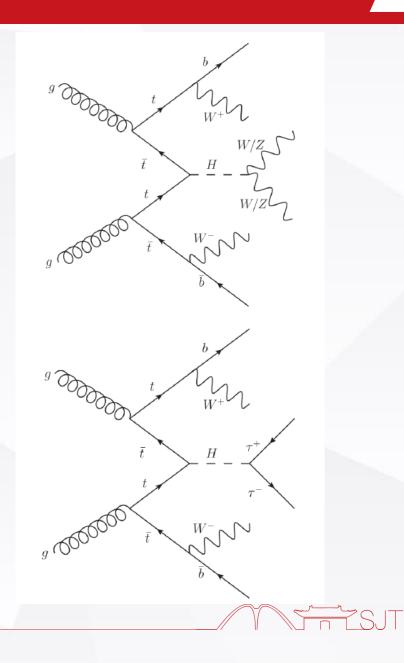


Measurement of the associated production of a Higgs boson and a top-quark pair in multilepton final states in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

2024/11/15


10th China LHC Physics Conference (CLHCP2024), Qingdao, China

饮水思源·爱国荣校

Contents

- Motivation
- Analysis frameworks
- Channel Overview
- Background Estimation
- Results
- Summary

Motivation

Probe top-Higgs yukawa coupling in direct way

potential window to BSM

Sensitivity to Higgs self-coupling (strongest single Higgs sensitivity)

Challenges:

- ttH cross-section at √s=13 TeV: 0.507 pb (~1% of Higgs produced at theLHC)
- Complexed final state (lots of jets coming both from the Higgs and from the tops)
- Cannot reconstruct the full process well with the neutrinos

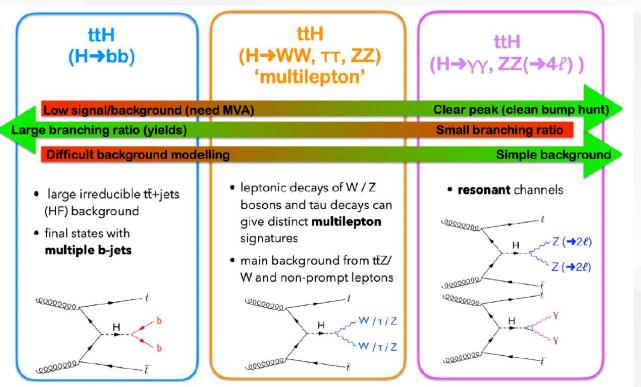
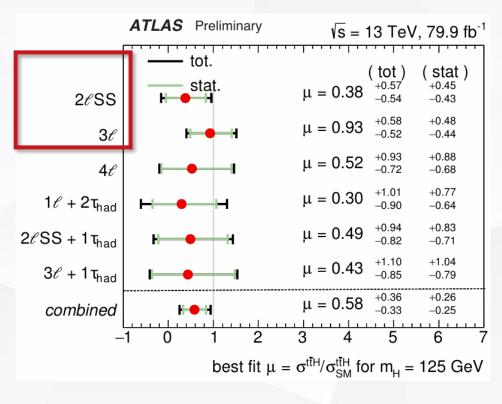
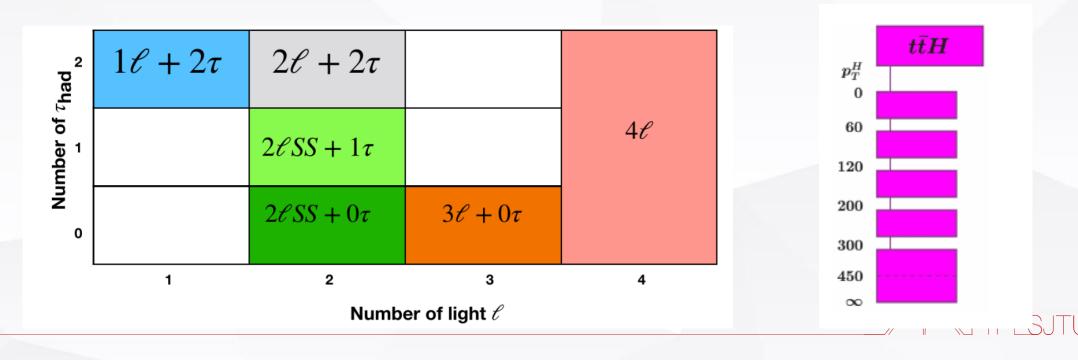



Figure from Tamara Vazquez Schroeder

ttH Ml: previous measurement


- Signal strength: 0.58^{+0.36}_{-0.33}
- ^(®) Observed Significance: 1.8σ (3.1σ exp)
- Most sensitive channels: 21SS, 31

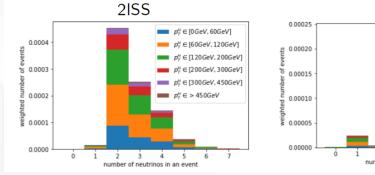
Analysis Strategy

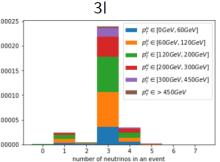
- Full run 2 dataset (140 fb⁻¹)
- Split into 6 different channels using N_leptons,N_τhad , lepton charge
- MVA is used to define the signal regions and MVA-based control regions
- Template fit for fake lepton backgrounds
- Simplified Template Cross Sections (STXS) measurement(p_T^H)

