

Electroweak corrections to double Higgs production at the LHC

Huan-Yu Bi
Center for High Energy Physics, Peking University

Nov. 14th, 2024 The 10th China LHC Physics Conference

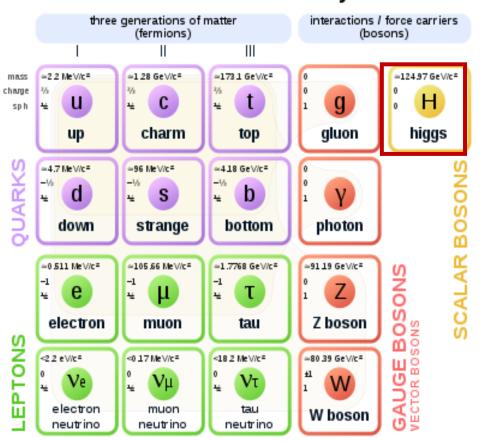
Based on: Phys.Rev.Lett. 132 (2024), 231802 In cooperation with: Li-Hong Huang, Rui-Jun Huang, Yan-Qing Ma, Huai-Min Yu

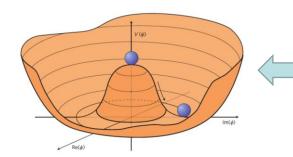
Introduction

- Introduction
- Calculation strategy
- Results
- Summary

Introduction to Higgs Boson

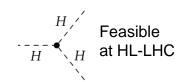
Standard Model of Elementary Particles

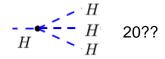



Figure taken from Wikipedia

- Discovery of Higgs boson(2012,LHC): last fundamental particle in SM.
- Experiments at the ALTAS and CMS: agrees with result SM predicted.
- Problems not solved: electroweak symmetry breaking, Higgs coupling to SM particles/DM, hierarchy problem... Require new physics beyond SM.
- One promising way probing new physics: precision measurements of the properties of H (for e.g. Higgs self coupling).

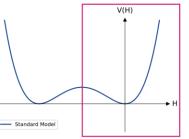
Higgs self coupling

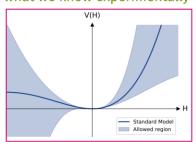




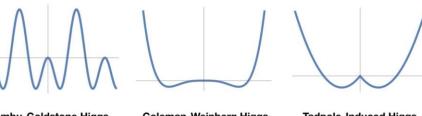
Plot taken from Ellis:1312.5672

 $V(H) = \frac{m_H^2}{2}H^2 + \lambda_{HHH}^{SM}vH^3 + \frac{1}{4}\lambda_{HHHH}^{SM}H^4$


$$S + \frac{1}{4} \lambda_{HHHH}^{SM} I$$



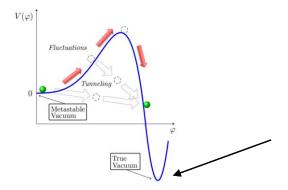
What the SM predicts



what we know experimentally

[using current ATLAS limits @ 95% CL]

New physics



Agrawal et al: 1907.02078

Nambu-Goldstone Higgs Coleman-Weinberg Higgs

Tadpole-Induced Higgs

Plot taken from Moser: Higgs 2023

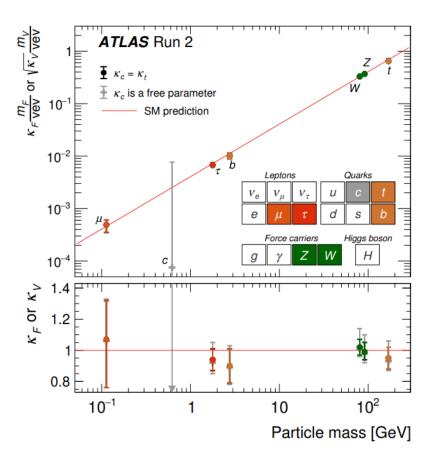
What would Universe be like in such vacuum?

big consequences for the Universe

Markkanen et al: 1809,06923

4/22

Measurements of Higgs boson coupling



$\mathfrak{G}_{Hf\bar{f}}, g_{HVV}$

can be measured with high precision.

