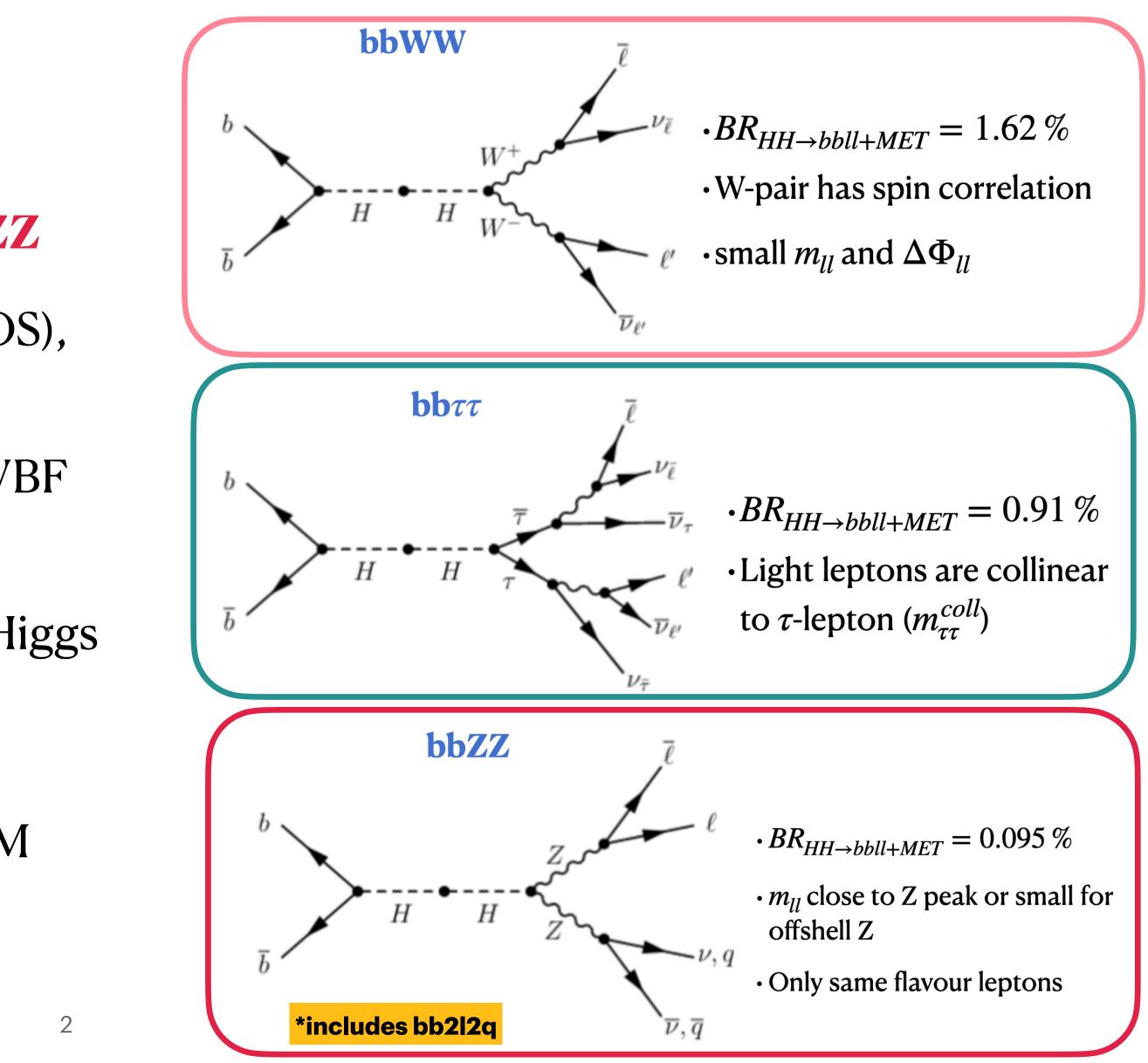
Search for non-resonant $HH(\rightarrow 2b + 2l + E_T^{miss})$ with the ATLAS experiment

Fábio Alves on behalf of ATLAS Collaboration

第十届中国LHC物理会议, 2024年11月14日-17日

JHEP02 (2024)037



中国科学院高能物理研究所 Institute of High Energy Physics Chinese Academy of Sciences

Introduction

- Search for non-resonant HH production in 2l+2b+MET final state:
 - Processes considered **bbWW**, **bb** $\tau\tau$ and **bbZZ**
 - **Experimental signature:** 2b (close to m_H , 2l (OS), MET from neutrinos)
 - Constrain HH production through ggF and VBF processes
 - Constrain κ_{λ} and κ_{2V} (coupling modifiers to Higgs boson self-coupling and two vector bosons, respectively)
 - Shape of the Higgs boson potential and SM validity
 - Additional validity test for the SM