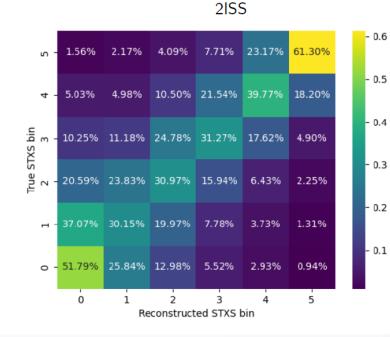


Channel Overview

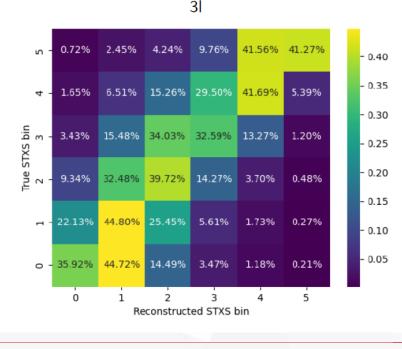
- \Rightarrow Most sensitive channels
- 4l channel

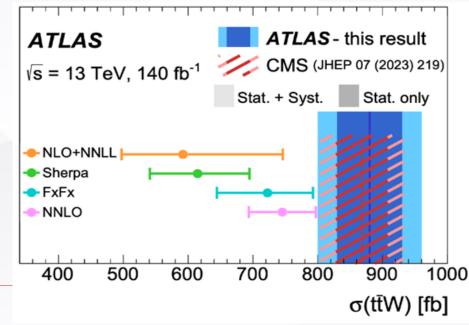

 $\textcircled{\ensuremath{\mathfrak{B}}}$ 27 1l and 2l channel


ML+ οτ: primary sensitive to H→WW/ZZ.
ML+ ≥1τ: primary sensitive to H→ττ.



H_pT reconstruction in Oτ channel

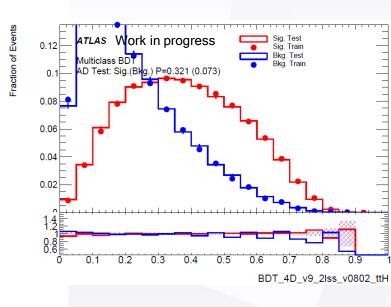

Higgs pT is difficult to reconstruct (many neutrinos in H decay and not reconstructed soft particles)

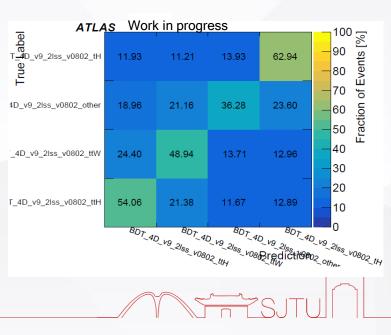


Background Estimation

- ^(*) The latest dedicated ttW background treatments are used for the $O_{\tau had}$ channel(JHEP05(2024)131)
- Irreducible backgrounds: ttW, ttZ, VV
 - Cut based and multiclass BDT
- **(**)** Reducible backgrounds: fake or non-prompt leptons, Q mis-ID, fake τ_{had}
 - Fake factor and data-driven for non-prompt lepton
 - Template fit method inherited from ttWML

BDT discriminants(2lSS οτ)





k-folding is used: dataset divided into two subsets for training and testing

Sood prediction power for ttH and tHq, more difficult to distinguish ttH from ttW.

variable	description
Njets	Number of central jets with $p_T > 25$ GeV
$\Delta R(\ell_0, \text{ jet})$	Angular distance between leading lepton and its closest jet
$\Delta R(\ell_1, \text{jet})$	Angular distance between sub-leading lepton and its closest jet
$M(\ell_0, \ell_1)$	Invariant mass of leading lepton and sub-leading lepton
LD	Linear discriminant defined as: $0.6^* E_T^{miss} + 0.4^* H_T^{jet_7}$
$p_T(\text{jet}_0)$	Transverse momentum of the leading jet
$p_T(\text{jet}_1)$	Transverse momentum of the sub-leading jet
ΔR_{jets}^{avg}	Average ΔR between jets
$Max(\eta_l)$	Pseudo-rapidity difference between the leading and subleading leptons $(\eta_{\ell_0} \text{ and } \eta_{\ell_1})$
$p_T(\ell_1)$	Transverse momentum of the subleading lepton
$\eta(\ell_0)$	Pseudo-rapidity of the leading lepton
M(lep, MET)	Invariant mass of leptons and missing transverse energy
$M_T^{(\ell 0, MET)}$	Transverse mass of the leading lepton and missing transverse energy
$M_T^{(\ell 1, MET)}$	Transverse mass of the sub-leading lepton and missing transverse energy
$\eta(\text{jet}_0)$	Pseudo-rapidity of the leading jet
$\eta(\text{jet}_1)$	Pseudo-rapidity of the sub-leading jet
$H_{ m T}^{ m jet}$	Scalar sum of the transverse momenta of the jets
$\Delta R(\dot{\ell_0},\ell_1)$	Angular distance between the two same-sign leptons
M_{b0}	Invariant mass of the leading b-jet
M_{b1}	Invariant mass of the sub-leading b-jet

MVA selection:

Control Regions

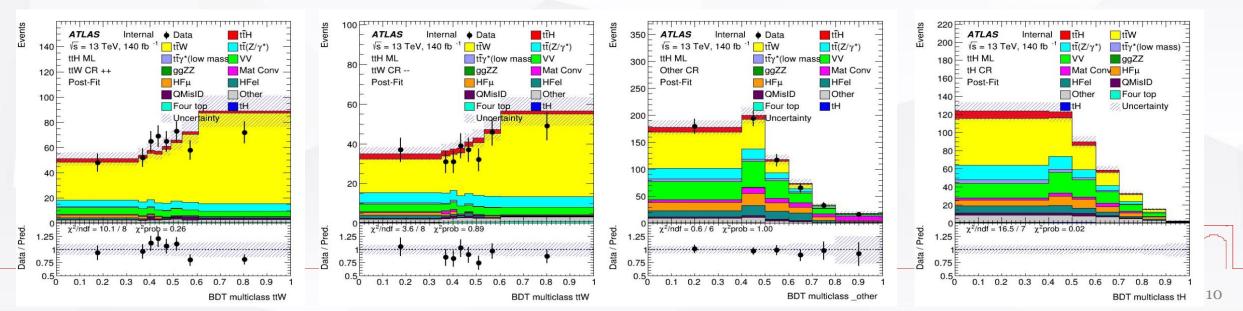
 $Max(BDT_{t\bar{t}H}, BDT_{tH}, BDT_{t\bar{t}W}, BDT_{Other}) = BDT_{t\bar{t}W}$

 $Max(BDT_{t\bar{t}H}, BDT_{tH}, BDT_{t\bar{t}W}, BDT_{Other}) = BDT_{t\bar{t}W}$

 $Max(BDT_{t\bar{t}H}, BDT_{tH}, BDT_{t\bar{t}W}, BDT_{Other}) = BDT_{Other}$

 $2\ell SS + 0\tau_{had}$ pre-MVA selection

 $2\ell SS + 0\tau_{had}$ pre-MVA selection

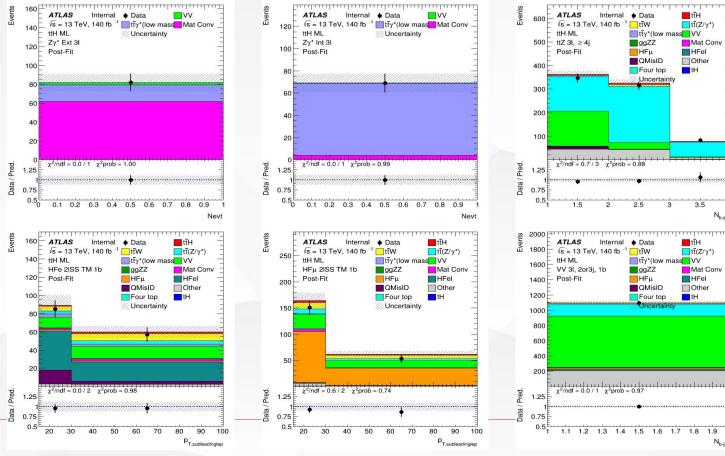

 $2\ell SS + 0\tau_{had}$ pre-MVA selection

total charge > 0

total charge < 0

Pre-MVA selection:

- ✓ SLT||DLT
- ✓ VeryTightPLIV
- ✓ ≥3j
- ✓ loose btag: ≥1b @85%
- ✓ Tau veto
- ✓ lep_pT> 15 GeV
- ✓ !(nJets_OR>=6 && nJets_OR_DL1r_77>=3)(4top veto)


 $t\bar{t}W ++$

 $t\bar{t}W - -$

Other

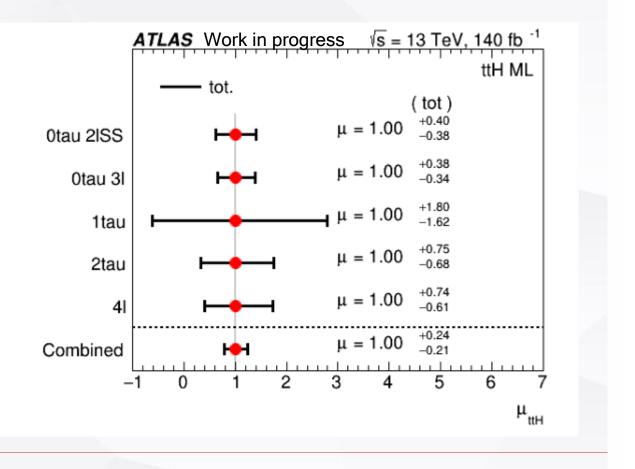
Cut-based CRs(inherited from ttWML)

- **Prompt** background:
 - \succ 3l VV and 3l $t\bar{t}Z$ CRs
 - Conversion: 31 Mat and 31 Int CRs
- **Non-prompt** background mainly from $t\bar{t}$: 6 Fake HF CRs •

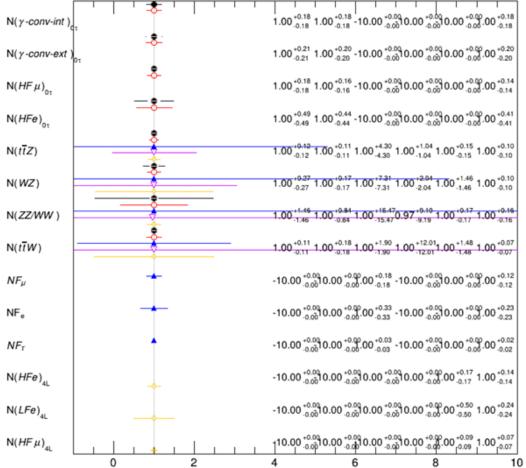
Internal Data ttH s = 13 TeV, 140 fb TttW $t\overline{t}(Z/\gamma^*)$ ttγ*(low mass VV ggZZ Mat Conv HFμ HFel QMisID Other Four top tH Uncertaint $\chi^2/ndf = 0.7/3$ $\chi^2 prob = 0.88$ 2.5 3 3.5 2 N_{b-jets} ttH s = 13 TeV, 140 fb **I**ttw $t\bar{t}(Z/\gamma^*)$ ttγ*(low mass VV ggZZ Mat Conv HEu HEel Other QMisID Four top tH