$\lambda_{HHH}, \lambda_{HHHH}$

- require multi-Higgs production, small cross sections.
- Mixed with complicated background.

ALTAS:2207.00092

Run 2 $\delta_{\mu}^{\text{tot}}$ [%]	HL-LHC $\delta_{\mu}^{\text{tot}}$ (δ_{μ}^{th}) [%]	
$-1.0 < \lambda/\lambda_{\text{SM}} < 6.6$	$0.5 < \lambda/\lambda_{\text{SM}} < 1.5$	Jones: LHEP 2023 (2023) 442

Status of QCD corrections

NLO QCD

- NLO QCD with full top-quark mass dependence, Borowka et al:1604.06447
- NLO QCD matched to parton shower, Heinrich et al:1703.09252
- ➤ NLO QCD with soft-gluon resummation, Ferrera et al: 1609.01691

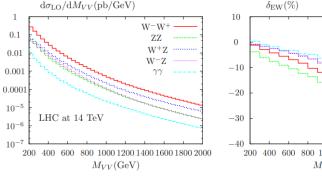
NNLO QCD

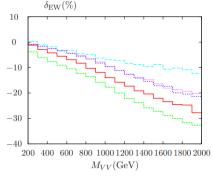
- NNLO QCD in heavy-top limit (HTL) approximation, Florian et al:1305.5206
- NNLO in HTL+ NLO with full top-quark mass dependence, Florian et al:2106.14050
- NNLO QCD in HTL matched to parton shower, Alioli et al: 2212.10489

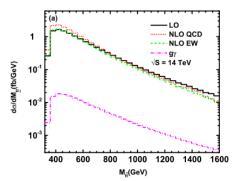
NNNLO QCD

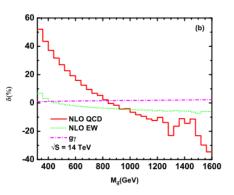
- NNNLO QCD in HTL, Chen et al:1909.06808
- NNNLO in HTL include the top-quark mass effects, Chen et al:1912.13001
- NNNLO in HTL + NLO with full top-quark mass dependence + soft-gluon resummation, Ajjath et al:2209.03914

Process	Theory	σ_{th} [pb]	δ_{th} [%]	δ_{PDF} [%]	δ_{α_s} [%]
ggF HH	N ³ LO _{HTL}	0.03105	+2.2 -5.0	±2.1	±2.1
881 1111	NLO_{QCD}	0.05105	-5.0		

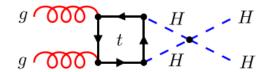

Importance of EW corrections (B) 沙点大学







- Unknown size of EW corrections
 - Biggest uncertainties from theoretical side
- NLO EW corrections are notably significant at high energy region
 - Sudakov enhancement: $\alpha \sim 0.7\% \rightarrow \frac{\alpha}{4\pi \sin \theta_w^2} \log^2(\frac{s}{m_Z^2})|_{s=2000^2} \sim 10\% \sim \alpha_s$



A Bierweiler et al:1305.5402

Zhang et al: 1407.1110

- Higgs quartic coupling only emerges at the NLO EW level
 - Constrained on λ_{HHHH}^{SM} indirectly from NLO EW correction

Status of NLO EW corrections

Results in literature

- ➤ Higgs self-coupling corrections, Borowka et al: 1811.12366
- > Two-loop box diagrams, Davies et al:2207.02587
- Top-quark Yukawa corrections, Muhlleitner et al:2207.02524
- ➤ HTL and Neglecting diagrams with massless fermion loops, Davies et al: 2308.01355
- Top-Yukawa and Higgs self-coupling contributions: Heinrich et al:2407.04653
- Higgs self-coupling contributions+QCD corrections: Li et al:2407.14716

