Combination of searches for the Higgs boson decaying into a photon and a massless dark photon using *pp* collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

Xinhui Huang

CLHCP 2024, Qingdao November 15, 2024

Outline

Introduction

- Description of the input analyses
- Statistical combination
- Results
- Physics interpretation in Minimal simplified model
- Conclusion

Introduction

- Undetected Higgs decay $\mathcal{B}_{u.} < 10\%$ motivates searches for elusive BSM dark sector particles coupled to Higgs;
- One of the attractive candidates is undetectable, massless dark photon (γ_d) .
 - Force carrier of $U(1)_D$ gauge group of dark sector.
 - Introduce dark matter self-interactions for solving <u>small-scale structure formation problems</u> and the <u>PAMELA-Fermi-AMS2 anomaly</u>
 - Enhancing the light dark matter annihilation rate, making asymmetric DM scenarios phenomenologically viable.
- Potential approach to search dark photon: through $H \rightarrow \gamma \gamma_d$
 - Signature characterized by resonant γ + MET (E_T^{miss})
 - Higgs is assumed to be produced via three Higgs production modes:

Introduction

• Both ATLAS and CMS published various results for $H \rightarrow \gamma \gamma_d$ searches with LHC full Run 2 data:

	$\gamma + E_T^{miss}$ (ggF channel)	$\gamma + E_T^{miss} + \text{VBF jets}$ (VBF channel)	$\gamma + E_T^{miss} + Z(\rightarrow ll)$ (ZH channel)
ATLAS	Reinterpretation of $\frac{\text{mono-}\gamma}{\gamma}$	EPJC 82(2022) 105	<u>JHEP 07 (2023) 133</u>
CMS		JHEP 10(2019)139	
CINIS		JHEP 03(2021)011	

 $\begin{array}{c} H_{125} \rightarrow \gamma \gamma_d \\ 95\% \text{ CL limit on BR} \end{array}$

 $H_{BSM} \rightarrow \gamma \gamma_d$ Mass range probed for H

	VBF Channel	ZH Channel	Combined
ATLAS	1.8(1.7)%	2.3(2.8)%	This analysis
CMS	3.5(2.8)%	4.6(3.6)%	2.9(2.1)%

	VBF Channel	ggF Channel	Combined
ATLAS	Up to 2 TeV	Up to 3 TeV	This analysis
CMS	Up to 1 TeV	-	-

- ATLAS provided competitive and complementary result for $H \rightarrow \gamma \gamma_d$ searches
 - Strong motivation for statistical combination to bring the most stringent LHC constraints for $H_{125} \rightarrow \gamma \gamma_d$ and broadest search in BSM Higgs masses

Scenarios of combination

• Most straightforward and worthy scenarios for the statistical combination, based on 3 input analyses.

Input analysis	Signals	m_H	m_{γ_d}	Combination scenarios	
ZH	$SM \ (ZH)H \to \gamma \gamma_d$	125 GeV	[<mark>0</mark> , 40] GeV	ZH + VBF for SM Higgs,	
VRE	$\frac{SM}{(ggF + VBF)H} \rightarrow \gamma \gamma_d$	125 GeV	Massless γ_d	$\frac{\text{massless } \gamma_d, \text{ targeting}}{\text{BR}(\text{H125} \rightarrow \gamma \gamma_d)}$	
	$BSM\ (VBF)H \to \gamma \gamma_d$	[60, 2000] GeV	Massless γ_d	ggF + VBF for Heavy Higgs,	
ggF	BSM (ggF + VBF)H $\rightarrow \gamma \gamma_d$	[400, 3000] GeV	Massless γ_d	$\sigma(\text{ggF} + \text{VBF}) \times \text{BR}(\text{H} \rightarrow \gamma \gamma_d)$	

- Signal grid for heavy Higgs combination

• m_H = 400, 600, 800, 1000, 1500, 2000, 2500, 3000 GeV (blue masses added to VBF analysis to harmonize with ggF signal grid)

