs=1074 ph/MeV
- Decay=**101** (2%), 1456 ns

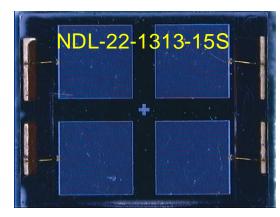


Large-Size Sample

- Size=40*40*10 mm³
- Density=6.0 g/cm³
- **LY~1200 ph/MeV**
- ER=33.0%
- LO in 1μs=607 (51%)
- Decay=117 (3%), 1368 ns

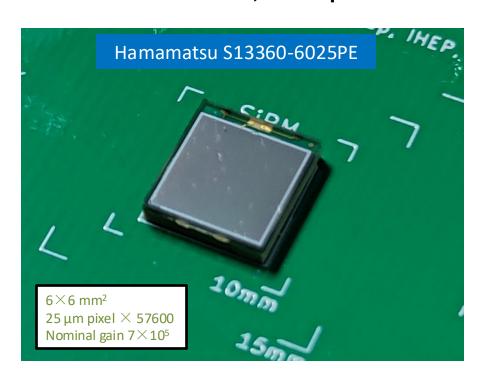
* HPK-SiPM

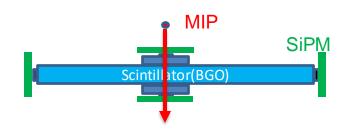
- Low PDE, dark rate and crosstalk
- High breakdown voltage
- Better quality control

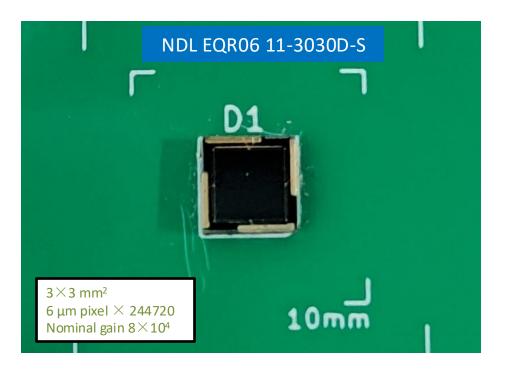


* NDL-SiPM

- High PDE, dark rate and crosstalk
- Low breakdown voltage
- Low price

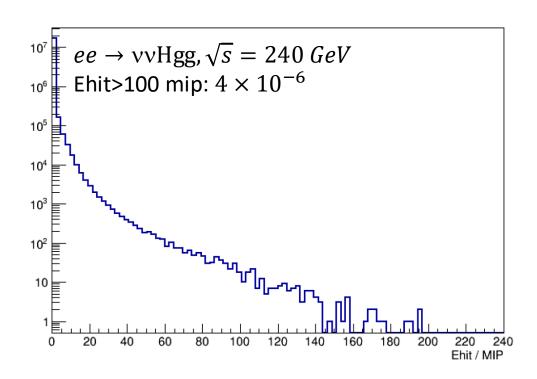


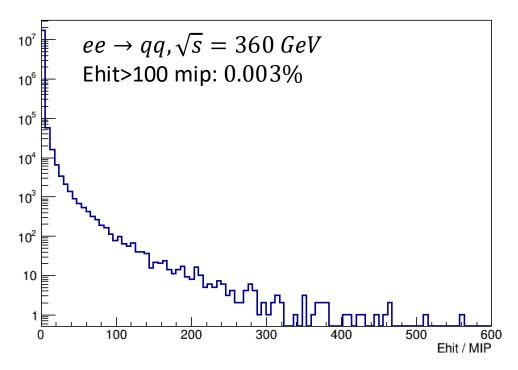

Company	HP	K		NDL
Туре	13360-1325PE	14160-1315PS	14160-3015PS	22-1313-15S
Light output [p.e.]	13	17		20
Crosstalk[%]	1.59	1.17		4.4
Dark Counts [kHz]	120	290	700	550
Breakdown[V]	53	38	38	27.5


SiPM

SiPM Options:

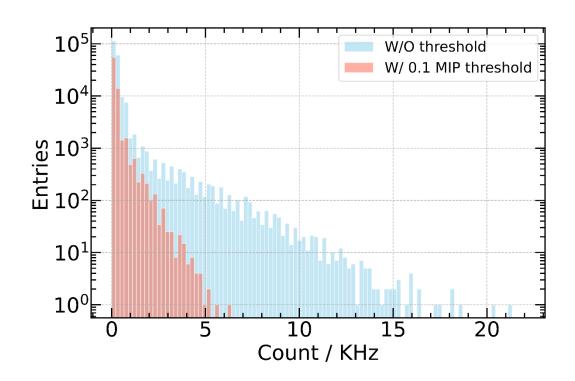
- HPK S13360-6025PE, 57600 pixels
- NDL EQR06 11-3030D-S, 244760 pixels
- HPK S14160-3015PS, 39984 pixels
- HPK S14160-3025PS, 14440 pixels