N_{b-jets}

Regions definition

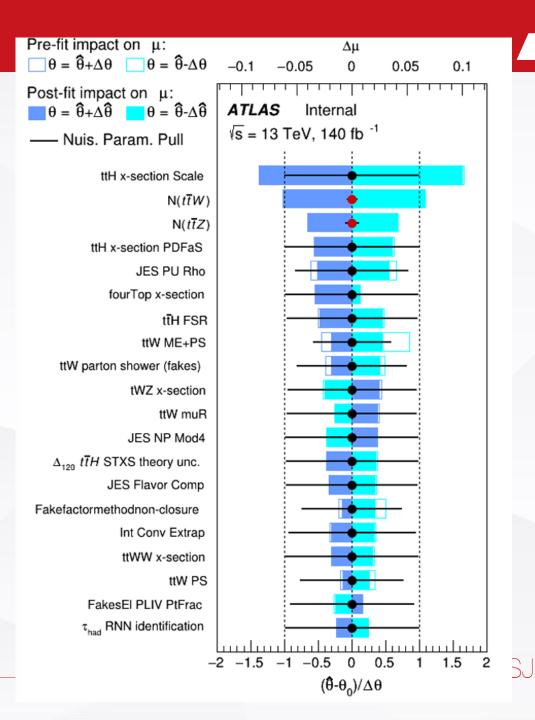

Control regions for:	Diboson tīZ		Conversions	HF non-prompt		
Njets	$2 \text{ or } 3 \ge 4$		≥ 0	≥ 2		
N _{b-jets}	$1 b^{85\%}$		0 b ^{85%}	$1 b^{85\%}$		
Lepton requirement	3ℓ		$\mu\mu e^*$	2ℓSS		
Lepton definition		(L, l)	(M, M)	$(T, M_{\text{ex}}) \parallel (M_{\text{ex}}, T) \parallel (M_{\text{ex}}, M_{\text{ex}})$		
Lepton $p_{\rm T}$ [GeV]	(10,		15, 15)	(15, 15)		
$ m_{\ell^+\ell^-}^{\rm SF} - m_Z $ [GeV]	< 10		> 10	_		
$ m_{\ell\ell\ell}-m_Z ~[{\rm GeV}]$	>10)	< 10	_		
$m_T(\ell_0, E_{\mathrm{T}}^{\mathrm{miss}})$ [GeV]	_			< 250 for TM_{ex} and $M_{ex}T$ pairs		
τ_{had} candidates (Medium)			0	0		
Region split			internal / material	subleading $e/\mu \times (TM_{ex}, M_{ex}T, M_{ex}M_{ex})$		
Region naming	3ℓVV 3ℓttZ		3ℓIntC	$2\ell tt(e)_{TM_{ex}}, 2\ell tt(e)_{M_{ex}T}, 2\ell tt(e)_{M_{ex}M_{ex}}$		
			3ℓMatC	$2\ell \operatorname{tt}(\mu)_{TM_{\mathrm{ex}}}, 2\ell \operatorname{tt}(\mu)_{M_{\mathrm{ex}}T}, 2\ell \operatorname{tt}(\mu)_{M_{\mathrm{ex}}M_{\mathrm{ex}}}$		

Results: Combine fit(ASIMOV)



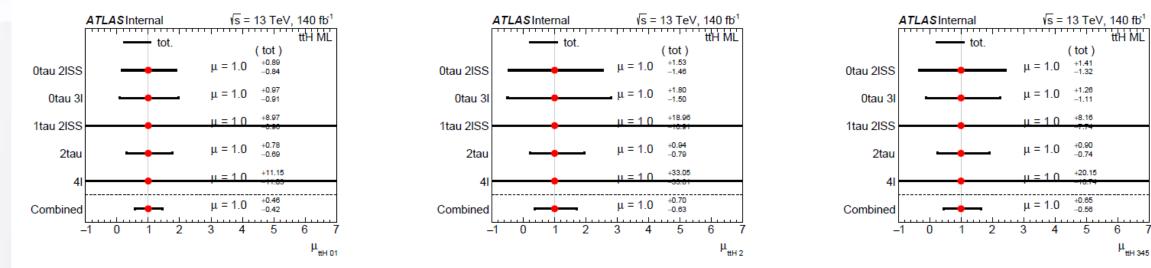
Second S

Statistical and systematical uncertainties have similar impact (12% stat and 15% syst)


