

Search for Higgs boson exotic decays into new light bosons in the four-au final state

Hao Zeng

Institute of High Energy Physics

November, 15th, 2024

11/15/2024

Motivation

- Search for Higgs boson (125 GeV) exotic decays into new light bosons (*a*) in the four-tau final state
 - $H \rightarrow 2a \rightarrow 4\tau$
- This search is generic but the 2HDM + S model is used as a benchmark for the analysis optimization and limit extraction
 - The branching ratio of $a \rightarrow \tau^+ \tau^-$ are dominant in the 2HDM + S for type-III Yukawa couplings with tan $\beta > 1$
- 4τ channel has not been covered by ATLAS (first boosted 4τ search at ATLAS).

$H \rightarrow 2a \rightarrow 4\tau$ searches at ATLAS

• Two $H \rightarrow 2a \rightarrow 4\tau$ searches in ATLAS using run 2 data

• Merged analysis:

- Today's focus
- *a* mass range [4,15] GeV
- di-muon + single muon triggers
- Boosted a decays into merged di $-\tau$
- Dedicated muon removal technique is developed to recover the tau performance
- Only covering $\tau_{\mu}\tau_{h}\tau_{\mu}\tau_{h}$ final state
- Selecting $2\mu\tau_h$ pairs
- $SS\mu$ and $OS\mu$ channels

• Resolved analysis:

- *a* mass range [15,60] GeV
- $2l2\tau_h$ and $3l1\tau_h$ $(l = e, \mu)$ channels
- Select SS dilepton to reduce backgrounds

Boosted low pt had-mu di-tau

- Because of the low mass of a, the distance between τ_l and τ_{had} will be very small even for low p_T
 - $\Delta R(\tau_l, \tau_{had}) \approx 2m_a/p_T^a$
- The decay products of τ_l and τ_{had} are mixed in the detector.
- The standard tau identification will no longer work

Muon removal technique

isolation region Muon track

ore regu

TauJet

- Merged τ_μτ_{had} correction algorithm: muon removal technique
 Overlapped muons were removed from tau jet before the standard tau reconstruction and identification procedures.
 - - Muon tracks and associated energy will be removed
 - Rerun the relevant official tau reconstruction and identification algorithm after muon removal.
 - Use the official tau performance results after proper muon removal ٠
 - An extra efficiency uncertainty was extracted for the muon removal method ٠
 - The τ_{had} four-momentum is corrected to the same energy scale as isolated τ_{had} using a MC-based correction method.

• Tau id efficiency was recovered after muon removal

Region definition

• The events pass the preselection are then assigned to different regions:

	S	Sμ	0	CP7	
	SR(LVM)	VR(HVM)	SR(LVM)	VR(HVM)	
Number of muons	2	2	2	2	3
Number of $\mu\tau$ pairs	2	2	2	2	1
m_H^{vis} (GeV)	[60,120]	> 120	[60,120]	> 120	
$m_{\mu\mu}$ (GeV)			< 50	< 50	[71,111]
Sign of muons	SS	SS	OS	OS	OS ⁵

- Two channels: $SS\mu$ and $OS\mu$
 - $SS\mu$ channel is more sensitive to lower masses ($m_a = [4,10]GeV$)
 - $OS\mu$ channel is to enhance the sensitivity for higher masses ($m_a = [10, 15]$ GeV)
- Each channel has one signal region with Low Visible Mass ($60 < m_{2\mu\tau_{had}} < 120 \text{ GeV}$) and one validation region with High Visible Mass ($m_{2\mu\tau_{had}} > 120 \text{ GeV}$).
- Z + Jets control region is defined to measure the $\mu\tau$ fake factors.

