Differential cross section measurement of the Higgs boson decaying into two taus at the ATLAS experiment

Antonio De Maria CLHCP 2024

SR

Higgs boson production modes

 * predicted cross section for m_{H}{=}125 GeV at $\sqrt{s}{=}13$ TeV

A. De Maria

Higgs boson couplings

 $\bullet\,$ The SM Higgs boson couplings can be summarised in the Lagrangian

$$\mathcal{L} = -\frac{m_f}{v} f \bar{f} H + \frac{m_H^2}{2v} H^3 + \frac{m_H^2}{8v^2} H^4 + \delta_V V_\mu V^\mu \left(\frac{2m_V^2}{v} H + \frac{m_V^2}{v^2} H^2\right)$$

- Coupling with SM particles proportional to:
 - m_V^2 for bosons \rightarrow main couplings with W and Z
 - m_F for fermions \rightarrow main couplings with third generation of quark and leptons (b and τ)
- Coupling as function of particle mass in good agreement with SM prediction over 3 order of magnitude

Higgs boson decay branching ratios

- Larger branching ratio (BR) for $H \rightarrow b\bar{b}, H \rightarrow WW^*$ and $H \rightarrow \tau\tau$, however poor mass resolution and larger background contamination
- *H* → *γγ* and *H* → *ZZ**(→ 4*I*) have lower BR, but high mass resolution; can be used for precision measurements
- $H \rightarrow Z\gamma$ and $H \rightarrow \mu\mu$ becoming accessible thanks to large dataset and the good detector performance

H ightarrow au au measurements - arxiv-2407.16320

- Considering all main Higgs boson production modes, with dedicated selection to enhance each mode
- Considering all di- τ final states, $\tau_{lep}\tau_{lep}/\tau_{lep}\tau_{had}/\tau_{had}\tau_{had}$
- Measure cross section per production mode, cross section in the Simplified Template Cross Section (STXS) framework and differential cross section in VBF phase space
- Results extracted from likelihood fits on the di-τ invariant mass estimated using Missing Mass Calculator (MMC) Link

Tau Reconstruction/Identification

- Attempt to reconstruct only hadronically decaying taus
- Tau candidates are seeded by anti- k_t LC jets with a distance parameter R = 0.4
- Track selected in the *core* $(0 < \Delta R < 0.2)$ and *isolation* $(0.2 < \Delta R < 0.4)$ regions around the tau candidate axis.
- Identification algorithm based on RNN to reject background from q/g jets
 - trained using track and cluster information

Background estimation

- Mostly based on simulation except for misidentified τ, which is data-driven
- Z $\rightarrow \tau \tau$ (70-90%): validated and normalised using *embedded* Z \rightarrow *II* CRs
- Misidentified τ (5-20 %): estimated using Matrix Method ($\tau_{lep}\tau_{lep}$) and Fake Factor Method ($\tau_{lep}\tau_{had}$ and $\tau_{had}\tau_{had}$)
- Top (< 5% but 35-50% in ttH SRs): validated in Top CRs
- Other backgrounds: small, evaluated through simulation

Kinematic Embedding (JHEP 08 (2022) 175

- Select $Z{\rightarrow}$ // + jets events in CRs defined orthogonal to the signal region
- Unfold $Z \rightarrow II$ events taking into account lepton reconstruction efficiencies
- Mimic Z $\rightarrow \tau \tau$ events through kinematic parameterisation of τ decay products

• Procedure validated in different kinematic phase spaces

Cross section per production mode

- Most precise VBF cross section measurement per-single channel in the ATLAS experiment
- ggH cross section uncertainty limited by syst. uncertainties, mostly from theoretical uncertainty
- ttH and V(had)H cross section measurement limited by statistics

Production mode	ggF	ttH	VBF	VH
Best-fit value	0.94	0.77	0.93	0.91
Total uncertainty	± 0.30	± 0.97	± 0.16	± 0.62
Statistical uncertainty	±0.15	±0.82	±0.12	±0.52
Total systematic uncertainty	± 0.26	± 0.51	± 0.11	± 0.34
Samples size	±0.09	±0.32	±0.03	±0.25
Theoretical uncertainty in signal	±0.19	± 0.14	±0.10	±0.13
Jet and $E_{\rm T}^{\rm miss}$	±0.12	±0.14	±0.03	± 0.11
Hadronic τ -lepton decays	± 0.05	±0.09	± 0.01	± 0.04
Misidentified τ -lepton background	± 0.05	±0.05	± 0.02	± 0.11
Luminosity	± 0.01	± 0.01	± 0.01	± 0.02
Theoretical uncertainty in top-quark processes	± 0.01	±0.30	-	± 0.02
Theoretical uncertainty in Z + jets processes	±0.03	±0.07	-	± 0.02
Flavour tagging	± 0.02	±0.05	± 0.01	± 0.01
Electrons and muons	± 0.02	± 0.01	± 0.01	± 0.02