ATLAS Work in progres 0tau 2ISS ↔0tau 3I + 1tau - 2tau ↔4I Combined

Results: Ranking

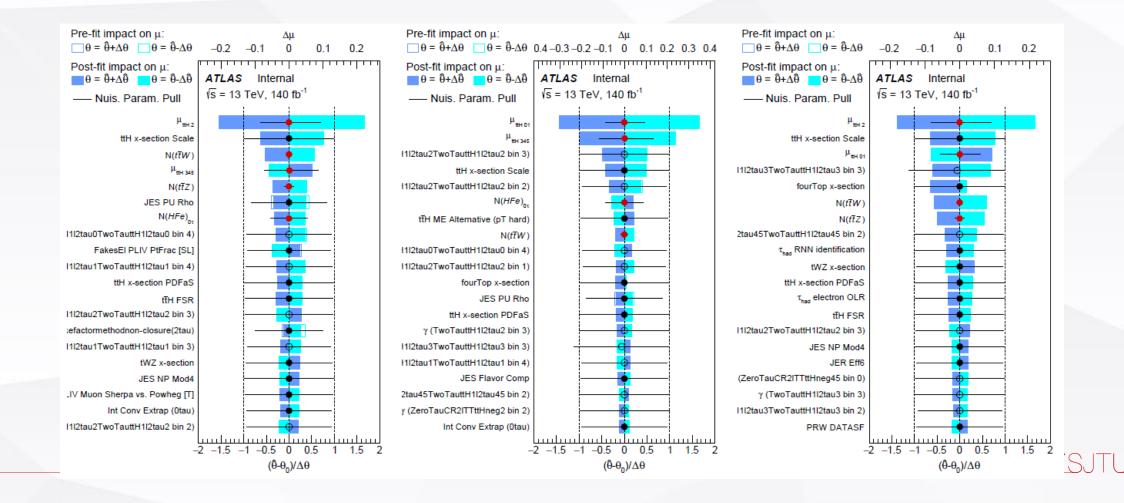
Significant impact NPs:


- ttH modeling, ttW and ttZ background
- Jet relevant systematics

Result: STXS fit(ASIMOV)

 <br/

 \circledast Measure 3 STXS μ_ttH bins due to lack of statistics


I τ channel 1.06 σ (0.48 σ) 1.9 σ 2 τ channels 1.02 σ (0.32 σ) 3.2 σ	Exp(obs)	ATLAS-CONF-2019-045	This work
2 τ channels 1.02σ (0.32 σ) 3.2σ	$0 \ \tau$ and $4l$ channels	2.89σ (2.12σ)	4.5σ
	$l \tau$ channel	1.06σ (0.48σ)	1.9σ
Combined $3.06\sigma (1.80\sigma)$ 5.5 σ	2τ channels	1.02σ (0.32σ)	3.2σ
	Combined	3.06σ (1.80σ)	5.5σ

Result: STXS fit(ASIMOV)

(i) *ttH* cross-section scale uncertainty, *ttW* and *ttZ* norm factors are the dominant uncertainties still.

The heavy flavour electron fake normalisation appears higher compared to inclusive fit.

Challenging final states:

- ➤ rare cross section, large multiplicity of jets, presence of neutrinos
- Multiclass BDT to distinguish signal and backgrounds
- GNN to reconstruct the Higgs pT
- Measure the differential cross section as a function of:
 - ≻3 Higgs pT : [0,120), [120, 200), [200, inf) GeV
- Analysis provides inclusive and STXS cross-section measurement
- **Significant improvement** in sensitivity compared to partial run 2 analysis(3.1σ to 5.5σ exp)

Backup

- 6 bins in H pT in STXS framework for ttH
- Split ttH template in 6 STXS bins
- Additionally split ttH sample by Higgs decay mode (WW, ZZ, ττ, other)
- Solution Assume that ttH modelling uncertainties are independent on Higgs decay:
 - derive uncertainties on Higgs decay inclusive template and apply to split templates

Triggers and object definition

• SL or DL trigger for the three channels

Channel	2ℓSS	3l	4ℓ	
Triggers	SL DL	SL DL	SL DL	

- PLIV selection on 2lSS and 3l channels
- Looser lepton definition on 4l channel

	$2\ell SS+0\tau_{had}$	$3\ell + 0\tau_{had}$	4ℓ
$\tau_{\rm had}$ candidates	==0 M	==0 M	-
Leptons counting	$==2$ T: $p_{\rm T} > 15$ GeV	$==3 (T,T,L): p_T > 15, 15, 10 \text{ GeV}$	$==4 \text{ L}: p_{\text{T}} > 10 \text{ GeV}$
Lepton details	SS	OS (to others): $L p_T > 10 \text{ GeV}$	Sum charge $= 0$
		SS pair: T $p_{\rm T} > 15$ GeV	
		OS pair: $ m(ll) - m_Z > 10 \text{ GeV}$	OS pairs: $m(ll) > 12$ GeV
		and $m(ll) > 12 \text{ GeV}$	$ m(llll) - m_H > 5 \text{ GeV}$
N _{jets}	≥ 3	≥ 2	≥ 2
N _{b-jets} (@ 85% WP)	≥ 1	≥ 1	≥ 1

Background estimation II(cut-based ttWML)

- Prompt background:
 - ▶ 31 VV and 31 $t\bar{t}Z$ CRs
 - Conversion: 3l Mat and 3l Int CRs
- Non-prompt background mainly from $t\bar{t}$: 6 Fake HF CRs