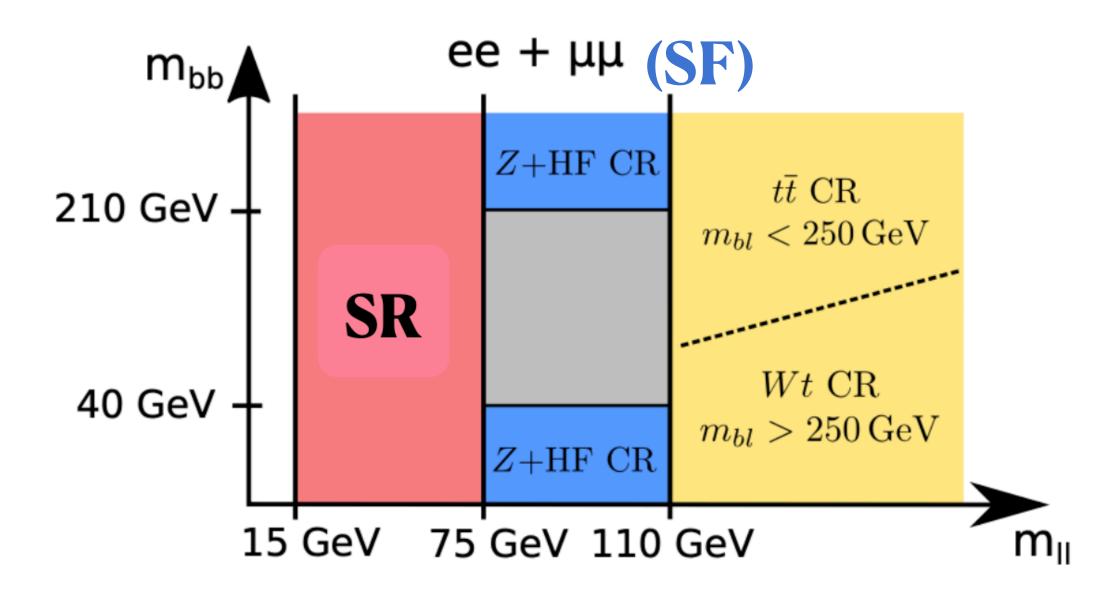
Simulated samples

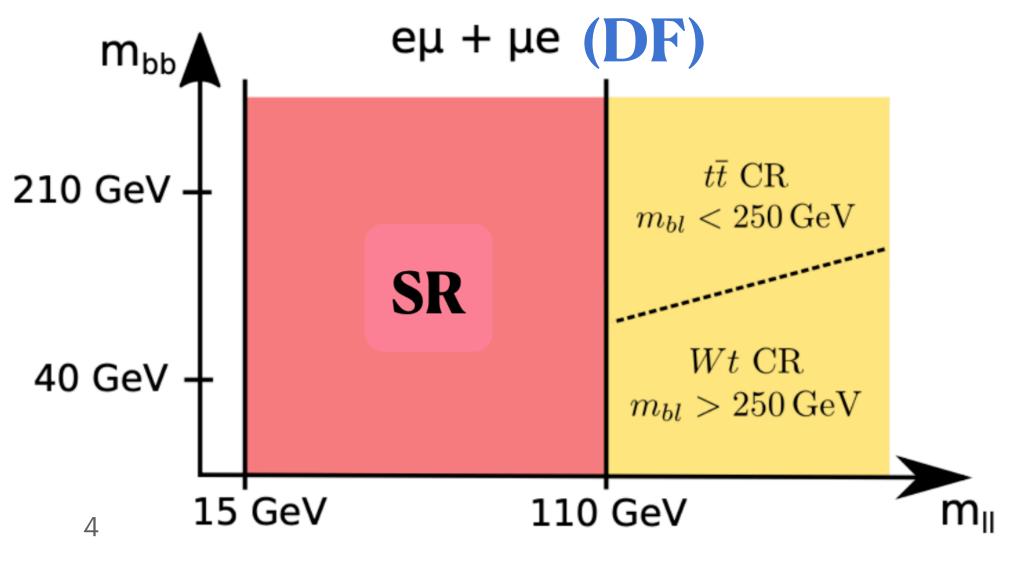
Process	ME Generator	ME PDF	PS/UE model	UE Tune
SM HH (ggF)	Powheg Box v2	PDF4LHC15nlo	Pythia 8.244	A14
SM HH (VBF)	$MadGraph5_aMC@NLO2.7.3$	NNPDF3.0nlo	Pythia 8.244	A14
$t\bar{t}$	Powheg Box v2	NNPDF3.0nlo	Pythia 8.230	A14
Single-top	Powheg Box v2	NNPDF3.0nlo	Pythia 8.230	A14
$t\bar{t} + W/Z$	$MadGraph5_aMC@NLO2.3.3$	NNPDF3.0nlo	Pythia 8.210	A14
W/Z + jets	Sherpa 2.2.1	NNPDF3.0nnlo	Sherpa 2.2.1	Sherpa default
WW, WZ, ZZ	Sherpa $2.2.1/$ Sherpa $2.2.2$	NNPDF3.0nnlo	Sherpa $2.2.1/$ Sherpa $2.2.2$	Sherpa default
ggF, H	Powheg Box v2	NNPDF3.0nlo	Pythia 8.212	AZNLO
VBF, H	Powheg Box v2	NNPDF3.0nlo	Pythia 8.230	AZNLO
WH, ZH	Powheg Box v2	NNPDF3.0nlo	$\operatorname{Pythia} 8.230/\operatorname{Pythia} 8.186$	AZNLO
$t\bar{t}H$	Powheg Box v2	NNPDF3.0nlo	Pythia 8.230	A14

• Non SM HH signal samples ($\kappa_{\lambda} \neq 1, \kappa_{2V} \neq 1$):

- ggF: simulated samples at different values of κ_{λ} and combined using morphing techniques

• VBF: linear combination of six samples with different values for the κ_{λ} and κ_{2V} parameters




• **Pre-selection**:

- Single and di-lepton triggers
- Exactly two light leptons OS charge with pT > 9 GeV
- Exactly two b-tagged jets with pT > 20GeV and satisfying DL₁r (77% WP)

Event selection

- ggF Signal Region:
 - Veto VBF selection in SR
- VBF Signal Region:
 - At least 2 additional jets with pT > 30 GeV with
 - $\max(\Delta \eta_{ii}) > 4$
 - $\max(m_{ii}) > 600 \,\text{GeV}$

Multivariate Analysis (ggF region)

Event classification (optmise signal and background separation)

• DNN (ggF category):

- Classifier based on Keras+TensorFlow
- Optmize separation between ggF HH signal and tt, tW and other backgrounds
- Finally, model is trained with 50%/50% split, 0.3 dropout rate to avoid overfitting
- 95%CL upper limits on μ_{HH} is used as metric
- Signal output node score is binned -> background uncertainties < 30%