Background estimation

- Prompt background
 - Estimate using MC: $q\bar{q}/gg \rightarrow ZZ, H \rightarrow ZZ4l$
- Non-prompt/fake background
 - Data-driven fake factor method
 - Measure the FF of $\mu\tau$ in the $Z(\mu\mu)$ + jets($\mu\tau_{had}$) control region
 - $FF = \frac{N_{pass \ RNNLoose, Data}^{Z+\mu\tau} N_{pass \ RNNLoose, truth \ matched \ MC}^{Z+\mu\tau}}{N_{fail \ RNNLoose, Data}^{Z+\mu\tau} N_{fail \ RNNLoose, truth \ matched \ MC}} = f/(1-f)$
 - FF parameterized as function of p_T^{Uncorr} and prongness (FF(p_T^{Uncorr} , prongness))
 - Apply the FFs to $2\mu\tau_{had}$ regions by using the events with at least one $\mu\tau_{had}$ candidate failing ID
 - Fake $(\mu \tau_1^P \mu \tau_2^P) = [FF_2 \mu \tau_1^P \mu \tau_2^F + FF_1 \mu \tau_1^F \mu \tau_2^P FF_1 FF_2 \mu \tau_1^F \mu \tau_2^F]_{data} [FF_2 \mu \tau_1^P \mu \tau_2^F + FF_1 \mu \tau_1^F \mu \tau_2^P FF_1 FF_2 \mu \tau_1^F \mu \tau_2^F]_{truth matched MC}$
 - $FF_2\mu\tau_1^P\mu\tau_2^F$, $FF_1\mu\tau_1^F\mu\tau_2^P$: estimate the single fake $\mu\tau$ events, fake $\mu\tau_1$ and fake $\mu\tau_2$
 - $FF_1FF_2\mu\tau_1^F\mu\tau_2^F$: estimate the double fake $\mu\tau$, minus sign is to remove the double counting double-fake- $\mu\tau$ events

A: $\mu\tau_1$ pass ID, $\mu\tau_2$ pass ID (SR,VR) B: $\mu\tau_1$ fail ID, $\mu\tau_2$ pass ID C: $\mu\tau_1$ pass ID, $\mu\tau_2$ fail ID D: $\mu\tau_1$ fail ID, $\mu\tau_2$ fail ID

Fake validation in HVM region

- Testing the fake factor method in the HVM validation region
- The fake prediction is agreed with data within the uncertainties
- The relative difference between background prediction and observed data is considered as non-closure uncertainty (8%).

ΟSμ

Systematic Uncertainties

Standard systematics

- Experimental uncertainties (from CP group)
 - Muon
 - Tau
 - Jet
 - Lumi
 - Pileup
- Theoretical uncertainties
 - QCD (renormalization and factorization) scale uncertainties
 - Cross-section k-factor normalization uncertainty
 - QCD scale shape uncertainty
 - PDF set uncertainties

Custom systematics

- Fake uncertainties
 - Statistic
 - fake_FF_1prong_stat_up
 - fake_FF_1prong_stat_down
 - fake_FF_3prong_stat_up
 - fake_FF_3prong_stat_down
 - Parametrization
 - fake_FF_EtaBinning
 - fake_FF_dRBinning
 - fake_FF_MuTauPtBinning
 - Composition
 - fake_FF_Bcomposition
 - fake_FF_2MuTau
 - fake_FF_1jet
 - fake_FF_2jets
 - fake FF dRCut
 - Non-closure
- Dominant uncertainty for background
- fake FF Validation
- Moun Removal Technique Uncertainties
 - Additional Reco+Id efficiency uncertainties $\frac{De}{fo}$

Dominant uncertainty for signal

Limited number of events in Z+jets CR

Results

- The observed number of events in data is consistent with the background prediction within 1σ in both $SS\mu$ and $OS\mu$ channels.
- No excess is found. The fake prediction shows very good agreement with the data.
- 95% CL upper limits are set on $(\sigma(H)/\sigma SM(H))(B(H \rightarrow aa \rightarrow 4\tau))$ using the CL_S method.
- The upper limits for each signal mass are obtained by using pseudo-experiment method.
- The observed (expected) limit ranges from 0.033 (0.044) to 0.10 (0.13) for $m_a = 10$ GeV and $m_a = 4$ GeV.

Summary

- The ATLAS search for Higgs exotic decays in the four- τ final state has been presented
 - A muon removal technique is the first time used in an ATLAS analysis to reconstruct merged di- τ decays.
 - The efficiencies of merged taus are improved by an order of magnitude.
 - No significant excess of data over the SM background expectation is observed.
 - Upper limits at 95% CL. are set on $(\sigma(H)/\sigma_{SM}(H))B(H \rightarrow aa \rightarrow 4\tau)$, ranging from 3.3% at $m_a = 10$ GeV to 10% at $m_a = 4$ GeV.
- The analysis has been already pre-approved (unblinded) and will get group approval in the next couple of weeks.
- We are planning to publish this analysis in the end of this year.