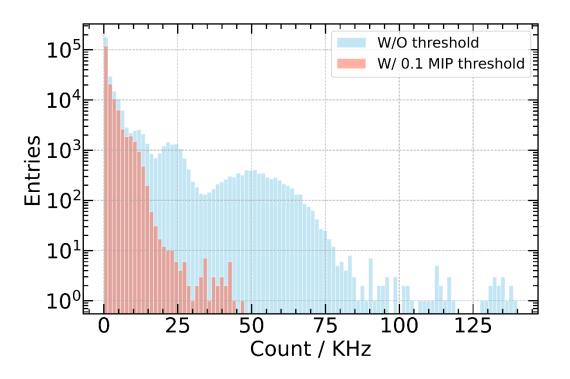




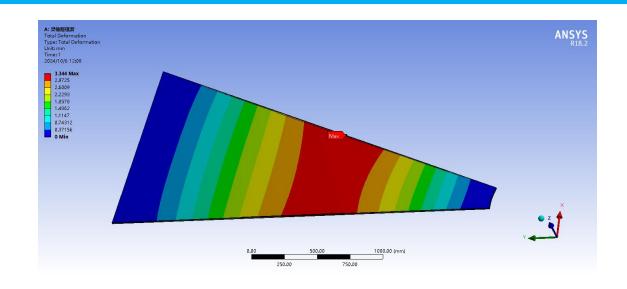
Key parameters to energy resolution

- Dynamic range: 0 ~ 100 MIP can cover >99.99% cases
 - For SiPM: 8000 p.e. can be controlled in linear range (suppose LY ~ 80 p.e./MIP).
 - For electronics: 1~1k can be achieved.
 - Considering the common electronics design for ECAL, HCAL and Muon, HCAL's demands can be covered by ECAL.

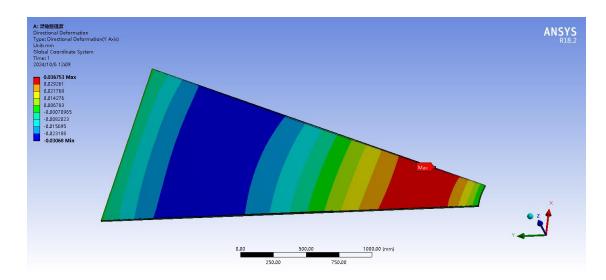

2. Requirement

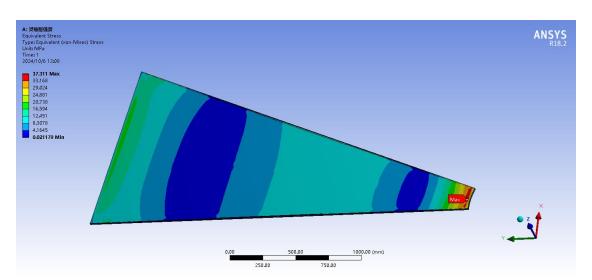

Parameter	Conservative	Ambitious	Remarks
Hadron Energy Resolution	$60\%/\sqrt{E} \oplus 3\%$	$40\%/\sqrt{E}\oplus 5\%$	Jet performance flavor physics
Longitudinal Depth	48 layers, tot	Containment most of jets	
Transverse Granularity	40mm >	H → gg (gluon jets)	
Signal Dynamic Range	1 – 10	0.1 MIP as trigger threshold	
Time Resolution (1-MIP signal)	1	Bunch crossing ID timing hadron performance	
Power Consumption	15 m	O(5.6M) channels	