Regions definition

Control regions for:	Diboson $t\bar{t}Z$		Conversions	HF non-prompt		
Njets	$2 \text{ or } 3 \ge 4$		≥ 0	≥ 2		
N _{b-jets}	1 b ⁸⁵	%	$0 b^{85\%}$	$1 b^{85\%}$		
Lepton requirement	3ℓ		μµe*	2 <i>ℓ</i> SS		
Lepton definition		(L, I)	(M, M)	$(T, M_{\text{ex}}) \parallel (M_{\text{ex}}, T) \parallel (M_{\text{ex}}, M_{\text{ex}})$		
Lepton $p_{\rm T}$ [GeV]	(10,		15, 15)	(15, 15)		
$ m_{\ell^+\ell^-}^{\rm SF} - m_Z $ [GeV]	< 10)	> 10	_		
$ m_{\ell\ell\ell} - m_Z $ [GeV]	>10)	< 10	_		
$m_T(\ell_0, E_{\rm T}^{\rm miss})$ [GeV]	_			< 250 for $TM_{\rm ex}$ and $M_{\rm ex}T$ pairs		
τ_{had} candidates (Medium)			0	0		
Region split	_	_	internal / material	subleading $e/\mu \times (TM_{ex}, M_{ex}T, M_{ex}M_{ex})$		
Region naming	3ℓVV	3ℓttZ	3ℓIntC	2ℓ tt(e) _{TMex} , 2ℓ tt(e) _{MexT} , 2ℓ tt(e) _{MexMex}		
			3ℓMatC	$2\ell \operatorname{tt}(\mu)_{TM_{ex}}, 2\ell \operatorname{tt}(\mu)_{M_{ex}T}, 2\ell \operatorname{tt}(\mu)_{M_{ex}M_{ex}}$		

accept conversion veto conversion candidate electrons candidate electrons 2255 Fake HF CRs [≥2i, 1bj] ee+µe ee+µe ee+µe TM p_T l₁ µµ+eµ µµ+eµ µµ+eµ TM MT pr l1 pr l1 38 32-W/ttZ CRs [LincMincMinc] **Conversions** CRs [2-3j, 1bj] [≥4j, ≥1bj] [LincMincMinc] [0bj] Mat CO CR Int CO CR tTZ CR WZ CR 1 Z cand =1 Z cand Nbjets Nevents Nbjets

ttH SRs of reconstructed Higgs pT

STXS 0 ATLAS Internal ttH01 (s = 13 TeV, 140 fb ttH2 25 ttH-ML 2LSS ttH345 2LSS MVA ttH - ST ttHforward 20 Pre-Fit tīW tt(Z/γ*) WZ WW/ZZ MatConv HFμ The second second second second

Pred.

Data

05

'n

25

Data / Pred.