Tau Reco and ID Efficiency after Muon Removal

Tau momentum correction results

9

- The corrected p_T is calculated:
 - $p_T^{OL,Corr} = p_T^{OL,UnCorr} / R(p_T^{OL,UnCorr}, n_p, p_T^{\mu})$
 - where the *R* is the ratio of reco p_T^{OL} to reco p_T^{iso} in the same truth p_T , parameterized as function of $p_T^{OL,UnCorr}$, n_p and p_T^{μ} .
- After correction, the average reco p_T^{OL} is consistent with average reco p_T^{UnOL}
- After the p_T correction, the mean value of p_T^{reco}/p_T^{truth} is moving to 1, which means the average p_T^{reco} is corrected to p_T^{truth} .
- The resolution of p_T^{OL} also improves a lot after the correction.

η and ϕ correction results

• The η and ϕ resolutions are improved very significantly after the correction.

The 10th China LHC Physics Conference, Nov. 14 - Nov. 17, 2024, Qingdao, Shandong

figures for approval

Analysis strategy

- Signal selection:
 - Focusing on the mass range of $4 < m_a < 15 \text{ GeV}$
 - Only considering $a \rightarrow \tau_{\mu} \tau_{h}$ decay mode (23% branching ratio of di- τ decay)
 - Using the muon removal technique to resolve the merged di- τ identification
 - Select two $\mu \tau_{had}$ pairs with $60 < m_{2\mu \tau_{had}} < 120 \text{ GeV}$
 - SS μ and OS μ channels are considered based on the sign of final two μ to improve the sensitivity
- Background estimation:
 - Prompt background are estimated from MC
 - Non-prompt/fake background are estimated using a data-driven Fake Factor Method
 - Background model is verified in signal-like validation regions (VRs)
- Interpretation:
 - Upper limits on $\frac{\sigma_H}{\sigma_{SM}} \times BR(H \to aa \to 4\tau)$ are extracted from benchmark 2HDM + S model by using CLs method and pseudo-experiment method.

Data and simulated samples

- Data:
 - Full *pp* collision dataset collected by ATLAS during Run 2 of LHC ($L = 140 \text{ fb}^{-1}$)
- Signal simulation:
 - Powheg + Pythia8 + AFII, ggF production, $H \rightarrow aa \rightarrow 4\tau$
 - 2lep2had tau filter
 - $m_a = 4, 6, 8, 10, 12, 14, 15 \text{ GeV}$
- Background simulation:
 - Prompt background
 - $q\bar{q}/gg \rightarrow ZZ^*$: Sherpa 2.2.2
 - $H \rightarrow ZZ^*$: Powheg + Pythia8
 - Triboson, $t\bar{t} + Z/W$: Sherpa
 - Non-prompt background (only used for fake composition study and signal optimization)
 - $t\bar{t}$: Powheg + Pythia8
 - Z/W + jets: Sherpa
 - Single top: Powheg + Pythia8
 - Semi-leptonic diboson: Sherpa
 - Dijet: Powheg + Pythia8
- Derivation:
 - Customized <u>TAUP6</u>

Trigger

• Combination of single muon and di-muon triggers:

Trigger Type	Year	HLTs	
Single Muon	2015-2018	HLT_mu50	
Di-muon	2015	HLT_mu18_mu8noL1 HLT_2mu10	
	2016-2018	HLT_mu22_mu8noL1 HLT_2mu14	

- Since the muons in the signals are close to the hadrons, only triggers without isolation requirements are considered.
- The proposed trigger set efficiency is comparable with other trigger sets.
- The combined trigger efficiency SF is directly obtained from the official TrigGlobalEffciencyCorrectionTool (<u>twiki</u>).