4.4 GS-HCAL Background Estimation

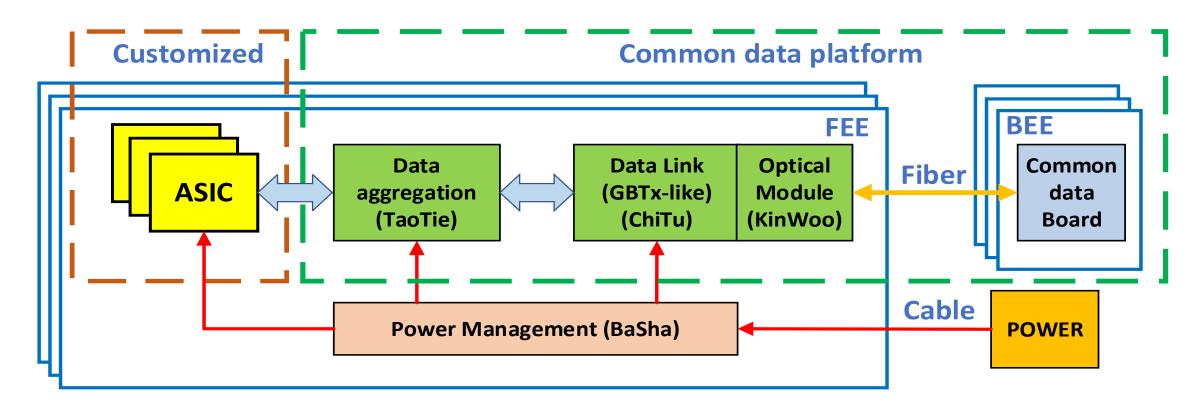

Simulation of beam background processes:

- 50 MW(H), bunch spacing 355 ns, with pair production, single beam processes
- Event rate with 0.1 MIP threshold: barrel < 5 kHz, endcap < 50 kHz

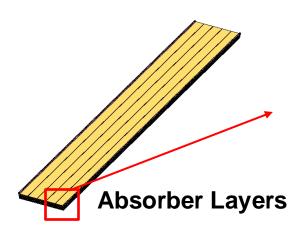


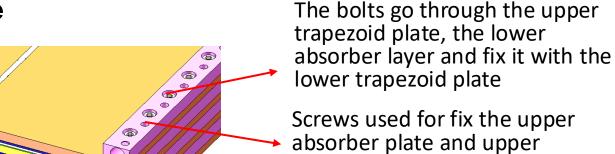


5.2 GS-HCAL Mechanical Design (Endcap)



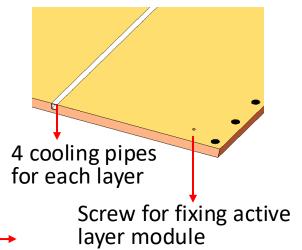
- Max. deformation in one active layer: 3mm (due to gravity)
- Horizontal extrusion deformation: 0.037mm
- ➤ Max. principal stress at narrow end: 37MPa

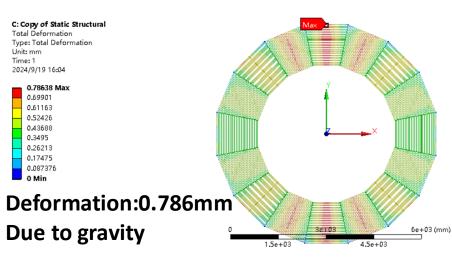

6. GS-HCAL Readout Electronics

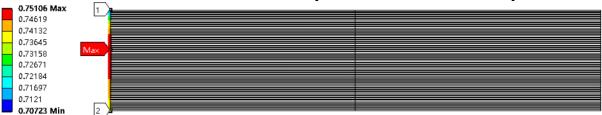


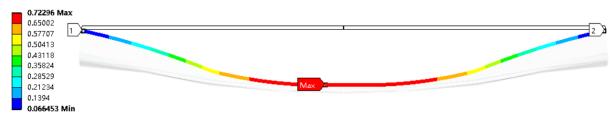
- Energy Measurement: ASIC for ECAL & HCAL
- Data transmission: common data platform (see electronics report)
- Trigger mode: FEE trigger-less readout