0.5

ATLAS Internal

- (s = 13 TeV, 140 fb

ttH-ML 2LSS

Pre-Fit

1 📩

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

WZ

WW/ZZ

MatConv

HFμ

HFel

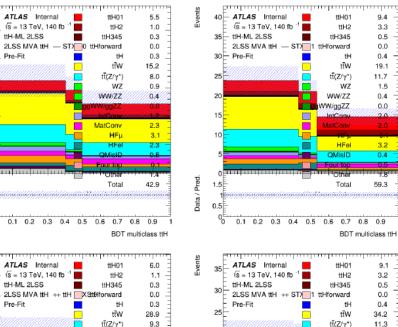
Total

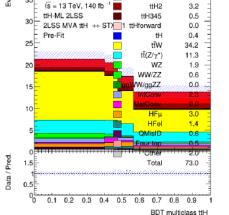
QMisID

1.2

0.5

1.6


3.2


3.3

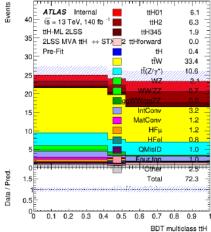
1.5

60.2

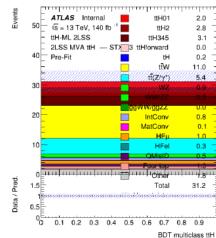
BDT multiclass ttH

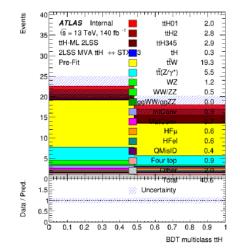
STXS 1

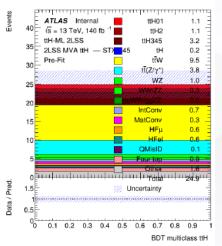

1.5

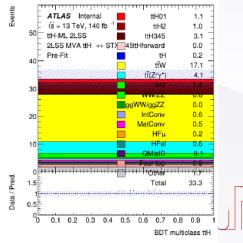

0.0

3.2

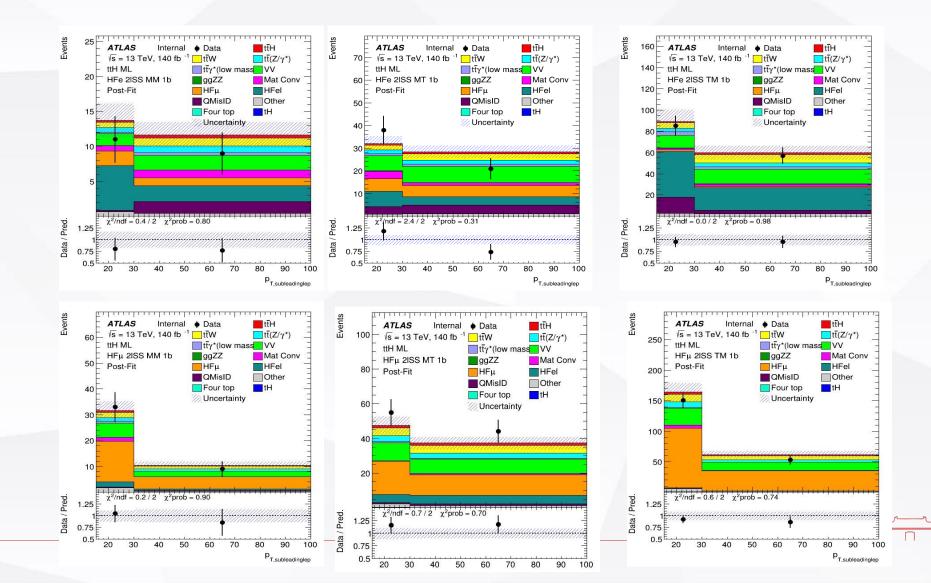

9.1






STXS 3

STXS 45



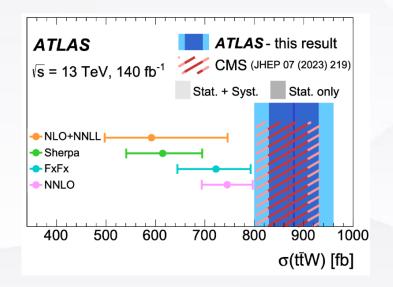
Post-fit

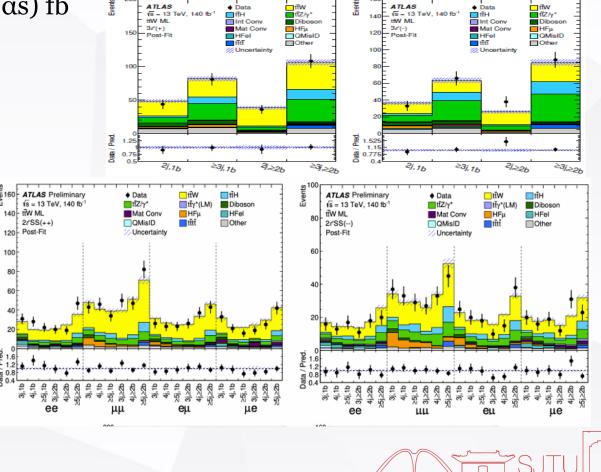
Experimental systematics

Follows official recommendations.

All channels are using harmonised systematics.