List of Input Features

Input feature	Description
same flavour	unity if final state leptons are ee or $\mu\mu$, zero otherwise
$p_{\mathrm{T}}^\ell,p_{\mathrm{T}}^b$	transverse momenta of the leptons, b -tagged jets
$m_{\ell\ell},p_{ m T}^{\ell\ell}$	invariant mass and the transverse momentum of the di-lepton system
$m_{bb},p_{ m T}^{bb}$	invariant mass and the transverse momentum of the b -tagged jet pair syst
$m_{ m T2}^{bb}$	stransverse mass of the two b -tagged jets $[125, 126]$
$\Delta R_{\ell\ell},\Delta R_{bb}$	ΔR between the two leptons and two $b\text{-tagged jets}$
$m_{b\ell}$	$\min\{\max(m_{b_0\ell_0}, m_{b_1\ell_1}), \max(m_{b_0\ell_1}, m_{b_1\ell_0})\} \ [54]$
$\min \Delta R_{b\ell}$	minimum ΔR of all <i>b</i> -tagged jet and lepton combinations
$m_{bb\ell\ell}$	invariant mass of the $bb\ell\ell$ system
$E_{\mathrm{T}}^{\mathrm{miss}},E_{\mathrm{T}}^{\mathrm{miss}} ext{-sig}$	missing transverse energy and its significance [127]
$m_{ m T}(\ell_0, E_{ m T}^{ m miss})$	transverse mass of the $p_{\rm T}\text{-leading}$ lepton with respect to $E_{\rm T}^{\rm miss}$
$\min m_{\mathrm{T},\ell}$	minimum value of $m_{\rm T}(\ell_0, E_{\rm T}^{\rm miss})$ and $m_{\rm T}(\ell_1, E_{\rm T}^{\rm miss})$
$H_{\mathrm{T2}}^{\mathrm{R}}$	measure for boostedness ⁶ of the two Higgs bosons

- Final SRs: 7 bins with highest DNN output score (max $O(10^2)$ background events in a bin)
- DNN output score as final discriminant

stem

Multivariate Analysis (VBF region)

Event classification (optmise signal and background separation)

• BDT (VBF category):

- Classifier trained based on Adaptive Boosting (AdaBoost) + TMVA framework
- Two-fold cross-validation with 50%/50% train/test split
- Trained on VBF HH signal, with ggF HH events classified as background to maximize VBF sensitivity
- VBF sample $\kappa_{\lambda} = 0$ used for training: best performance in SM and BSM scenarios
- Final SRs: 5 bins with highest BDT output score (max $O(10^3)$ background events in a bin)
- BDT output score as final discriminant

List of Input Features

Input feature	Description
$\eta_{\ell_0},\eta_{\ell_1},\phi_{\ell_0},\phi_{\ell_1},p_{\mathrm{T}}^{\ell_0},p_{\mathrm{T}}^{\ell_1}$	$\eta, \phi, p_{\mathrm{T}}$ of the p_{T} -(sub)leading lepton
$\eta_{b_0},\eta_{b_1},\phi_{b_0},\phi_{b_1},p_{\mathrm{T}}^{b_0},p_{\mathrm{T}}^{b_1}$	$\eta, \phi, p_{\mathrm{T}}$ of the p_{T} -(sub)leading <i>b</i> -tagged jet
$\eta_{j_0},\eta_{j_1},\phi_{j_0},\phi_{j_1},p_{\mathrm{T}}^{j_0},p_{\mathrm{T}}^{j_1}$	$\phi, \eta, p_{\rm T}$ of the $p_{\rm T}$ -(sub)leading non <i>b</i> -tagged jet
$E_{\mathrm{T}}^{\mathrm{miss}},\phi^{E_{\mathrm{T}}^{\mathrm{miss}}},E_{\mathrm{T}}^{\mathrm{miss}}$ -sig	missing transverse energy, its ϕ and significance [127]
$p_{\mathrm{T}}^{bb},\Delta R_{bb},\Delta \phi_{bb},m_{bb}$	$p_{\mathrm{T}}, \Delta R, \Delta \phi$ and invariant mass of di- <i>b</i> -jet system
$p_{\mathrm{T}}^{\ell\ell}, \Delta R_{\ell\ell}, \Delta \phi_{\ell\ell}, m_{\ell\ell}, \phi_{\mathrm{centrality}}^{\ell\ell}$	$p_{\mathrm{T}}, \Delta R, \Delta \phi, p_{\mathrm{T}}$ and centrality ⁷ of di-leptons system
$p_{\mathrm{T}}^{bb\ell\ell},m_{bb\ell\ell}$	$p_{\rm T}$ and invariant mass of the $bb\ell\ell$ system
$p_{\mathrm{T}}^{bb\ell\ell+E_{\mathrm{T}}^{\mathrm{miss}}},m_{bb\ell\ell+E_{\mathrm{T}}^{\mathrm{miss}}}$	$p_{\rm T}$ and invariant mass of $bb\ell\ell$ + $E_{\rm T}^{\rm miss}$ system
$m_{\ell\ell+E_{ m T}^{ m miss}}$	invariant mass of di-lepton + $E_{\rm T}^{\rm miss}$ system
$p_{\mathrm{T}}^{E_{\mathrm{T}}^{\mathrm{miss}}+\ell\ell},\Delta\phi_{E_{\mathrm{T}}^{\mathrm{miss}},\ell\ell}$	p_{T} of and $\Delta \phi$ between $E_{\mathrm{T}}^{\mathrm{miss}}$ and di-lepton system
$p_{\mathrm{T}}^{\mathrm{tot}}$	$p_{\rm T}$ of $bb\ell\ell + E_{\rm T}^{ m miss} + p_{\rm T}$ -leading and -sub-leading jet
$m_{ m tot}$	invariant mass of $bb\ell\ell + E_{\mathrm{T}}^{\mathrm{miss}} + p_{\mathrm{T}}$ -leading and -sub-leading jet
$m_t^{ m KLF}$	Kalman fitter top-quark mass [129]
$\min \Delta R_{\ell_0 j}, \min \Delta R_{\ell_1 j}$	minimum ΔR between p_{T} -(sub)leading ℓ -j couples
$\sum m_{\ell j}$	sum of the invariant masses of all $\ell+{\rm jet}$ combinations
$\max p_{\mathrm{T}}^{jj},\max m_{jj}$	maximum $p_{\rm T}$ and invariant mass of any two non $b\text{-tagged}$ jets
$\max\Delta\eta_{jj},\max\Delta\phi_{jj}$	maximum $\Delta \eta$ and $\Delta \phi$ between any two non <i>b</i> -tagged jets
$\min \Delta R_{b\ell}$	minimum ΔR of all <i>b</i> -tagged jet and lepton combinations
$N_{ m forward\ jets},N_j$	number of forward jets, number of non b -tagged jets
$m_{ m T2}^{bb}$	stransverse mass of the two b -tagged jets [125, 126]
$m_{ m coll}$	collinear mass (reconstruction of $m_{\tau\tau}$) [130]
$m_{ m MMC}$	value of the MMC algorithm (reconstruction of $m_{\tau\tau}$) [130]