5.1 GS-HCAL Mechanical Design (Barrel)

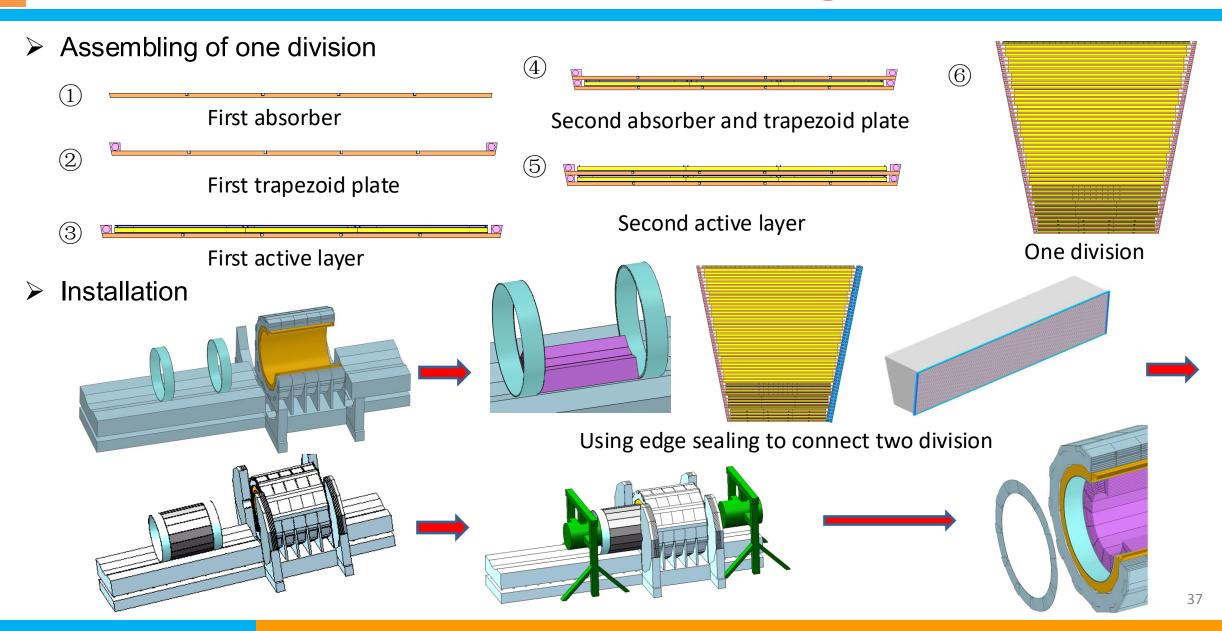

Absorber layer structure


Screws used for fix the edge sealing


trapezoid plate


module (320mm × 646mm)

Simulation of absorber structure



Deformation difference between 48 layers is lower than 0.05mm

3. GS-HCAL Mechanical Design

7. Cost Estimation: GS-HCAL vs PS-HCAL

Parameter Name	Barrel	Endcaps (x2)	GS-HCAL	PS-HCAL
Inner Radius for HCAL	2140 mm	400 mm	-	-
Length for barrel or Radius	6460 mm	3455 mm (R _{out})	-	-
Longitudinal Depth	1315 n	$nm (6\lambda_I)$	-	-
Glass Scintillator (\$1/cc) Granularity 4cm x 4cm	54.6 m ³	35.6 m ³	GS (90.2 m ³) \$1/cc, \$90.2M	Plastic Scintillator \$1.5/ch, \$8.4M
Material Volume (m³) Fe (tons, \$8/kg)	75.3 m ³	49.2 m ³	124.5 983.6 t <mark>(\$7.9M)</mark>	188.3 m ³ 1488 t (\$11.9M)
Readout channels	3.4M (5450m ²)	2.2M (3552m ²)	5.6M	5.6M
Power (15mW/ch)	51 kW	33 kW	84 kW	84 kW
SiPM (\$1.5/ch)	\$5.1M	\$3.3M	\$33.6M	\$8.4M
Electronics: \$2.5/ch	\$8.5M	\$5.5M	\$14M	\$14M
Total			\$145.7M (x7) ~1020M RMB	\$42.7M (x7) ~ 299M RMB

7. Cost Estimation: RPC-SDHCAL

Parameter Name	Barrel	Endcaps (x2)	Sum		
Inner Radius for HCAL	2140 mm	400 mm	NA		
Length for barrel; Outer radius for endcap*	6460 mm	3455 mm	NA		
Longitudinal Depth	$6λ_I$ (Thickness of	depends on each option)	NA		
RPC + Casette (\$1425/m²) Granularity 2cm x 2cm	5450 m ²	3552 m ²	9002 m² (\$12.9M)		
Material Volume (m³) Fe (tons, \$8/kg)	86 m ³	56 m ³	142 m³ 1122 t <mark>(\$9M)</mark>		
Readout channels	13.6M (5450m²)	8.9M (3552m²)	22.5M		
Power (kW) 1.4mW/ch, 5.4W/DIF/m²	48.5 kW	31.6 kW	80.1 kW		
Electronics: \$1/ch	\$13.6M	\$8.9M	\$22.5M		
Total	\$44.4M (x 7) ~ 311M (RMB)				