

Experimental Road to a Charming Family of Tetraquarks...and Beyond

Feng Zhu, Gerry Bauer, Kai Yi

Based on Chin. Phys. Lett. 41 111201

The 10th China LHC Physics Conference 2024.11.14 Qingdao

Given Step to All-Heavy Exotic Mesons

- Discovery of the X(3872) meson and charged charmonium-like states
- \Box J/ $\psi \phi$ mass spectrum
- **Di-Charmonium Channel**
- □ m² vs resonance index (Regge trajectory)
- **Gamma** Summary and Ongoing

just 1 and 8.

 $c \overline{c}$

0 Ō

Discovery of the X(3872) meson

Fig1: four-quark and five-quark states were theorized as exotic hadrons.

Fig2: X(3872) has been observed by Belle in the J/ $\psi\pi^+\pi^-$ channel (a), and then confirmed by CDF (b), DØ (c) and BABAR (d).

- In 2003, Belle reported a peak in the J/ $\psi\pi^+\pi^-$ channel, which confirmed by CDF, DØ and BABAR.
- However, its mass differs from traditional hadron model predictions, sparking debate over the internal structure of X(3872).

Discovery of charged charmonium-like states

Fig1: The $Z_c(4430)^+$ in the M [$\psi(2S)\pi^+$] distribution from Belle.

 $c \overline{c}$

00

Fig2: The J/ $\psi\pi^{+}\pi^{-}$ spectrum from BABAR showing the charmonium-like Y(4260) (a). The J/ $\psi\pi^{\pm}$ spectrum from BESIII (b), and Belle (c), showing the Z_c(3900)⁺ peaks.

- Charmonium-like states must be neutral, so a charged charmonium-like states must be exotic, but it is not easy to find it.
- Belle first observed the charged $Z_c(4430)^+$ in 2008, later confirmed by LHCb in 2014 with precise measurements.
- In 2013, BESIII and Belle detected the $Z_c(3900)^+$ in $e^+ e^- \rightarrow J/\psi \pi^+ \pi^-$ data at the Y(4260) mass.

Pentaquarks

Fig1: In 2015 analysis with 3 fb⁻¹ (left), two structures were observed. In 2019 analysis with 6 fb⁻¹ (right), the $P_c(4450)$ + was actually resolved into two overlapping narrow peaks and a new narrow state was also seen.

Fig2: Two pentaquark candidates containing a strange quark.

Step to All-Heavy Exotic Mesons

An Intermediate Step to All-Heavy Exotic Mesons

Fig1: Illustration of the scale of particle masses. The hadrons are shown with volumes proportional to their masses

V E :	Luminosity	Process and yield	Mass~(MeV)	Width (MeV)	Signf.[$*\sigma$
rear Experiment		$B \to J/\psi \phi K$			
2009 CDF [114]	$2.7{\rm fb}^{-1}$	58 ± 10	$4143.0 \pm 2.9 \pm 1.2$	$11.7^{+8.3}_{-5.0} \pm 3.7$	3.8
2011 CDF [115,116]	$6.0{\rm fb}^{-1}$	115 ± 12	$4143.4^{+2.9}_{-3.0} \pm 0.6 \\ 4274.4^{+8.4}_{-6.7} \pm 1.9$	$\frac{15.3^{+10.4}_{-6.1} \pm 2.5}{32.3^{+21.9}_{-15.3} \pm 7.6}$	$5.0 \\ 3.1$
2012 LHCb [117]	$0.37{\rm fb}^{-1}$	346 ± 20	4143.0 fixed	15.3 fixed	
2013 CMS [118]	$5.2\mathrm{fb}^{-1}$	2480 ± 160	$4148.0 \pm 2.4 \pm 6.3$	$28^{+15}_{-11} \pm 19$	5.0
2013 D0 [119]	$10.4{\rm fb}^{-1}$	215 ± 37	$4159.0 \pm 4.3 \pm 6.6$	$19.9 \pm 12.6^{+1.0}_{-8.0}$	3.1
2014 BABAR [120]	$422.5{\rm fb}^{-1}$	189 ± 14	4143.4 fixed	15.3 fixed	1.6
2014 BESIII [121]		$e^+e^- ightarrow \gamma \phi J/\psi$			
2015 D0 [122]	$10.4{\rm fb}^{-1}$	$p\bar{p} \rightarrow J/\psi\phi + anything$	$4152.5 \pm 1.7^{+6.2}_{-5.4}$	$16.3 \pm 5.6 \pm 11.4$	4.7(5.7)
2016 LHCb [123]	$3{\rm fb}^{-1}$	4289 ± 151	$4146.5 \pm 4.5^{+4.6}_{-2.8}$	$83 \pm 21^{+21}_{-14}$	8.4
			$4273.3 \pm 8.3^{+17.2}_{-3.6}$	$56 \pm 11^{+8}_{-11}$	6.0
			$4506 \pm 11^{+12}_{-15}$	$92\pm^{+21}_{-20}$	6.1
			$4704 \pm 10^{+14}_{-2}$	$120 \pm 31^{+42}_{-33}$	5.6
2021 LHCb [124]	$9{ m fb}^{-1}$	24220 ± 170	$4118 \pm 11^{+19}_{-36}$	$162 \pm 21^{+24}_{-49}$	13(16)
			$4146 \pm 18 \pm 33$	$135 \pm 28^{+59}_{-30}$	4.8(8.7)
			$4294 \pm 4^{+3}_{-6}$	$53\pm5\pm5$	18(18)
			$4474\pm3\pm3$	$77 \pm 6^{+10}_{-8}$	20(20)
			$4626 \pm 16^{+18}_{-110}$	$174 \pm 27^{+134}_{-73}$	5.5(5.7)
			$4684 \pm 7^{+13}_{-16}$	$126 \pm 15^{+36}_{-41}$	15(15)
			$4694 \pm 4^{+\bar{1}\bar{6}}_{-3}$	$87 \pm 8^{+16}_{-6}$	17(18)