Input analysis: VBF channel

• Topology:

- 1 photon, 2 or 3 VBF jet, E_T^{miss}
- Lepton (e, μ) veto
- Main background
 - $W(\rightarrow l\nu)\gamma + jets$, $Z(\rightarrow \nu\nu)\gamma + jets$, $jet \rightarrow e$ from CRs.
 - *jet* $\rightarrow \gamma$ from data-driven.
- Simultaneous fit to data including SR and CRs divided into 2 bins of m_{jj} , each with 5 bins of $m_T(\gamma, E_T^{miss})$ $m_T(\gamma, E_T^{miss}) = \sqrt{2p_T^{\gamma} E_T^{miss} [1 - \cos(\phi_{\gamma} - \phi_{E_T^{miss}})]}$
- Dominant uncertainty:
 - Data stats., fake bkg in syst.

SM Higgs, massless dark photon Observed (expected) limit at 95% CL on BR(H125 $\rightarrow \gamma\gamma_d$) : 1.8(1.7)%

Channels	VBF	ZH	ggF
Trigger	$E_{\mathrm{T}}^{\mathrm{miss}}$	Lepton(s)	Photon
Photons	$= 1, C_{\gamma} > 0.4$	= 1	≥ 1
$E_{\rm T}^{\gamma}$ [GeV]	$\in (15, \max(110, 0.733 \times m_{\rm T}))$	> 25	> 150
$E_{\rm T}^{\rm miss}$ [GeV]	> 150	> 60	> 200
Jets	2 or 3, $m_{j_1 j_2} > 250 \text{ GeV}, \Delta \eta_{j_1 j_2} > 3$	≤ 2	≤ 1
	$\eta_{j_1} \cdot \eta_{j_2} < 0, \Delta \phi_{j_1 j_2} < 2, C_{j_3} < 0.7$		
Leptons	$= 0 (e, \mu)$	= 2, SFOC	$=0~(e,\mu,\tau)$
		$m_{\ell\ell} \in (76, 116) \text{ GeV}$	

No significant deviation from SM prediction

Input analysis: VBF channel

• Topology:

- 1 photon, 2 or 3 VBF jet, E_T^{miss}
- Lepton (e, μ) veto
- Main background
 - $W(\rightarrow l\nu)\gamma + jets$, $Z(\rightarrow \nu\nu)\gamma + jets$, $jet \rightarrow e$ from CRs
 - $jet \rightarrow \gamma$ from data-driven.
- Simultaneous fit to data including SR and CRs divided into 2 bins of m_{jj} , each with 5 bins of $m_T(\gamma, E_T^{miss})$ $m_T(\gamma, E_T^{miss}) = \sqrt{2p_T^{\gamma} E_T^{miss} [1 - \cos(\phi_{\gamma} - \phi_{E_T^{miss}})]}$
- Dominant uncertainty:
 - Data stats., fake bkg in syst.

BSM Higgs, massless dark photon Probe H mass: [60, 2000] GeV

Channels	VBF	ZH	ggF
Trigger Photons E_T^{γ} [GeV] E_T^{miss} [GeV] Jets Leptons	$\begin{split} & E_{\rm T}^{\rm miss} \\ &= 1, C_{\gamma} > 0.4 \\ &\in (15, \max(110, 0.733 \times m_{\rm T})) \\ &> 150 \\ &2 {\rm or} \; 3, m_{j_1 j_2} > 250 {\rm GeV}, \Delta \eta_{j_1 j_2} > 3 \\ &\eta_{j_1} \cdot \eta_{j_2} < 0, \Delta \phi_{j_1 j_2} < 2, C_{j_3} < 0.7 \\ &= 0 (e, \mu) \end{split}$	Lepton(s) = 1 > 25 > 60 ≤ 2 = 2, SFOC m $\approx \in (76, 116) \text{ GeV}$	Photon ≥ 1 > 150 > 200 ≤ 1 $= 0 (e, \mu, \tau)$
As. $[qd] ({}^{p} \wedge h + H) = 10^{-1} + 10^{-1} + 10^{-2} + 10^{-2} + 10^{-3$	$- Observed$ $- Expected$ $Expected \pm 1\sigma$ $Expected \pm 2\sigma$ $\sigma^{VBF} \text{ with } B(H \rightarrow \gamma\gamma_d)=0$	ATLAS $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}$ Limits at 95% CL VBF Higgs coupling 05	s
To Con	nbine VBF channel:	[°] m	_H [GeV]
_			