A. De Maria

Simplified template cross section results

- Measurement performed in 18 different kinematic phase spaces
- No significant deviation from SM
- For VBF, first (most precise) measurement for p_T(H) > (<) 200 GeV and m_{jj} > 1.5 TeV
- Found large anti-correlation between VBF and ggH in-VBF phase space cross sections
- ttH measurement used to derive upper limits on STXS ttH bins

Differential cross section measurement

- Measurement performed in dedicated fiducial phase space for VBF production, minimising ggH contamination
- Considering several variables for unfolding, like $p_T(H)$ /leading jet p_T and $\Delta \phi_{jj}^{\text{signed}}$ (sensitive to Higgs Charge-Parity (CP) symmetry)

Differential cross section Results

Data, total unc

Data stat. unc

MadGraph5+Pythia8

Powheq+Pvthia8

agH+VH+ttH

Powheg+Herwig7

- Per-bin precision typically within 25-50%, limited by statistical uncertainties in most of the bins
- Results compared with predictions from the PoPy8, PoHer7 and MadPy8 generators; found no significant deviations from SM predictions

ل^{ofid}/dp_T(j₀) [fb/GeV]

0.08

0.07 0.06

0.05

0.04 0.03

0.02

0.01

1.5Ē

ATI AS

√s=13 TeV, 140 fb

A. De Maria

Effective Field Theory interpretation

- Results from differential analysis are interpreted in the SMEFT formalism
- For VBF, 3 CP-even and 3 CP-odd operators are investigated for the H-V interaction
- Measure the Wilson coefficient (*strength*) for each operator, setting BSM physics scale Λ = 1 TeV

	CP-even			
Operator $O_i^{(d=6)}$	$H^{\dagger}HW^{n}_{\mu u}W^{n\mu u}$	$H^{\dagger}HB_{\mu u}B^{\mu u}$	$H^{\dagger} \tau^n H W^n_{\mu u} B^{\mu u}$	
Wilson coefficient	CHW	CHB	CHWB	
	CP-odd			
Operator $O_i^{(d=6)}$	$H^{\dagger}H\tilde{W}^{n}_{\mu u}W^{n\mu u}$	$H^{\dagger}H\tilde{B}_{\mu u}B^{\mu u}$	$H^{\dagger} \tau^n H \tilde{W}^n_{\mu u} B^{\mu u}$	
Wilson coefficient	$c_{H\tilde{W}}$	$c_{H\tilde{B}}$	$c_{H\tilde{W}B}$	

EFT interpretation results

- Measuring one Wilson coefficient while fixing all others to 0 (1-dim), as well as 2-dim measurements
- Most stringent observed results for 1-dim are $c_{HW}\epsilon[-1.85, +0.57]$ and $c_{H\tilde{W}}\epsilon[-0.31, +0.88]$ in the linear scenario
- Tightest constraint to date for $c_{H\tilde{W}}$
- No evidence of BSM physics

A. De Maria

- $H \rightarrow \tau \tau$ is currently the best decay at LHC to study Higgs-Yukawa coupling
- Considering all main Higgs boson production modes and all di-au final states
- Most precise VBF cross section measurement per-single channel in ATLAS
- cross section measured in 18 different *bins* within the STXS framework
- Performed also differential cross section measurement in VBF with a per-bin precision mostly within 25-50%
- EFT interpretation of the differential results led to tightest constraint to date for $c_{H\tilde{W}}$ for $\Lambda=1~\text{TeV}$

Thanks For Your Attention

Backup

Misidentified au background (JHEP 08 (2022) 175

- Aim to estimate jet mis-identified as τ (light leptons) in $\tau_{lep}\tau_{had}$ and $\tau_{had}\tau_{had}$ $(\tau_{lep}\tau_{lep})$ final states
- Validated in dedicated CRs and residual mis-modelling assigned as systematic uncertainty

18 / 18