Background estimation

Leading backgrounds

- Top quark pair production $(t\bar{t})$, single topquark in association with W boson (Wt) and Z/γ^* production in association with heavyflavour (b,c) jets
- $t\bar{t}$ **CR**: $m_{ll} > 110$ GeV and $m_{bl} \le 250$ GeV
- *Wt* CR: $m_{ll} > 110$ GeV and $m_{bl} > 250$ GeV
- Z+HF CR:
 - Consider only SF events
 - 75 GeV < m_{ll} < 110 GeV
 - $m_{bb} < 40 \text{ GeV or } m_{bb} > 210 \text{ GeV}$
- Normalization is constrained from data and shape is taken from MC simulation

Fake-lepton background

- Photons or jets mis-ID as leptons as well as lepton from hadronic decays of HF quarks
- $f_{SS \to OS} = \frac{N_{MC,OS}^{fake}}{N_{MC,SS}^{fake}}$ (transfer factors, TF)
- $N_{OS}^{fake} = f_{SS \to OS} \times (N_{data,SS} N_{MC,SS}^{prompt})$
- TF ranges from 1.2 to 1.9 (binned in pT of sub-leading lepton)
- Estimated by data-driven approach

Minor backgrounds

- Normalization and shape
 - estimated from MC Simulation

Signal and Control Region yields

Process	\mathbf{ggF} -SR	VBF-SR	$tar{t}$ -CR	Wt-CR	Z+HF-CR		
SM background							
$t\bar{t}$	561220 ± 150	52670 ± 50	436840 ± 130	2270 ± 10	34700 ± 40		
$t\bar{t} + V$	1121 ± 4	194.7 ± 1.9	1133 ± 5	97.0 ± 1.1	440.1 ± 1.9		
Single top (Wt)	16260 ± 50	1165 ± 12	14100 ± 40	2901 ± 20	1237 ± 13		
Single top (s/t-channel)	12.7 ± 0.8	2.48 ± 0.35	1.21 ± 0.28	0.35 ± 0.14	0.25 ± 0.11		
$Z \to \ell \ell \ (\mathrm{HF})$	16090 ± 180	1178 ± 34	3610 ± 70	525 ± 11	43390 ± 260		
$Z \to \ell \ell \ (LF)$	2720 ± 170	260 ± 40	600 ± 90	55 ± 8	5470 ± 190		
$Z \to \tau \tau$ (HF)	2200 ± 40	154 ± 13	3 ± 7	1.9 ± 0.5	4 ± 6		
$Z \to \tau \tau \ (LF)$	370 ± 50	24 ± 4	-1.3 ± 1.5	0.11 ± 0.06	0.8 ± 0.5		
$W+ ext{jets}$	0.7 ± 0.5	0.09 ± 0.08	-0.2 ± 0.4	—	—		
Diboson	288 ± 4	32.6 ± 0.8	159.0 ± 2.8	39.0 ± 0.9	226.8 ± 3.3		
Single Higgs	601.0 ± 1.1	105.1 ± 0.4	336.5 ± 0.5	22.06 ± 0.12	48.28 ± 0.29		
Fakes	18510 ± 170	2390 ± 60	10020 ± 140	529 ± 35	1360 ± 50		
Total SM bkg.	619390 ± 350	58170 ± 100	466810 ± 230	6440 ± 40	86890 ± 330		
		HH s	signal, ggF				
gg F $HH \rightarrow bbWW$	8.318 ± 0.016	0.857 ± 0.005	0.00113 ± 0.00019	0.00033 ± 0.00010	0.0014 ± 0.0002		
gg F $HH \to bb\tau\tau$	3.138 ± 0.009	0.3284 ± 0.0029	0.00332 ± 0.00029	0.00068 ± 0.00015	0.0047 ± 0.0004		
gg F $HH \to bbZZ$	0.633 ± 0.005	0.0873 ± 0.0018	0.00083 ± 0.00018	0.00020 ± 0.00009	0.0442 ± 0.0013		
\sum ggF HH	12.088 ± 0.019	1.272 ± 0.006	0.0053 ± 0.0004	0.00121 ± 0.00020	0.0504 ± 0.0014		
HH signal, VBF							
VBF $HH \rightarrow bbWW$	0.1518 ± 0.0014	0.2138 ± 0.0017	0.00013 ± 0.00004	—	0.00009 ± 0.00004		
VBF $HH \rightarrow bb\tau\tau$	0.0537 ± 0.0006	0.0769 ± 0.0007	0.000086 ± 0.000022	0.000048 ± 0.000018	0.00024 ± 0.00004		
VBF $HH \rightarrow bbZZ$	0.0097 ± 0.0004	0.0184 ± 0.0006	0.000040 ± 0.000024	0.0000029 ± 0.0000016	0.00236 ± 0.00023		
\sum VBF HH	0.2152 ± 0.0016	0.3091 ± 0.0019	0.00026 ± 0.00005	0.000051 ± 0.000018	0.00269 ± 0.00024		
		HH sign	al, ggF+VBF	2			
$\sum \text{ggF+VBF} HH$	12.303 ± 0.019	1.582 ± 0.006	0.0055 ± 0.0004	0.00126 ± 0.00020	0.0531 ± 0.0014		

Pre-fit yields (Uncertainty from M
statistics and template statistics o

Z+jets split into heavy (HF) and light (LF) flavours

Fakes (fake-lepton from data driven estimation)