cut name	4 GeV	6 GeV	8 GeV	10 GeV	15 GeV
FullTrig	54	58	56	68	84
ResolvedTrig	42	44	40	46	53
AllmuTrig	50	55	52	63	82
AlltauTrig	23	13	11	25	52
AllmuOrtauTrig	53	56	53	64	84
DoubleMuTrig	39	40	35	40	43
SingleDoubleMuTrig	40	44	39	46	53
SingleDoubleMuNonIsoTrig	39	42	37	43	47
SingleDoubleTriMuTrig	41	45	40	47	53
SingleDoubleTriMuTauTrig	49	50	46	60	79

• FullTrig: full un-prescaled triggers in run2

- CurrentTrig: the triggers currently in use, from the resolved analysis
- AllmuTrig: all the triggers including mu in run2
- AlltauTrig: all the triggers including tau in run2
- AllmuOrtauTrig: all the triggers including mu or tau in run2
- DoubleMuTrig: hand-picked dimu triggers
- SingleDoubleMuTrig: hand-picked single muon and dimu triggers
- SingleDoubleMuNonIsoTrig: hand-picked single non-isolated muon and dimu triggers
- SingleDoubleTriMuTrig: hand-picked single muon, dimu and triple muon triggers
- SingleDoubleTriMuTauTrig: hand-picked single muon, dimu, and triple muon triggers + tau triggers

The efficiency of different trigger set in run2 trigger menu (in percent %)

Object definition

• The requirements of the baseline and signal objects are summarized:

- The standard Overlap Removal was skipped for muons and taus. The taus with $\Delta R(\tau_{had}, \mu) < 0.001$ were removed to save the signal efficiency and to delete τ_{had} reconstructed from μ track.
- The baseline d_0/σ_{d_0} requirement is looser than usual to increase the muon efficiency from tau decay.
- No isolation requirement for the signal muons.
- Uncorrected tau momentum is used in the tau object selection.
- RNN > 0.01 for the baseline tau is to increase the statistics for fake estimation.
- Selecting the closest $\mu \tau_{had}$ pairs with $\Delta R(\mu, \tau) < 0.4$ and $m_{\mu \tau_{had}} < 15$ GeV.

Event selection

- Trigger:
 - Combination of single muon and di-muon triggers
- Object selection:
 - Non-isolated muons with loose $d_0/\sigma_{d_0} < 7$ requirement
 - Baseline tau (RNN > 0.01) for fake estimation
 - Signal tau requires Medium RNN ID working points
- Event selection in the SRs:
 - Leading $p_T^{\mu} > 14 \text{ GeV}$
 - Leading $p_{T,\tau}^{Uncorr} > 30$ GeV, subleading $p_{T,\tau}^{Uncorr} > 25$ GeV
 - 2 signal $\mu \tau_{had}$ pairs ($\Delta R(\mu, \tau_{had}) < 0.4$, $m_{\mu \tau_{had}} < 15$ GeV and τ_{had} passing Medium RNN ID)

- $60 < m^{Uncorr}_{2\mu\tau_{had}} < 120 \text{ GeV}$
- $SS\mu$ channel: same-sign charge muons
- *OSµ* channel: opposite-sign charge muons and $m_{\mu\mu} < 50$ GeV

Event selection (1)

- Event selection in the SRs:
 - Leading $p_T^{\mu} > 14 \text{ GeV}$
 - Leading $p_{T,\tau}^{Uncorr} > 30$ GeV, subleading $p_{T,\tau}^{Uncorr} > 25$ GeV
 - 2 signal $\mu \tau_{had}$ pairs ($\Delta R(\mu, \tau_{had}) < 0.4$, $m_{\mu \tau_{had}} < 15$ GeV and τ_{had} passing Medium RNN ID)
 - $60 < m^{Uncorr}_{2\mu\tau_{had}} < 120 \text{ GeV}$
 - $SS\mu$ channel: same-sign charge muons
 - *OSµ* channel: opposite-sign charge muons and $m_{\mu\mu} < 50 \text{ GeV}$

