

中國科學院為能物認為完備 Institute of High Energy Physics Chinese Academy of Sciences

Search for double Higgs resonances with gamma gamma in the final state at CMS

Zhenxuan Zhang

CLHCP 2024

IHEP of Chinese Academy of Sciences (CN)

- Many BSM models predict new resonances:
 - 2HDM
 - composite-Higgs
 - Warped extra dimensions
 - *Radio (spin 0) / Graviton (spin 2)
 - SUSY (NMSSM)
 - Two-real-scalar-singlet extension of the SM (TRSM)
- Main production mode:
 - Gluon-gluon fusion of heavy resonance X
 - X decays to either HH or HY
- Analyses:
 - H/Y decays to different final states
 - * Today focus on HH/YH in $\gamma\gamma$ final state
 - Target different spin and mass hypotheses

Zhenxuan Zhang (IHEP, China)

CLHEP 2024

CMS Introduction

- Why HH/YH in $\gamma\gamma$ final states:

- Small branching fraction (0.2%), but clean final state with two highly energetic and isolated photons, so final state can be fully reconstructed with excellent mass resolution (1-2%)
- Relatively less backgrounds than hadronic decay

* Continuum $\gamma\gamma$ (irreducible)

* Fakes from γj and jj (reducible)

	bb	WW	ττ	ZZ	
bb	34%				
WW	25%	4.6%			
ττ	7.3%	2.7%	0.39%		
ZZ	3.1%	1.1%	0.33%	0.069%	
ΥY	0.26%	0.10%	0.028%	0.012%	0.

- $X \rightarrow HH/YH \rightarrow bb\gamma\gamma$ (https://doi.org/ 10.1007/JHEP05(2024)316)
- $X \rightarrow HH/YH \rightarrow \tau \tau \gamma \gamma$ (PAS)
- $X \to HH/YH \to WW/ZZ \gamma\gamma$ in progress with CADI B2G-24-010
- $X \to HH/YH \to bb \gamma\gamma$ high mass in progress with CADI B2G-24-017

13/11/24

$X \rightarrow HH/YH \rightarrow bb\gamma\gamma$ (https://doi.org/10.1007/JHEP05(2024)316)

luminosity

• $X \rightarrow HH/YH \rightarrow bb\gamma\gamma$ (X is spin-0 and spin-2 particle) at center-ofmass energy of 13 TeV with CMS Run 2 data with 138 fb^{-1}

中国科学院高能物理研究所 Institute of High Energy Physics Chinese Academy of Sciences

Zhenxuan Zhang (IHEP, China)

CLHEP 2024

BDT Classifier and Categorization

- Multi-class Boosted Decision Trees (BDT) for background discrimination:
 - Signal = signal MC (YH)
 - Background-1 = $\gamma\gamma$ + jets
 - Background-2 = $j\gamma$ / jj+jets
- **Training input variables**
 - ~25 discriminant features
 - Boost factors for different mass region
- Validation in control region for Data/MC
- **MVA** categorization
 - Based on significance
 - High, medium, low categories

Zhenxuan Zhang (IHEP, China)

13/11/24

Single Higgs background rejection

- Resonant background are single Higgs process which have similar diphoton mass distribution peaking around m_H
- The most dominant background is ttH for this analysis
- Contamination have only been considered for $m_X < 600$ GeV;
- Develop MVA based ttHkiller for removing ttH
 - Based on neural network training
 - Order of magnitude for sensitivity improvement with m X < 600 GeV is up to 10%.

Resnance mass [GeV]

13/11/24

- Selection on four-body mass $\tilde{M}_X = (m_{ij\gamma\gamma} mjj m\gamma\gamma + m_H + m_Y)$
- Mx windows are optimized keeping more than 60% signal efficiency
- It also helps to suppress single Higgs contribution (<1%)

Mx performs a kinematic fit on four-body mass and results better resolution (30%-90%) w.r.t $m_{ii\gamma\gamma}$

Results $X \rightarrow HH$

CMS

- TeV, excludes masses up to 600 GeV.
- GeV.