							Experimental Systematics on Jets and MET							
							Electrons			Туре	Origin	Systematics Name	Application	Analysis
					Efficiencies	Reconstruction	EL_SF_Reco	Event Weight	all			Jets	-	
						Identification	EL_SF_ID	Event Weight	all	Jet Vertex Tagger		JVT	Event Weight	all
						Isolation	EL_SF_Isol	Event Weight	all	Energy Scale	Calibration Method	JET_EffectiveNP_Detector[1,2]	pT Correction	all
		Francisco en tal Carataria di cara il cantoria			1	PLIV calibra-	PLIV_EL_*	Event Weight	2ℓSS, 3ℓ,	Energy Seale	canoration method	JET_EffectiveNP_Mixed[1,3]	$p_{\rm T}$ Correction	all
		Experimental Systematics on Leptons				tion		0	1Tau			JET_EffectiveNP_Modelling[1,4]	$p_{\rm T}$ Correction	all
Туре	Description	Systematics Name	Application	Analysis		uon						JET_EffectiveNP_Statistical[1,6]	$p_{\rm T}$ Correction	all
		Trigger			Scale	Energy Scale	EG_SCALE_ALL	Energy Correc-	11e		n inter-calibration	JET_EtaIntercalibration_Modelling	pT Correction	all
Scale Factors	Ele./Muon Trig-	custTrigSF_LooseID_FCLooseIso _SLTorDLT	Event Weight	all	Scale	Energy Searc	E0_SCALE_ALL	tion	an		η inter-canoration	JET_EtaIntercalibration_NonClosure (×4)	$p_{\rm T}$ Correction	all
	ger Eff	(one NP for electrons, two for muons)	0					uon				JET_EtaIntercalibration_TotalStat	p _T Correction	all
	0	PLIV_El_Trigger_*	Event Weight	-	Develoption	E	EC DESOLUTION ALL	E					-	
	Trigger Eff	1 11 (_11 _11 550 _	Event Weight		Resolution	00	EG_RESOLUTION_ALL	Energy Correc-	an		High p_T jets	JET_SingleParticle_HighPt	$p_{\rm T}$ Correction	all
	mgger En	Muons				tion		tion			Pile-Up	JET_Pileup_OffsetNPV	p _T Correction	all
Table					·						The-op	JET_Pileup_OffsetMu	$p_{\rm T}$ Correction	all
Efficiencies		MU_SF_ID_[STAT,SYST]	Event Weight	all			Hadronic Taus					JET_Pileup_PtTerm	$p_{\rm T}$ Correction	all
	and identifica-				Efficiencies	Reconstruction	Tau_SF_Reco	Event Weight	1Tau,			JET_Pileup_RhoTopology	$p_{\rm T}$ Correction	all
	tion								2Tau		Non Closure	JET_PunchThrough_MC16	pT Correction	all
	Reconstruction	MU_SF_ID_[STAT,SYST]_LOWPT	Event Weight	all		Identification	Tau_SF_RNNID_SYST	Event Weight	1Tau,		Non Closure	JE1_Punch1nrougn_MC16	$p_{\rm T}$ Correction	an
	and Identifica-		0			RNN		C C	2Tau		Flavour	JET_Flavor_Response	p _T Correction	all $(t\bar{t}W)$
	tion (low $p_{\rm T}$)					Identification	Tau_SF_RNNID_HighPt	Event Weight	1Tau,			JET_BJES_Response	$p_{\rm T}$ Correction	all (tTW)
	Isolation	MU_SF_Isol_[STAT.SYST]	Event Weight	all		(high p_T)			2Tau			JET_Flavor_Composition	$p_{\rm T}$ Correction	all $(t\bar{t}W)$
		. / 1	0				Tau_SF_ELEOLR[TOTAL, STAT, SYST]	Event Weight	1Tau,			JET_Flavor_Composition_Prop JET_Flavor_Response_Prop	p _T Correction p _T Correction	
	Track To Vertex	MU_SF_TTVA_[STAT,SYST]	Event Weight	all		BDT	Iau_SI_ELEOLK[IOTAL, STAT, STST]	Event weight	2Tau			JET_Flavor_Response_Prop JET_Flavour_PerJet_GenShower	$p_{\rm T}$ Correction	
	Association						The OF DAMUE ADDOMODIA 05 20 40.1	Event Websht				JET_Flavour_PerJet_GenShower_HF	$p_{\rm T}$ Correction	
$p_{\rm T}$ Scale	$p_{\rm T}$ Scale	MUONS_SCALE	$p_{\rm T}$ Correction	all		1 0	Tau_SF_RNNID_1PRONGPT[20,25,30,40+]	Event Weight	1Tau,			JET_Flavour_PerJet_Shower	$p_{\rm T}$ Correction	
						identification		-	2Tau			JET_Flavour_PerJet_Shower_HF	p _T Correction	
Resolution	Combined Mo-	MUONS_CB	$p_{\rm T}$ Correction	all		1 0	Tau_SF_RNNID_3PRONGPT[20,25,30,40+]	Event Weight	1Tau,			JET_Flavour_PerJet_Hadronization JET_Flavour_PerJet_Hadronization_HF	p_T Correction p_T Correction	
	mentum Resol.		1.			identification			2Tau			JET Playour Perfet Platfolization Plin	$p_{\rm T}$ correction	an (except <i>nw</i>)
	Sagitta corr.	MUONS_SAGITTA_RESBIAS	$p_{\rm T}$ Correction	all						Resolution		JET_JER_EffectiveNP_[1,11]	p _T Correction	all
Isolation.	PLIV calibra-		Event weight	$2\ell SS, 3\ell,$	Scale	Energy Scale	Tau_SME_TES_MODEL_CLOSURE	p_T correction	1Tau,			JET_JER_EffectiveNP_12restTerm	$p_{\rm T}$ Correction	all
Isolation.			Event weight						2Tau			JET_JER_DataVsMC_MC16	$p_{\rm T}$ Correction	all
	tion			1Tau		Energy Scale	Tau_SME_TES_DETECTOR	p_T correction	1Tau,			JET_JER_DataVsMC_AFII	$p_{\rm T}$ Correction	all
									2Tau			MET		
1						Energy Scale	Tau_SME_TES_INSITU[FIT, EXP]	p_T correction	1Tau,	Soft Tracks Terms	Resolution	MET_SoftTrk_ResoPerp	p _T Correction	all
								r i controli	2Tau		Resolution	MET_SoftTrk_ResoPara	$p_{\rm T}$ Correction	all
						Energy Scale	Tau_SME_TES_PHYSICSLIST	p_T correction	1Tau,		Scale	MET_SoftTrk_Scale	$p_{\rm T}$ Correction	all
						Energy Scale	1au_5WIE_1E5_111151C5E151	prediction	2Tau				$\langle \mathbf{C} \mathbf{I} \rangle$	
									2 I au					


Main backgrounds are left free floating: ttW, ttZ, WW/ZZ and WZ


Process	Generator+PS	Norm uncertainty	Alternative ME	Alternative PS	Scale variation
ttH	PhPy8		PhPy8 pThard1	PhH7	Scale, α _S , muR/muF, ISR/FSR, PDF, BR, STXS
ttW	Sherpa2.2.10	4l: ±50%	MGPy8 FxFx (old)	PhPy8-PhH7	muR/muF,PDF, α_s
ttZ	MGPy8			MGH7	muR/muF, A14
tHjb tWH	MGPy8 MGPy8				Scale, α_S Scale, α_S
tt	PhPy8			PhH7	hdamp
	, and y				4ℓ: muR/muF, ISR/FSR, 4FS,
					eHF pT modelling
tttt	MGPy8	+70% -15%	Sherpa2.2.11	MGH7	muR/muF
WW/ZZ	Sherpa2.2.2	$0\tau: \pm 20\%$			muR/muF
WZ	Sherpa2.2.2	4I: ±20%			muR/muF
VH	PhPy8	$\pm 30\%$			
VVV	Sherpa2.2.2	$\pm 30\%$			
ttt	MGPy8	$\pm 35\%$			
ttWW	MGPy8	$\pm 50\%$			
tΖ	MGPy8	$\pm 5\%$			
tWZ	MGPy8	$\pm 50\%$			
QmisID	PhPy8	$\pm 20\%$			
Vgamma	Sherpa2.2.8	4I: ±50%			

ttW Inclusive Cross-Section

- Simultaneous profile likelihood fit to data using event yields in **48 SRs** and **8 CRs**
- $\sigma(t\bar{t}W) = 880 \pm 50(stat) \pm 70(syst)$ fb is consistent at **1.4** σ of the SM NNLO cross section

745±50(scale)±13(2-loop approx.)± 19 (PDF, α s) fb