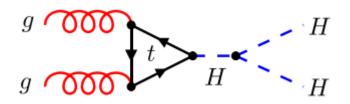
Our results

All two-loop diagrams and keeps mass effects, Bi et al:2311.16963

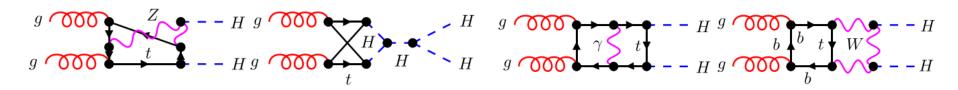
focal point in the 2015, 2017, 2019, and 2021 Les Houches precision wish lists

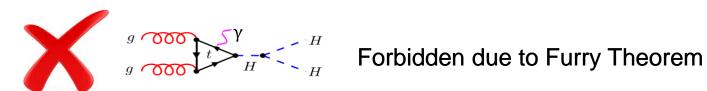
process	known	desired
$pp \to HH$	$N^3LO_{HTL} \otimes NLO_{QCD}$	$ m NLO_{EW}$

Calculation strategy


- Introduction
- Calculation strategy
- Results
- Summary

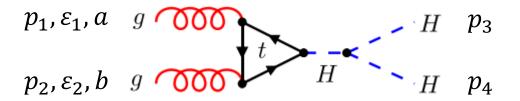
EW corrections to double H production at the LHC




LO diagrams:

Typical Feynman diagrams at LO

NLO diagrams:



Amplitudes of $gg \rightarrow HH$

Amplitude Structure:

$$\mathcal{M}_{ab} = \delta_{ab} \epsilon_1^{\mu} \epsilon_2^{\nu} \, \mathcal{M}_{\mu\nu}$$
$$\mathcal{M}^{\mu\nu} = F_1 T_1^{\mu\nu} + F_2 T_2^{\mu\nu} + \Delta_0^{\mu\nu} + \Delta_5^{\mu\nu}$$

- General decomposition at any number of loop.
- \triangleright $\Delta_0^{\mu\nu}$: depends on p_1^{μ} or p_2^{ν} . No contribution at the matrix element level.
- \succ $\Delta_5^{\mu\nu}$: depends on Levi-Civita tensor. No contribution at the matrix element squared level at NLO EW.
- \triangleright F₁, F₂: Form factors.

Calculation of form factors

Form factors can be expressed as:

$$F_{1,2}(x) = \sum_{i} d_{i}(x) FI_{i}(x) \qquad x: \hat{s} = (p_{1} + p_{2})^{2}, \\ \hat{t} = (p_{1} - p_{3})^{2}.$$

• Reduce $FI_i(\hat{s})$ to master integrals (IBP):

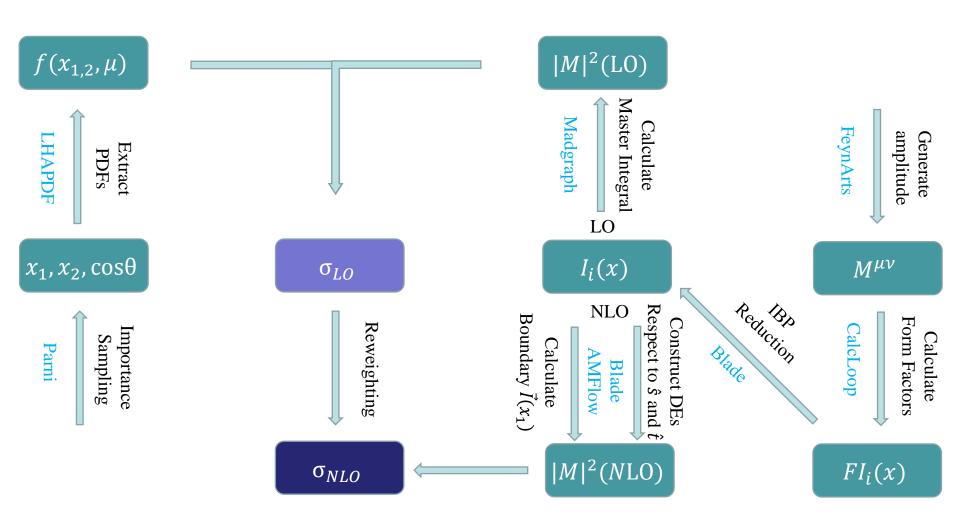
$${FI_i(x)} = {\sum_k c_{i,k}(x)I_k(x)}$$