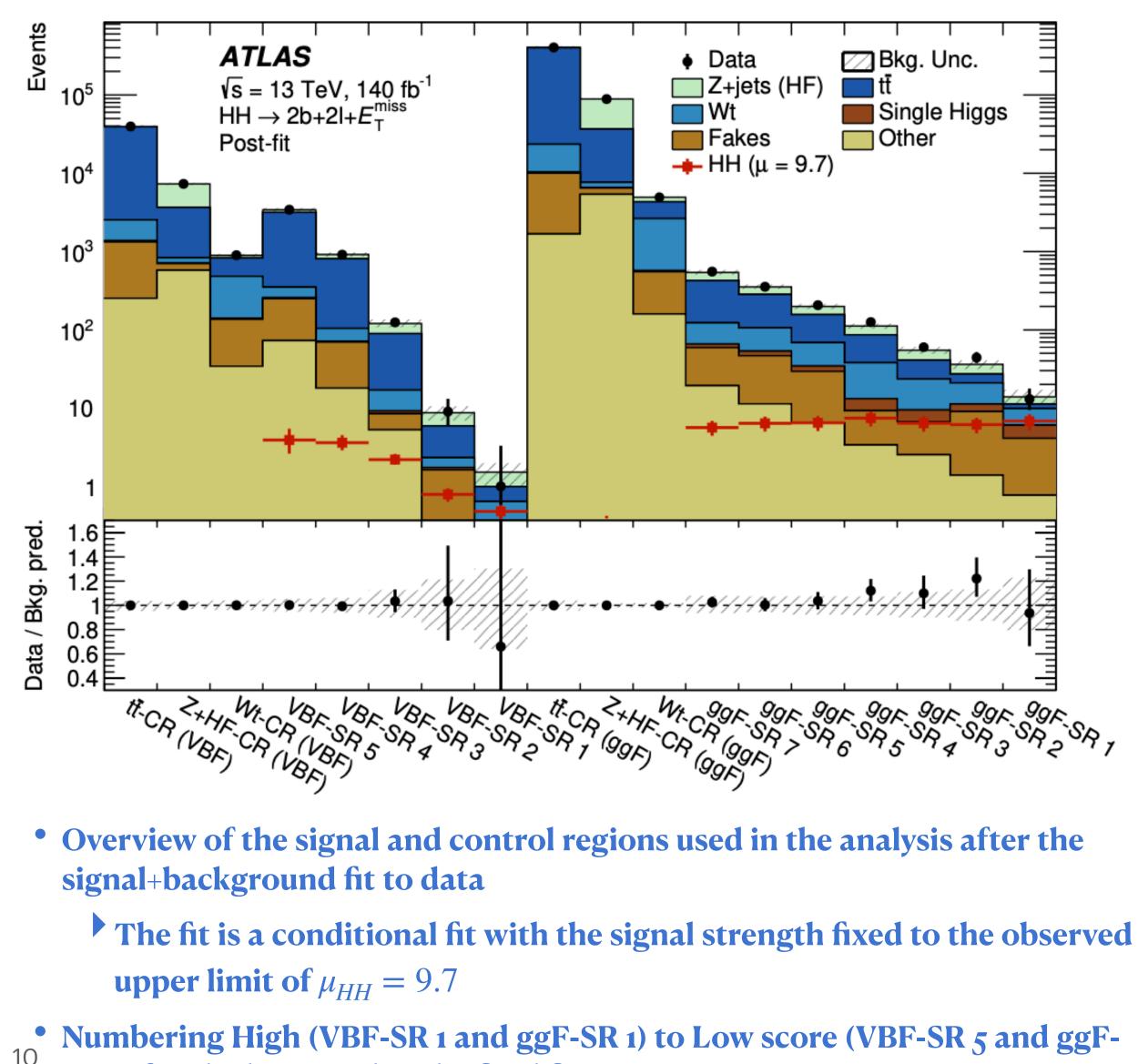
No events from given MC sample process in the respective region

- Different sources of systematic uncertanties accounted for:
- Experimental sources:
 - Jets: JES/JER and b-tagging
 - Leptons: Momentum and ID efficiencies
 - Luminosity (0.83%), PU, trigger efficiency
- Background modelling:
 - Top-quark processes: scale variations, ISF/FSR, PDF and interference uncertainties
 - Z+jets: evaluated by variating merging/resummation scales and PDFs
- Signal modelling:
 - Scale and PDF uncertainties, as well as PS (Herwig7 vs Pythia 8)
 - Production cross-section uncertainties: $\pm 3\%$ (PDF+ α_S), +6%/-23% (ggF scale)
- **Dominant systematics :**
 - In the ggF and VBF SRs: background modelling, experimental, signal normalization
 - Most sensitive bins: ggF-SR 1 to ggF-SR3 and VBF-SR 1 and VBF-SR 2
 - In the CRs: background modelling and normalization

