LHCb: New Results on Pentaquarks

Da Yu Tou 1 , Zan Ren 2

¹Tsinghua University, ²University of Chinese Academy of Sciences

10th Chinese Large Hadron Collider Physics

Introduction

Da Yu Tou, Zan Ren (Tsinghua, UCAS)

New Results on Pentaquarks

Introduction - Spectroscopy at LHCb

- The LHCb experiment is excellent for exotic spectroscopy.
 - High luminosity $p\bar{p}$ collision to produce c and b hadrons.
 - Detector optimized for b and c physics.
 - Many exotics are LHCb observations/evidence (red).

Link to Patrick Koppenburg's plots.

Introduction - Pentaquarks at LHCb

- Pentaquark candidates first observed at LHCb in $\Lambda_b \rightarrow J/\psi p K$: PRL 115 (2015) 072001.
- More evidence or observations
 - ► $\equiv_b \rightarrow J/\psi \Lambda K$: Sci.Bull. 66 (2021) 1278-1287 ► $B_s \rightarrow J/\psi p \bar{p}$: PRL 128 (2022) 062001 ► $B \rightarrow J/\psi \Lambda \bar{p}$: PRL 131 (2023) 031901

 $B_s
ightarrow J/\psi p ar p$

 $B \to J/\psi \Lambda \bar{p}$

Introduction - Motivation

- Real nature of pentaquarks still unknown.
- Several interpretations:

Compact pentaquark Baryon-Meson Molecule Triangle

Triangle Diagram

 PEB 749 (2015) 128 PEB 749 (2015) 289-291
 PRL 115 (2015) 122001 PEB 753 (2016) 547-551
 PRD 92 (2015) 071502

 PRD 95, 054027 PEB 793 (2019) 365-371
 PRC 85 (2012) 044002
 PRD 92 (2015) 071502

New Results from the LHCb Experiment

New Results on Pentaquarks

• Did LHCb find a new pentaquark?

• Did LHCb find a new pentaquark? No

- Did LHCb find a new pentaquark? No
- Thank you for listening!

Just joking

- Just joking, LHCb performed an inclusive search for prompt pentaquarks:
 - ▶ Prompt meaning the $P_{c\bar{c}}^+$ is directly produced from *pp* collisions, as opposed to $P_{c\bar{c}}^+$ have been observed in *b* decays.
 - PRD 110 (2024) 032001
- And observed a few decay modes with prospects for future pentaquark searches.
 - $\Lambda_b^0 \to \Lambda_c^+ \bar{D}^{(*)0} K^-$: EPJC 84 (2024) 575.
 - $\Lambda_b^0 \rightarrow D^+ D^- \Lambda$: JHEP 07 (2024) 140.
 - $\Lambda_b^0 \to \Sigma_c^{(*)++} D^{(*)-} K^-$: PRD 110 (2024) L031104.

Inclusive Search for Prompt $P_{c\bar{c}}$

- Search for P_{cc} and $P_{c\bar{c}}$ by combining:
 - ► 5 different charmed baryons: Λ_c^+ , Σ_c^{++} , Σ_c^0 , Σ_c^{*++} , Σ_c^{*0} .
 - ▶ 6 different charmed meson: D^0 , \overline{D}^0 , D^+ , D^- , D^{*+} , D^{*-} .
 - Total of 30 possible combinations!
- Scanned for pentaquarks up to 600 MeV away from threshold.
- Even with 4.5σ local significance, pseudoexperiments that account for look elsewhere effect shows result is consistent with background only hypothesis no new pentaquarks.

Branching Fraction of $\Lambda_b^0 \to \Lambda_c^+ \overline{D}^{(*)0} K^-$

- Measured branching fractions normalized to $\Lambda_b^0 \rightarrow \Lambda_c^+ \bar{D}_s^+$.
- Compared to $\mathcal{B}(\Lambda_b \to J/\psi pK)$ Chinese Phys. C 40 011001:
 - $\blacktriangleright \mathcal{B}(\Lambda_b \to J/\psi p K)/\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \bar{D}^{*0} K^-) = 0.152^{+0.032}_{-0.028}$
 - $\blacktriangleright \mathcal{B}(\Lambda_b \to J/\psi pK)/\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \bar{D}^0 K^-) = 0.049^{0.011}_{-0.009}$
- Important for future pentaquark searches:
 - Extract $P_{c\bar{c}}^+$ fit fraction in $\Lambda_b^0 \to \Lambda_c^+ \bar{D}^{(*)0} K^-$ and $\Lambda_b \to J/\psi p K$.
 - ► Test theory predictions of $\mathcal{B}(P_{c\bar{c}}^+ \to J/\psi p)/\mathcal{B}(P_{c\bar{c}}^+ \to \Lambda_c^+ \bar{D}^{(*)0}).$