- \rightarrow $d_i(x)$ and $c_{i,k}(x)$ are analytic.
- \triangleright A huge number of I_k need to be calculated.
- \triangleright The number of $\{I_k\} < \{FI_i\}$.
- \triangleright The number of I_k is finite.
- \triangleright We can construct the different equations for I_k and solve them. 12/22

Different equations for I_k

Construct differential equations (DEs): $\vec{I}(x) = \{I_1(x), I_2(x) ... I_N(x)\}$

$$\frac{dI_{m}(x)}{dx} = \sum_{n} A_{m,n}(x) I'_{n}(x) \qquad \text{IBP} \qquad \frac{d\vec{I}(x)}{dx} = A(x)\vec{I}(x)$$


- $\vec{I}(x)$ can be expanded as a power expansion near x_0 ,
 - ightharpoonup regular: $S = \{0\}, k_0 = 0$,
 - \triangleright singular: $S = \{-2\epsilon, 1 + \epsilon ...\}, k_{\mu} \ge 0,$

$$I_i(x) = \sum_{\mu \in S} (x - x_0)^{\mu} \sum_{k=0}^{k_{\mu}} \log(x - x_0)^k \sum_{n=0}^{m} c_{i,\mu,k,n} (x - x_0)^n$$

- $c_{i,\mu,k,n}$ can be determined once any boundary $\vec{l}(x_1)$ are provided.
- $\vec{I}(x_1)$ can be determined by AMFlow Liu et al:2201.11669
- Taking adequate expansion order m, we can eventually achieve predictions with high precision.
- $\vec{I}(x)$ can be evaluated at any points of x efficiently.

Calculation flowchart

Calculation strategy

- Introduction
- Calculation strategy
- Results
- Summary

Input Paramaters

$$m_t = 172.69 \text{ GeV}$$
PDG2022

$$\frac{m_H^2}{m_t^2} = \frac{12}{23}, \ \frac{m_Z^2}{m_t^2} = \frac{23}{83}, \ \frac{m_W^2}{m_t^2} = \frac{14}{65},$$

$$G_{\mu} = 1.166378 \times 10^{-5} \text{ GeV}^{-2}$$

$$\alpha = \frac{\sqrt{2}}{\pi} G_{\mu} m_W^2 \left(1 - \frac{m_W^2}{m_Z^2} \right)$$

CKM=1

PDFs: NNPDF31_nlo_as_0118

on-shell renormalization: masses and fields; G_{μ} -scheme: Electromagnetic coupling Denner et al:1912.06823

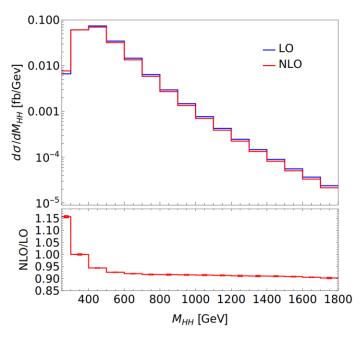
D=4-2
$$\varepsilon$$
, $\varepsilon = \pm 1/1000$

$$\sigma(\varepsilon) = a_0 + a_1 \varepsilon + a_3 \varepsilon^2 + \cdots$$

$$\sigma(0) \sim \frac{\sigma(+1/1000) + \sigma(-1/1000)}{2} = a_0 + a_3 \varepsilon^2 + \dots$$

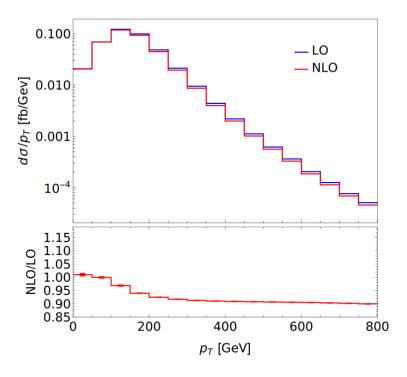
Results: Total cross sections

μ	$M_{HH}/2$	$\sqrt{p_T^2 + m_H^2}$	m_H
LO	19.96(6)	21.11(7)	25.09(8)
NLO	19.12(6)	20.21(6)	23.94(8)
$\mathcal{K} ext{-factor}$	0.958(1)	0.957(1)	0.954(1)


LO and NLO EW corrected integrated cross sections (in fb) 14 TeV LHC.