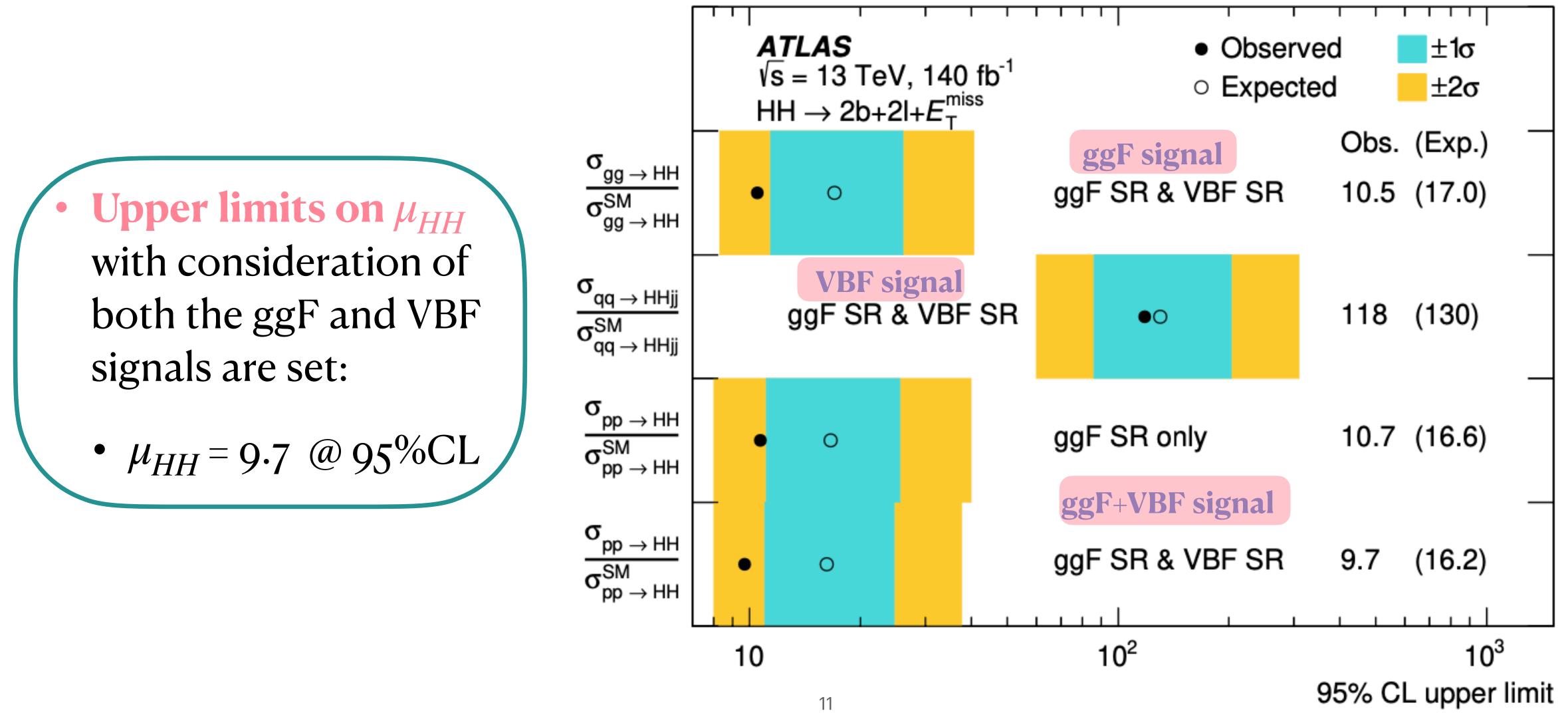
Systematic uncertainties

Statistical uncertainty also becomes dominant source

Statistical results

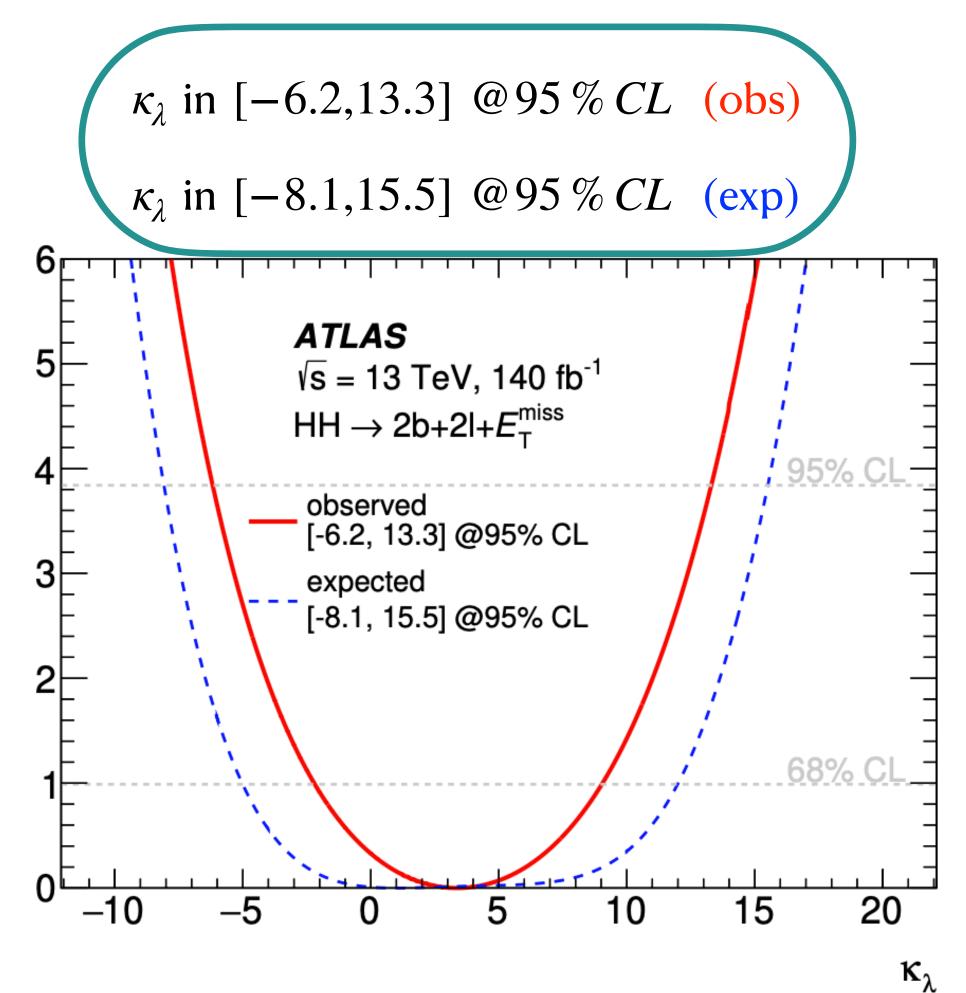

• Model to fit to data:

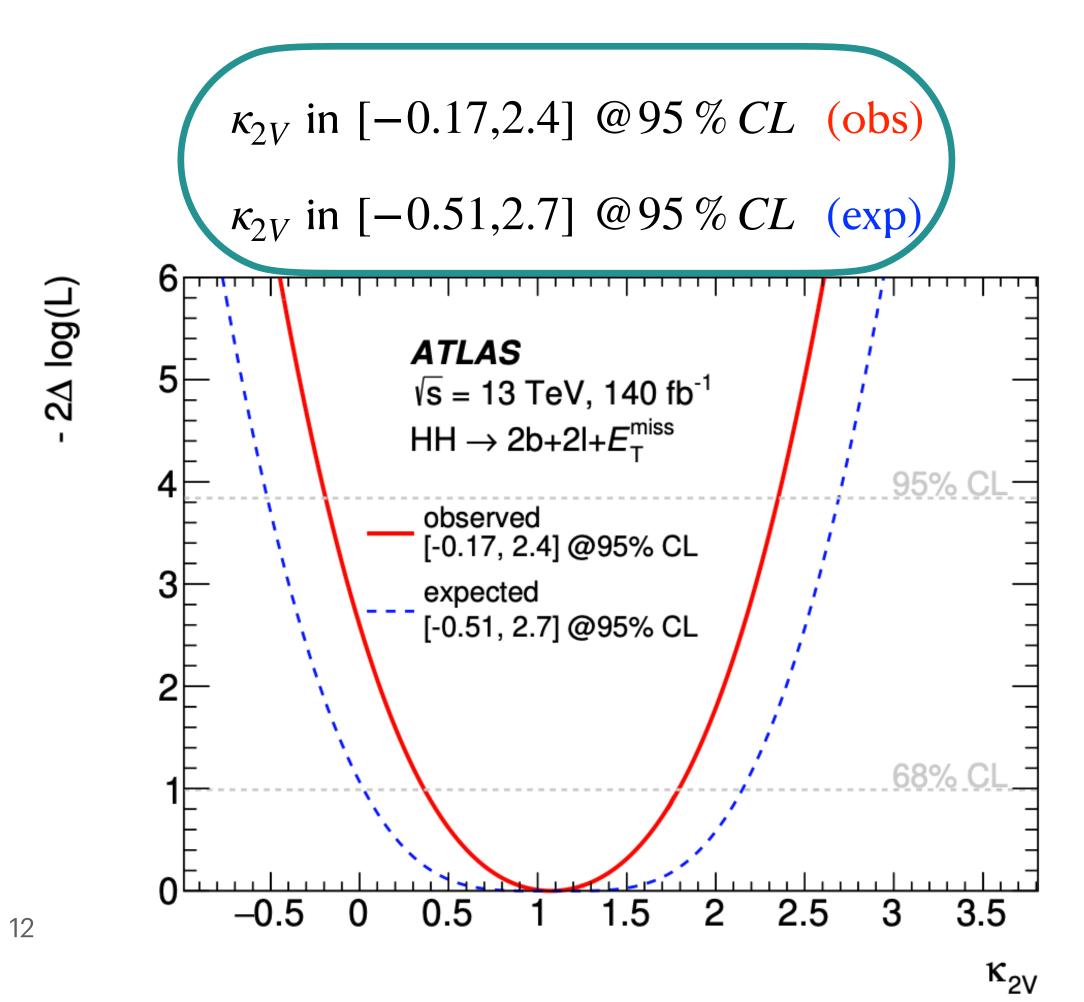
• A likelihood function is built as a product of Poisson distributions


$$L(ext{data}|\mu,oldsymbol{ heta}) = \prod_{i=1}^N ext{Poisson}(ext{data}_i|\mu \cdot s_i(oldsymbol{ heta}) + \mu_b b_i(oldsymbol{ heta})) imes ext{G}(ilde{oldsymbol{ heta}}|oldsymbol{ heta})$$

- s_i and b_i : signal and background contributions in i-th of fitted variable
- μ (signal strength) (**POI**) and μ_b (background NF)
- θ (nuisance parameters)
- Test statics for setting upper limit:

$$q_{\mu} = \begin{cases} -2 \ln \frac{L(\text{data}|\mu, \hat{\hat{\theta}}_{\mu})}{L(\text{data}|0, \hat{\theta}_{0})} & \hat{\mu} < 0\\ -2 \ln \frac{L(\text{data}|\mu, \hat{\hat{\theta}}_{\mu})}{L(\text{data}|\hat{\mu}, \hat{\theta})} & 0 \leq \hat{\mu} \leq \mu\\ 0 & \hat{\mu} > \mu \end{cases}$$


- SR 7) for the bins used in the final fit


Constraints on κ_{λ} and κ_{2V}

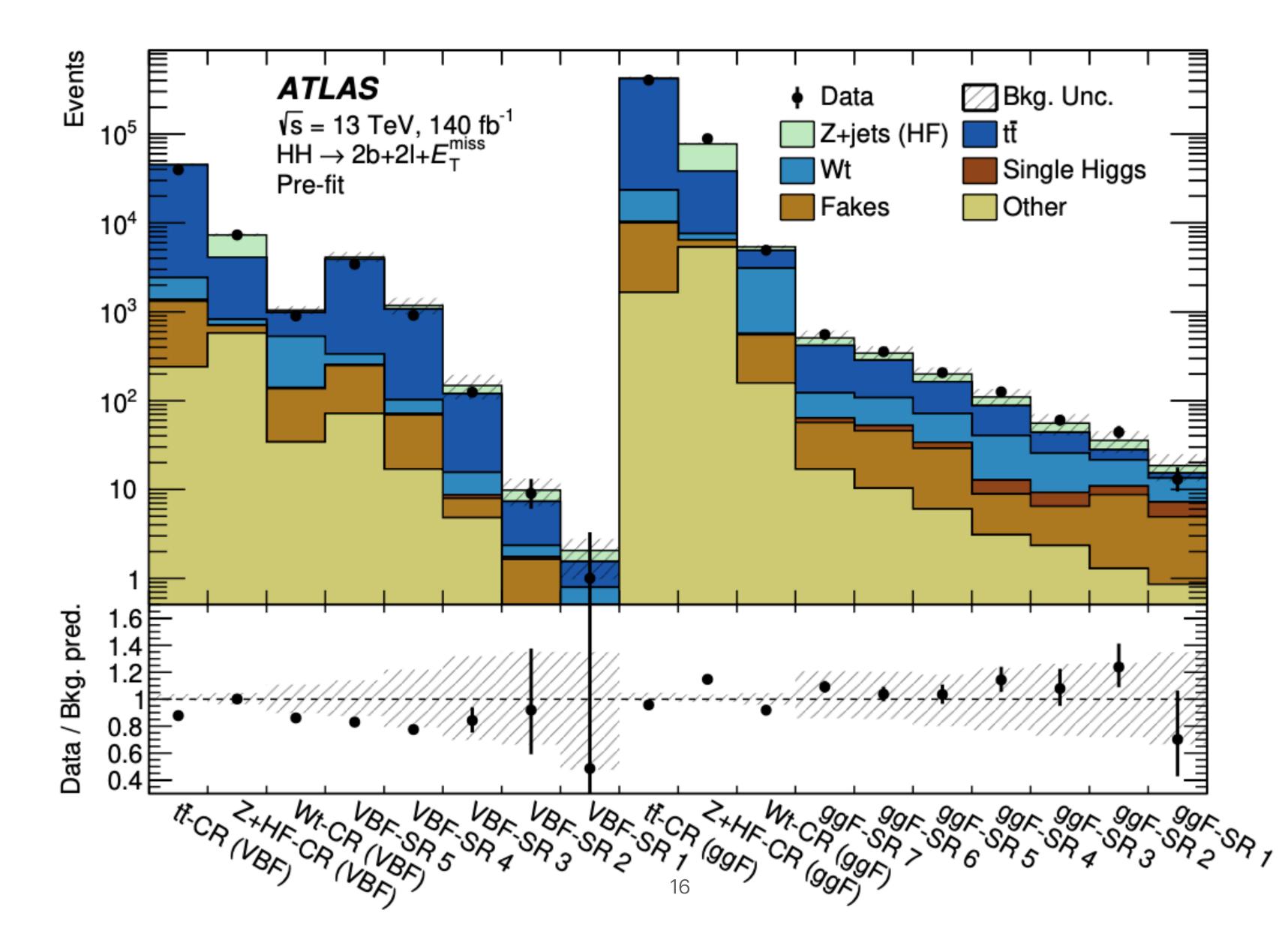
- Likelihood scans on κ_{λ} and κ_{2V}
 - Both ggF and VBF SRs are included