cut name	4 GeV	6 GeV	8 GeV	10 GeV	12 GeV	14 GeV	15 GeV	
AOD generation	5.5e+05	3.2e+05	2.7e+05	2.4e+05	2.3e+05	2.3e+05	2.2e+05	table for approval
Preselection	5707.6	2773.7	2222.1	1955.2	1725.5	1561.7	1493.3	
N(baseline μ) ≥ 2	5289.1	2554.3	2020.8	1785.3	1587	1441.8	1372	
N(baseline τ) ≥ 1	5276.2	2546.2	2014.3	1779.4	1579.5	1432.1	1364	
N(baseline τ) ≥ 2	2441	1200	872	683	524	456	410	
2 baseline $\mu\tau$	2332.6	1135.4	818	576	334	222	176	
μ leadpt > 14 GeV	2319.6	1128.2	813	573	334	222	176	<i>SSu</i> channel cutflow table
$2 \text{ OS } \mu \tau$	2229	1092.7	784	556	323	215	168	1
$2 \text{ mVis} 15 \mu \tau$	2229	1092.7	784	556	323	215	168	
Lead $p_T^{\tau} > 30 \text{ GeV}$	2047.7	1010.3	706	500	299	207	164	
Sublead $p_T^{\tau} > 25 \text{ GeV}$	1678.8	845	581	417	260	184	149	
2 signal $\mu\tau$	477	231	167	141	86	67	54	
$60 \text{ GeV} < m_{2\mu\tau}^{vis} < 120 \text{ GeV}$	420	206	150	128	77	60	49	
$2 \text{ SS } \mu$	202±9.0	97±4.8	78±4.4	66±3.7	37±2.5	31±2.3	24±2.0	

Event selection (2)

• Cutflow table for $OS\mu$ channel:

cut name	4 GeV	6 GeV	8 GeV	10 GeV	12 GeV	14 GeV	15 GeV
AOD generation	5.5e+05	3.4e+05	2.7e+05	2.4e+05	2.3e+05	2.3e+05	2.3e+05
Preselection	5707.6	2773.7	2222.1	1955.2	1725.5	1561.7	1493.3
N(baseline μ) ≥ 2	5289.1	2554.3	2020.8	1785.3	1587	1441.8	1372
N(baseline τ) ≥ 1	5276.2	2546.2	2014.3	1779.4	1579.5	1432.1	1364
N(baseline τ) ≥ 2	2441	1200	872	683	524	456	410
2 baseline $\mu\tau$	2332.6	1135.4	818	576	334	222	176
μ leadpt > 14 GeV	2319.6	1128.2	813	573	334	222	176
$2 \text{ OS } \mu \tau$	2229	1092.7	784	556	323	215	168
2 mVis15 μτ	2229	1092.7	784	556	323	215	168
Lead $p_T^{\tau} > 30 \text{ GeV}$	2047.7	1010.3	706	500	299	207	164
Sublead $p_T^{\tau} > 25 \text{ GeV}$	1678.8	845	581	417	260	184	149
2 signal $\mu\tau$	477	231	167	141	86	67	54
$60 \text{ GeV} < m_{2\mu\tau}^{vis} < 120 \text{ GeV}$	420	206	150	128	77	60	49
$2 OS \mu$	218	109	72	62	40	29	24
$m_{\mu\mu} < 50 \text{ GeV}$	214±9.1	107 ± 5.0	69±4.0	60±3.3	39±2.6	27±2.2	24±2.0

table for approval

Table 10: A summary of weighted cutflow of signal region in OS μ channel for $m_a = 4, 6, 8, 10, 12, 14, 15$ GeV (BR($H \rightarrow 2a \rightarrow 4\tau$) = 1.0 at 140 fb⁻¹), starting from the AOD generation level.

Fake factor measurement in Z + jets region

- Fake Factor parameterized as $f(p_T^{Uncorr}, \tau_{prongness})$
- Nominal binning:
 - p_T^{Uncorr} : (20,30), (30,40), (40,500) GeV
 - prongness: 1 prong, 3 prong
- Other parameterization and binning strategies are used to estimate the FF shape uncertainties
 - $|\eta|^{Uncorr}$: barrel (0,1.37), endcap (1.52,2.5)
 - $p_T^{Uncorr}, p_T^{\mu\tau}$

Fake composition uncertainties

- Due to the fake composition difference between $\rm Z$ + jets CR and SR/VR
- Estimated by measuring the FFs in regions with different fake composition
 - With/without Bjets
 - With 1 or 2 jets
 - $2\mu\tau_{had}$ region
 - $\Delta R < 0.4(0.2)$
- Apply the new FFs to SR/VR using the same fake estimation equation