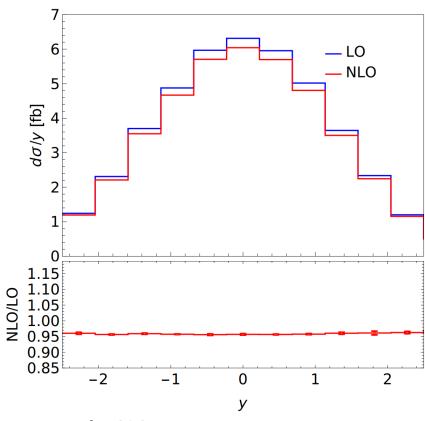
- Differences with varying scale choices are around 20%.
 - Huge scale uncertainties. Can be reduced by including QCD corrections.
- K-factor is insensitive to the scale choice.
 - EW corrections beyond NLO are on the order of a few thousandths.
- The statistical uncertainty for the K-factor is smaller than that of $\sigma_{LO,NLO}$.
 - K-factor can get a controllable error with far fewer events.

Results: Differential cross sections



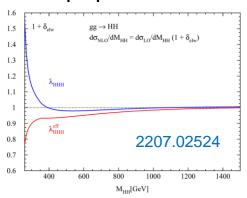
- Big positive corrections at the HH threshold.
 - Final Enhancement due to $\sigma_{LO}(\sqrt{\hat{s}} = 2m_H) \sim 0$.
- -10% correction at high energy region.
 - EW Sudakov effects.
- Tiny cross section at high energy region
 - > Gluon PDFs are highly suppressed at high energy region.

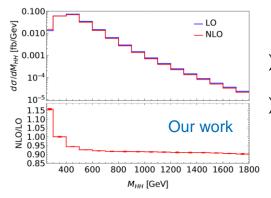
Results: Differential cross sections



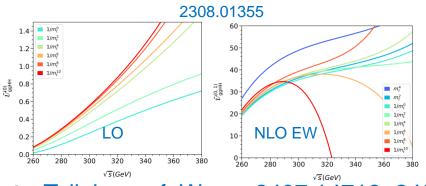
- Positive corrections at the beginning of the spectrum.
 - ightharpoonup The events in this region are mixed with high $\sqrt{\hat{s}}$ and low $\sqrt{\hat{s}}$.
- -10% correction at high energy region.
 - EW Sudakov effects.

Results: Differential cross sections




- Flat corrections at around -4%.
 - Similar to the total cross section.

Results: comparisons with other publication


Top-quark Yukawa corrections, 2207.02524

- Similar Enhancement at Threshold
- Differences appear at the tail

HTL and neglecting diagrams with massless fermion loops, 2308.01355

- HTL doesn't show a convergent behaviour.
- At $\sqrt{\hat{s}}$ =260 GeV, our full results revel the correction is 34% and 57% once neglect the diagram contains only mass less fermion
- Talk by prof. Wang, 2407.14716, 2407.04653
 - ~+1% corrections when only considering Top-Yukawa corrections and Higgs self coupling corrections.
 - Our full results revel the correction is ~-4%.

21/22

Summary

- Higgs self coupling is important to identify the Higgs potential and to probe new physics.
- The study of $\sigma(HH)$ is the best way to extract the Higgs self coupling.
- Our full calculation includes all the diagrams and all the mass effects.
- -4% EW corrections at total cross section level.
- For dimensionful observables, EW corrections reach up to +15% at the beginning of the spectrum and −10% in the tail.
- Our results suggest that the remained uncertainties from theoretical side is overall about few percent and it's precise enough for the measurements at the HL-HLC.