2∆ log(L)

• Other κ -modifiers are fixed to the SM predictions

- Search for non-resonant HH production i dataset:
 - HH pair production via ggF and VBF production modes
 - Contributions from bbWW, $bb\tau\tau$ and bbZZ channels
 - No deviation wrt SM background processes is observed
 - Upper limit on $\mu_{HH} = 9.7$ (observed), 16.2 (expected)
 - Significant improvement with respect to <u>previous iteration</u> of this analysis (optimized for bbWW only)
 - **Constraints on** κ_{λ} and κ_{2V} :
 - κ_{λ} in [-6.2,13.3] @95% CL (obs)
 - κ_{2V} in [-0.17,2.4] @95% CL (obs)

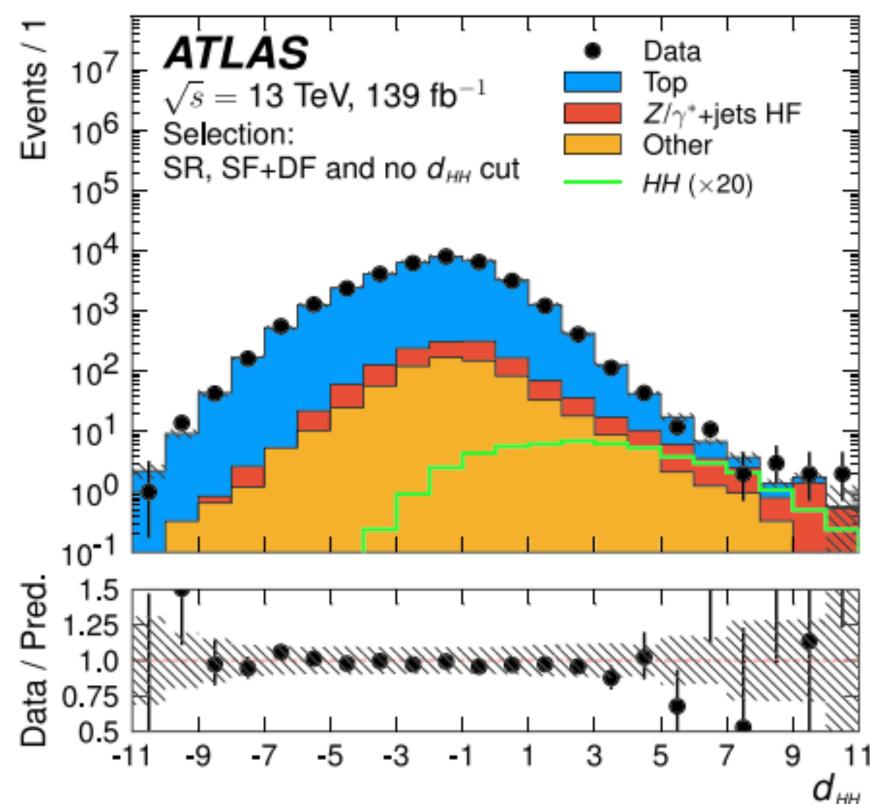
• Search for non-resonant HH production in $2b + 2l + E_T^{miss}$ final state using Full Run2


Back-up slides

- It follows the following steps:
 - if any electrons share a track, only electron with highest pT is kept;
 - If a hadronically decaying τ -lepton candidate is within $\Delta R_y = 0.2$ of any electron or muon, it is removed;
 - If an electron and a muon share a track, the muon is kept only if it is associated with a signature in the MS;
 - Any jet within $\Delta R_y = 0.2$ of an electron and subsequent any electron within $\Delta R_y = 0.4$ of any jet is removed. Any jet within $\Delta R_y = 0.2$ of a muon, or having an inner detector track ghostmatched to a muon within $\Delta R_y = 0.2$ of the jet, is removed if it has fewer then three associated tracks;
 - Any muon within $\Delta R_y = 0.4$ of a jet is removed as well as any jet within $\Delta R_y = 0.2$ of a hadronically decaying τ -lepton candidate.

Pre-fit yields

Run2 Analysis optimized to bbWW **Run2 analysis**


Breakdown of the main different sources of unce

Uncertainty [%]	SR-SF				SR-DF			
	Тор	Z/γ^* + HF	Other	Total Bkg.	Тор	Z/γ^* + HF	Other	Total Bkg.
Total uncertainty	28	18	20	14	30	26	41	25
Theoretical	21	15	17	11	20	15	40	17
Experimental	12	< 5	8	< 5	15	17	8	12
MC statistics	8	8	6	8	13	13	7	11
$\mu_{ ext{Top}}$, $\mu_{Z/\gamma^{*+} ext{HF}}$	13	5	n/a	5	13	5	n/a	10

Observed and expected upper limits on HH pair production

	-2σ	-1σ	Expected	$+1\sigma$	$+2\sigma$	Observed
$\sigma (gg \rightarrow HH)$ [pb]	0.5	0.6	0.9	1.3	1.9	1.2
$\sigma (gg \rightarrow HH) / \sigma^{SM} (gg \rightarrow HH)$	14	20	29	43	62	40

			•
rי		nt	ies
	lai		.103