First observation of $\Lambda^0_b o D^+ D^- \Lambda$

- Yanxi Wu and Yanxi Zhang. Motivation: JHEP 07 (2024) 140.
 - Charmonium and exotics known to decay into D^+D^- .
 - ▶ Possibility of $P_{\bar{c}s}$ in $m(D\Lambda)$ spectrum, analogous to X(2900) in $B^+ \rightarrow D^+D^-K^+$: PRD 102, 112003.
- Observed $\sim 90 \ \Lambda_b^0 \rightarrow D^+ D^- \Lambda$ candidates but rich structure in invariant mass spectrums compared to nonresonant phase space:

First observation of $\Lambda^0_b o \Sigma^{(*)++}_c D^{(*)-} K^-$

- PhD thesis of Zan Ren. Motivation:
 - PRL 122 (2019) 222001: mass spectrum analysis of

 $\Lambda_b^0 \rightarrow J/\psi p K$ with Run 1 + 2 data observed peaks in $m(J/\psi p)$ slightly below $\Sigma_c D^{(*)}$ thresholds.

► Sizeable contribution from $P_{c\bar{c}}^+ \rightarrow \Sigma_c^{(*)} D^{(*)}$ decays can enhance the branching fraction of these decays.

First observation of $\Lambda_b^0 o \Sigma_c^{(*)++} D^{(*)-} K^-$

• Not much statistics (stat uncertainties only):

PRD 110 (2024) L031104

$$\begin{array}{l} \wedge \Lambda_b^0 \to {\Sigma_c}^{++}D^{-}K^{-}: \ 480 \pm 25 \\ \wedge \Lambda_b^0 \to {\Sigma_c}^{++}D^{*-}K^{-}: \ 279 \pm 26 \\ \wedge \Lambda_b^0 \to {\Sigma_c}^{*++}D^{-}K^{-}: \ 243 \pm 17 \\ \wedge \Lambda_b^0 \to {\Sigma_c}^{*++}D^{*-}K^{-}: \ 116 \pm 15 \end{array}$$

Da Yu Tou, Zan Ren (Tsinghua, UCAS)

CLHCP 2024

First observation of $\Lambda_b^0 o \Sigma_c^{(*)++} D^{(*)-} K^-$

• Not much statistics (stat uncertainties only): PRD 110

PRD 110 (2024) L031104

$$\Lambda_b^0 \to \Sigma_c^{++}D^{-}K^{-}: 480 \pm 25$$

$$\Lambda_b^0 \to \Sigma_c^{++}D^{*-}K^{-}: 279 \pm 26$$

$$\Lambda_b^0 \to \Sigma_c^{*++}D^{-}K^{-}: 243 \pm 17$$

$$\Lambda_b^0 \to \Sigma_c^{*++}D^{*-}K^{-}: 116 \pm 15$$

• No obvious peaking structures in $\Lambda_b^0 \to \Sigma_c^{++} D^- K^-$ but statistics is low.

Supplementary material for LHCb-PAPER-2023-2 044

Prospects and Summary

Da Yu Tou, Zan Ren (Tsinghua, UCAS)

New Results on Pentaquarks

CLHCP 2024

LHCb Run 3 Prospects

- LHCb Run 3 on track to collect $2 3 \times$ luminosity of Run 1 + 2.
- New purely software trigger system significantly increases efficiencies of purely hadronic final states.
 - Improve statistics of open charm channels.
 - Open new possibilities of spectroscopy in Run 1 + 2 channels that are statistically limited.

- LHCb experiment has published new results:
 - Search for prompt pentaquarks.
 - BF measurement of $\Lambda_b^0 \rightarrow \Lambda_c^+ \bar{D}^{(*)0} K^-$
 - First observation of $\Lambda_b \to D^+ D^- \Lambda$.
 - First observation of $\Lambda_b \to \Sigma_c^{(*)++} D^{(*)-} K^-$.
- LHCb Run 3 will collect more data at a higher efficiency especially for open charm channels.
 - Expect results in new decay channels!