Fig2: Summary of structures reported in the J/ $\psi\phi$ mass spectrum. The significances are evaluated accounting for total (statistical-only) uncertainties.

Step to All-Heavy Exotic Mesons

6

J/ψφ mass spectrum

Fig1: In 2009, the CDF experiment initially reported evidence for a J/ $\psi\phi$ structure (top). By 2011, with 6.0 fb⁻¹ of data, CDF confirmed the existence of Fig3: LH the Y(4140) and identified a new structure Y(4274) (down). Y(4274),

Fig3: LHCb performed an amplitude analysis in 2016 (left) and 2021 (right) established the Y(4140) and Y(4274), and enriched the list of exotic heavy-quark states.

 $c \overline{c}$

Structures in the Di-Charmonium Channel

Di-Charmonia: Inferences, Speculations, and Explanations?

•LHCb model

•Model I: background+2 auxiliary BWs+ $X(6900) \rightarrow$ poor description of 'dip' around 6.7 GeV

•Model II: a "virtual" X(6700) to interfere with NRSPS background

•ATLAS model

•Model A: interference among three resonances, two for the threshold hump and one for the X(6900).

•Model B: a "virtual" X(6700) to interfere with NRSPS background

•CMS model

- •No-interference model: background + BW1 BW2 BW3
- •Interference model : background + BW1 BW2 BW3 + interference between BWs

Step to All-Heavy Exotic Mesons

- 7.9 σ 4.7 σ X(6600) X(7100) We provisionally adopt them as two physical structures.
- □ All exp see X(6900) and interference dip
 - \rightarrow have the same J^{PC}
 - $\rightarrow X$ triplet to be a "family"

Are there systematic patterns among the triplet's parameters?

Shift attention from individual states to relationships among states

Di-Charmonia: Inferences, Speculations, and Explanations?

	X(6600)	X(6900)	X(7100)
non-Interf. [MeV]	M(BW1)	M(BW2)	M(BW3)
	6652 ± 10	6927 ± 9	7287 ⁺²⁰ ₋₁₈
Interf. [MeV]	M(BW1)	M(BW2)	M(BW3)
	6638^{+43}_{-38}	6847^{+44}_{-28}	7134 ⁺⁴⁸ ₋₂₅

 $\Delta m_i(Y) = m[Y(\{i + 1\}S)] - m[Y(iS)],$ $\Delta m_i = m_{i+1} - m_i$ $m_i = 2, 3, 4 \text{ for } X(6600), X(6900), \text{ and } X(7100)$

Fig1: The mass differences between neighboring states as a function of state index.

□ Mass differences are relatively large

• Larger than is generally characteristic of spin or orbital mass splittings

□ X mass splittings are roughly similar to those for 2S–4S Y's.

X triplet to be a family of radial excitations

11.14, 2024

(\approx linear regime of confining potential)

Di-Charmonia: Inferences, Speculations, and Explanations?

Nucl. Phys. B. 966:115393, 2021

D Based on Regge trajectory: $J = \alpha m^2 + \alpha_0 \cdots (1)$

J : spin or angular momentum of hadron

Or

$$n_r = \beta m^2 + \beta_0 \cdots 2$$

 n_r : radial quantum number

Projected Mass (GeV)					
	No-interf	Interf			
n_r = 1	6.152 ± 0.020	6.359 ± 0.058			
<i>n_r</i> = 5	7.951 ± 0.028	7.598 ± 0.057			

- Origin of threshold excess is unknown: tetraquark? feeddown? threshold enhancement?...other potential complications
- IF a family member : predict mass based on interference model Regge
- Can predict mass of hypothetical next family member
- n=5 state above $\Xi_{cc}\Xi_{cc}$ threshold(~7240 MeV): X(7100) may be last member of J/ ψ J/ ψ family

- **From X(3872) meson to all-heavy tetraquark states**
- **Three new structures observed in J/\psi J/\psi spectrum—by CMS, LHCb, ATLAS**
- **X** mass confirm to Regge trajectory
- **Everything seems to point to family of all-heavy tetraquark (candidates)**
- □ More data also means all-heavy tetraquarks contain bottom quarks…

Thanks!

Introduction

anti-A⁰ respectively

The History of the Quark Model

Introduction