Zhenxuan Zhang (IHEP, China)

Left plot (spin-0): For $\Lambda R = 3$ TeV, excludes masses up to 1 TeV; for $\Lambda R = 6$

Right plot (spin-2): With κ /Mpl = 0.5, excludes resonance masses up to 850

NMSSM and TRSM interpretations

- Exclude region mX =[400-600] GeV and mY = [90-250] GeV for NMSSM
- Exclude region mX =[300-800] GeV and mY = [90-150] GeV for TRSM
- Excess in mX = 650 GeV and mY = 90GeV

Zhenxuan Zhang (IHEP, China)

 3.8σ local (2.8σ global) for mX = 650 GeV and mY = 90 GeV

CLHEP 2024

$X \rightarrow HH/YH \rightarrow \tau \tau \gamma \gamma$ (cms-pas-hig-22-012)

mass energy of 13 TeV with CMS Run 2 data with 138 fb^{-1} luminosity

• $X \rightarrow HH/YH \rightarrow \tau \tau \gamma \gamma$ (X is spin-0 and spin-2 particle) at center-of-

Institute of High Energy Physics Chinese Academy of Sciences

Zhenxuan Zhang (IHEP, China)

CLHEP 2024

Parameterised Neural Network (pNN)

- Task: develop an MVA that discriminates well at nominal and intermediate mass points (too many X and Y mass points)
- Solution: a Parameterised Neural Network(PNN) whose target function is $f(\vec{x}; mx, mY)$
 - Add m_X , m_Y as additional training features
 - Train on all signal MC, $\{m^1, m^2 \dots\}$, simultaneously
 - Give background MC random values of m_X from $\{m^1, m^2 \dots\}$
 - Output scores have good discriminant power and good Data/MC agreement

Networks trained on single mass points

Zhenxuan Zhang (IHEP, China)

CLHEP 2024

CMS Categorisation

- Task: derive optimal boundaries in **PNN output score to form categories** with expected limit at all mass points
- Without signal MC, we cannot individually optimise for intermediate mass points → create a common category definition using nominal mass point MC
- Choose to define categories based on N data events in the sidebands
- Similar performance compare with grid search

CLHEP 2024

mx
1000

- Signal modelling:
 - Derived from fits to the MC with a Double Cystal Ball (DCB) for better interpolation with PNN results
- Background modeling:
 - Same as $bb\gamma\gamma$, falling component modelled by an envelope of smoothly falling functions using the discrete profiling method
- Single H background modeling same as signal

CLHEP 2024

CMS Results $X \rightarrow HH$

Exclude m_X up to 900 GeV at $\Lambda R = 2$ TeV

Zhenxuan Zhang (IHEP, China)

Exclude m_X between 310 and 700 GeV at k/ MPL = 1

CLHEP 2024

Results $X \rightarrow YH$

 $Y \rightarrow \tau \tau$

- No excess seen at X650 or Y90 GeV
- Maximum local significance of 2.6σ at mX, mY = (320, 60)GeV with global 2.2σ significance

Zhenxuan Zhang (IHEP, China)

CLHEP 2024

Results $X \rightarrow YH$

 $Y \rightarrow \gamma \gamma$

- excess at mX, mY = (650, 95)GeV in low $Y \rightarrow \gamma \gamma$ analysis: 2.5σ local significance

Zhenxuan Zhang (IHEP, China)

CLHEP 2024

- $X \rightarrow HH/YH \rightarrow bb\gamma\gamma$:

- New BDT training method with boost factor
- New ttHKiller for ttH single Higgs background
- Better categorisation from **boundary** optimization and mass window selection
- **Results for** $X \rightarrow HH$
 - * Spin-0 Radion: Up to 1 TeV (Λ _R = 3 TeV), up to 600 GeV (Λ _R = 6 TeV)
 - * Spin-2 Graviton: Up to 850 GeV ($\kappa/M_PI =$ 0.5)
- **Results for** $X \to YH$

*Excess in mX = 650 GeV and mY = 90GeV

- $X \to HH/YH \to \tau \tau \gamma \gamma$

- New PNN training method
- New Categorisation from sideband boundary optimization
 - Results for $X \to HH$
 - * Spin-0 Radion: Up to 900 GeV ($\Lambda_R = 2$ TeV)
 - * Spin-2 Graviton: Between 310 and 700 GeV (κ/ M PI = 1)
 - Results for $X \to YH$
 - * Excess in mX = 320 GeV and mY = 90GeV for $Y \to \tau \tau$
- * Excess in mX = 650 GeV and mY = 95 GeV for $Y \rightarrow \gamma \gamma$

CLHEP 2024

Thank you for listening