Additional tau efficiency SF uncertainty

- Taking the average difference between merged tau and standard taus
- Medium RNN
 - Object level uncertainty: 1-prong: $\pm 8\%$, 3-prong: $\pm 10\%$
 - Event level uncertainty: take into account two merged taus

[$Eff_{\Delta R < 0.4}$	$Eff_{\Delta R>0.4}$	$Eff_{\Delta R < 0.4}/Eff_{\Delta R > 0.4}$	Uncertainty
	1-prong	0.576	0.629	0.92	0.08
	3-prong	0.378	0.420	0.90	0.10

Average $m_{\mu\tau_{had}}$ distributions in SRs

- The binning of each signal mass point is optimized to make the statistical error of signal + background of each bin around 20% and never 0 background events in each bin.
- The edge of each bin is manually chosen to separate the shape of the signal and background.
- The overflow bin is added to the rightmost bin of each distribution.

 $m_a = 4 \text{ GeV}$

 $m_a = 8 \text{ GeV}$

Average $m_{\mu\tau_{had}}$ distributions in SRs

11/15/2024

Observed yields in SRs

- The observed number of events in data is consistent with the background prediction within 1σ in both $SS\mu$ and $OS\mu$ channels.
- No excess is found. The fake prediction shows very good agreement with the data.

The discrepancy between truth and reco visible mass

- The variable "average $m_{\mu\tau}^{\nu is}$ " is used for the final fitting.
 - average $m_{\mu\tau}^{vis} = (m_{\mu\tau_1}^{vis} + m_{\mu\tau_2}^{vis})/2$,

•
$$m_{\mu\tau}^{vis} = \sqrt{2p_T^{\mu}p_T^{\tau}(\cosh(\eta^{\mu} - \eta^{\tau}) - \cos(\phi^{\mu} - \phi^{\tau}))}, (m = 0, E \gg m)$$

- The reco average $m_{\mu\tau}^{\nu is}$ shifts to lower value compared to the truth value.
- The reason is because we only re-calculate the RNN ID variables in the muon removal algorithm, but not re-calculate the tau momentum variables (p_T, η, ϕ) .
- Solution : Correct the tau momentum in the SR and VR.
 - Only taus having charged tracks overlapped with muon should be corrected
 - The total number of events for each region keeps the same

How to correct the tau momentum

- Step 1: Correct the p_T^{τ}
 - In the same truth p_T bin, the average reco p_T are different for the taus with OL muon and without OL muon.
 - We can make the ratio of overlapped tau p_T to unoverlapped tau:
 - OL taus: having charged track overlapped with muon; UnOL: no charged track overlapped with muon
 - $R(p_T^{OL}, p_T^{\mu}, n_p, \eta) = p_T^{OL}/p_T^{UnOL}$
 - Fit the ratio with a function
 - Correct the p_T^{OL} to p_T^{UnOL} using p_T^{OL}/R

How to correct the tau momentum

- Step 2: Correct the η^{τ} and ϕ^{τ}
 - After correcting the p_T , we have:
 - $\vec{p}_{\mu\tau}(p_T^{\mu\tau},\eta^{\mu\tau},\phi^{\mu\tau})$
 - $ec{p}_{ au}(p_T^{ au}$, $\eta^{ au}$, $\phi^{ au}$)
 - $\vec{p}_{\mu}(p_T^{\mu},\eta^{\mu},\phi^{\mu})$
 - Where variables marked with green color are already known, variables marked with red color are unknown
 - According to the momentum conservation, we have $\vec{p}_{\mu\tau} = \vec{p}_{\mu} + \vec{p}_{\tau}$
 - We solve the equation:
 - $\phi^{\tau} = \phi^{\mu\tau} \sin^{-1}[p_T^{\mu} / p_T^{\tau} \sin(\phi^{\mu} \phi^{\mu\tau})]$
 - $p_T^{\mu\tau} = (p_T^{\tau} \cos\phi^{\tau} + p_T^{\mu} \cos\phi^{\mu})/\cos\phi^{\mu\tau}$
 - $\eta^{\tau} = tanh^{-1}[(p_T^{\mu\tau}tanh(\eta^{\mu\tau}) p_T^{\mu}tanh(\eta^{\mu}))/p_T^{\tau}]$
 - Finally, we can correct η^{τ} and ϕ^{τ} using the above formulas.

Fit the ratio p_T^{OL}/p_T^{UnOL}

• energy resolution parameterization: $\frac{\sigma_E}{E} = \frac{a}{\sqrt{E}} + b + \frac{c}{E}$

$$R(p_T^{OL}, p_T^{\mu}, \eta, n_p) = p_T^{OL} / p_T^{UnOL} = \frac{a}{p_T^{OL}} + b + \frac{c}{p_T^{OL}}$$

- The barrel and endcap have almost the same ratio curves, so I merged them into one ratio curve for final parameterization:
 - $R(p_T^{OL}, p_T^{\mu}, n_p) = p_T^{OL} / p_T^{UnOL} = \frac{a}{p_T^{OL}} + b + \frac{c}{p_T^{OL}}$

Visible mass $m_{\mu\tau}^{vis}$ correction results

- The reco $m_{\mu\tau}^{\nu is}$ is consistent with truth $m_{\mu\tau}^{\nu is}$ after tau momentum correction.
- The m_{τ}^{vis} has a relatively large effect on $m_{\mu\tau}^{vis}$ for the lower mass signal. If we consider truth $m_{\tau}^{vis} = 0$, reco $m_{\mu\tau}^{vis}$ is also consistent with truth $m_{\mu\tau}^{vis}$ for lower masses after correction.

Correction check in validation region

- The tau momentum correction is applied for both data and background in the VRs, then the relevant variables are re-calculated after tau momentum correction.
- The fake prediction still agrees with data after correction.

11/15/2024

Correction check in cross-check region

- The fake prediction still agrees with data in the cross-check region after correction.

Average $m_{\mu\tau}^{\nu is}$ ($m_a = 6, 8 \text{ GeV}$)

• The same binning strategy is used for $m_a = 6,8$ GeV signal.

cut name	4 GeV	6 GeV	8 GeV	10 GeV	12 GeV	14 GeV	15 GeV
AOD generation	5.5e+05	3.4e+05	2.7e+05	2.4e+05	2.3e+05	2.3e+05	2.3e+05
Preselection	5707.6	2773.7	2222.1	1955.2	1725.5	1561.7	1493.3
N(baseline μ) ≥ 2	5289.1	2554.3	2020.8	1785.3	1587	1441.8	1372
N(baseline τ) ≥ 1	5276.2	2546.2	2014.3	1779.4	1579.5	1432.1	1364
N(baseline τ) ≥ 2	2441	1200	872	683	524	456	410
2 baseline $\mu\tau$	2332.6	1135.4	818	576	334	222	176
μ leadpt > 14 GeV	2319.6	1128.2	813	573	334	222	176
$2 \text{ OS } \mu \tau$	2229	1092.7	784	556	323	215	168
2 mVis15 μτ	2229	1092.7	784	556	323	215	168
Lead $p_T^{\tau} > 30 \text{ GeV}$	2047.7	1010.3	706	500	299	207	164
Sublead $p_T^{\tau} > 25 \text{ GeV}$	1678.8	845	581	417	260	184	149
2 signal $\mu\tau$	477	231	167	141	86	67	54
$60 \text{ GeV} < m_{2\mu\tau}^{vis} < 120 \text{ GeV}$	420	206	150	128	77	60	49
$2 OS \mu$	218	109	72	62	40	29	24
$m_{\mu\mu} < 50 \text{ GeV}$	214 + 9.1	107 ± 5.0	69 + 4.0	60+3.3	39+2.6	27 ± 2.2	24+2.0

Table 10: A summary of weighted cutflow of signal region in OS μ channel for $m_a = 4, 6, 8, 10, 12, 14, 15$ GeV (BR($H \rightarrow 2a \rightarrow 4\tau$) = 1.0 at 140 fb⁻¹), starting from the AOD generation level.

cut name	Events passed	Efficiency	Cumulative efficiency
AOD generation	5.5e+05	1	1
Preselection	5707.6	0.010459	0.010459
N(baseline μ) ≥ 2	5289.1	0.92668	0.0096917
N(baseline τ) ≥ 1	5276.2	0.99755	0.0096679
N(baseline τ) ≥ 2	2441	0.46264	0.0044728
2 baseline $\mu\tau$	2332.6	0.95562	0.0042743
μ leadpt > 14 GeV	2319.6	0.99441	0.0042504
$2 \text{ OS } \mu \tau$	2229	0.96094	0.0040843
$2 \text{ mVis} 15 \mu \tau$	2229	1	0.0040843
Lead $p_T^{\tau} > 30 \text{ GeV}$	2047.7	0.91866	0.0037521
Sublead $p_T^{\tau} > 25 \text{ GeV}$	1678.8	0.81986	0.0030762
2 signal $\mu\tau$	477	0.28435	0.00087474
$60 \text{ GeV} < m_{2\mu\tau}^{vis} < 120 \text{ GeV}$	420	0.88021	0.00076995
$2 \text{ SS } \mu$	202	0.48146	0.0003707

Table 7: Weighted cutflow of signal region in the SS μ channel for $m_a = 4$ GeV (BR($H \rightarrow 2a \rightarrow 4\tau$) = 1.0 at 140 fb⁻¹), starting from the AOD generation level.

Events passed	Efficiency	Cumulative efficiency
5.4574e+05	1	1
5707.6	0.010459	0.010459
5289.1	0.92668	0.0096917
5276.2	0.99755	0.0096679
2441	0.46264	0.0044728
2332.6	0.95562	0.0042743
2319.6	0.99441	0.0042504
2229	0.96094	0.0040843
2229	1	0.0040843
2047.7	0.91866	0.0037521
1678.8	0.81986	0.0030762
477	0.28435	0.00087474
420	0.88021	0.00076995
218	0.51854	0.00039925
214	0.98207	0.00039209
	Events passed 5.4574e+05 5707.6 5289.1 5276.2 2441 2332.6 2319.6 2229 2047.7 1678.8 477 420 218 214	Events passedEfficiency5.4574e+0515707.60.0104595289.10.926685276.20.9975524410.462642332.60.955622319.60.99441222912047.70.918661678.80.819864770.284354200.880212180.518542140.98207

Table 9: Weighted cutflow of signal region in the OS μ channel for $m_a = 4$ GeV (BR($H \rightarrow 2a \rightarrow 4\tau$) = 1.0 at 140 fb⁻¹), starting from the AOD generation level.

Limits for SSµ and OSµ

CMS latest results

CMS PAS SUS-24-002

A search for a pair of light pseudoscalar bosons (a_1) produced from the decay of the 125 GeV Higgs boson (H) is presented. The analysis examines decay modes where one a₁ decays into a pair of tau leptons, and the other decays into either another pair of tau leptons or a pair of muons. The a₁ mass probed in this study ranges from 4 to 15 GeV. The data sample used was recorded by the CMS experiment in proton-proton collisions at a center-of-mass energy of 13 TeV and corresponds to an integrated luminosity of 138 fb⁻¹. The study uses the $2\mu 2\tau$ and 4τ channels in combination to constrain the product of the Higgs boson production cross section and the branching fraction to the 4τ final state, $\sigma(pp \rightarrow H + X)\mathcal{B}(H \rightarrow a_1a_1)\mathcal{B}^2(a_1 \rightarrow \tau\tau)$. This methodology takes advantage of the linear dependence of the fermionic coupling strength of pseudoscalar bosons on the fermion mass. Model-independent upper limits at 95% confidence level (CL) on $\sigma(pp \to H + X)\mathcal{B}(H \to a_1a_1)\mathcal{B}^2(a_1 \to \tau\tau)$, relative to the standard model Higgs boson production cross section σ_{SM} , are set. The observed (expected) upper limits range between 0.007 (0.011) and 0.079 (0.066) across the mass range considered. Exclusion limits at 95% on $\sigma(pp \rightarrow H + X)\mathcal{B}(H \rightarrow a_1a_1)$, relative to σ_{SM} , are derived for various Two Higgs Doublet Model + Singlet scenarios.