- Add ggF contribution;
- Extend Higgs mass to 3 TeV for BSM scenario

Input analysis: ZH channel

- Topology:
 - 1 photon, <= 2jets, E_T^{miss}
 - 2 SFOC leptons within Z mass window,
- Main background
 - Fake E_T^{miss} dominates and is estimated with data-driven.
 - $VV\gamma$ bkg estimated from CRs
- BDT (XGBoost) used to enhance the analysis sensitivity.
 - Binned maximum likelihood fit to data on BDT in SR and $_{VV\gamma}$ CR
- Dominant uncertainty:
 - Data stats., fake MET from syst.

SM Higgs, massless dark photon Observed (expected) limit at 95% CL BR(H125 $\rightarrow \gamma\gamma_d$) : 2.3(2.8)%

Channels	VBF	ZH	ggF
Trigger	$E_{\mathrm{T}}^{\mathrm{miss}}$	Lepton(s)	Photon
Photons	$= 1, C_{\gamma} > 0.4$	= 1	≥ 1
$E_{\rm T}^{\gamma}$ [GeV]	$\in (15, \max(110, 0.733 \times m_{\rm T}))$	> 25	> 150
$E_{\rm T}^{\rm miss}$ [GeV]	> 150	> 60	> 200
Jets	2 or 3, $m_{j_1 j_2} > 250 \text{ GeV}, \Delta \eta_{j_1 j_2} > 3$	≤ 2	≤ 1
	$\eta_{j_1} \cdot \eta_{j_2} < 0, \Delta \phi_{j_1 j_2} < 2, C_{j_3} < 0.7$		
Leptons	$=0 (e, \mu)$	= 2, SFOC	$= 0 \; (e, \mu, \tau)$
		$m_{\ell\ell} \in (76, 116) \text{ GeV}$	

No significant deviation from SM prediction

Input analysis: ZH channel

- Topology:
 - 1 photon, <= 2jets, E_T^{miss}
 - 2 SFOC leptons within Z mass window,
- Main background
 - Fake E_T^{miss} dominates and is estimated with data-driven.
 - $VV\gamma$ bkg estimated from CRs
- BDT (XGBoost) used to enhance the analysis sensitivity.
 - Binned maximum likelihood fit to data on BDT in SR and $_{VV\gamma}$ CR
- Dominant uncertainty:
 - Data stats., fake MET from syst.

Channels	VBF	ZH	ggF
Trigger	$E_{\mathrm{T}}^{\mathrm{miss}}$	Lepton(s)	Photon
Photons	$=1, C_{\gamma} > 0.4$	= 1	≥ 1
$E_{\rm T}^{\gamma}$ [GeV]	$\in (15, \max(110, 0.733 \times m_{\rm T}))$	> 25	> 150
$E_{\rm T}^{\rm miss}$ [GeV]	> 150	> 60	> 200
Jets	2 or 3, $m_{i_1,i_2} > 250 \text{ GeV}, \Delta \eta_{i_1,i_2} > 3$	≤ 2	≤ 1
	$\eta_{i_1} \cdot \eta_{i_2} < 0, \Delta \phi_{i_1,i_2} < 2, C_{i_2} < 0.7$		
Leptons	$= 0 \ (e, \mu)$	= 2, SFOC $m_{\ell\ell} \in (76, 116) \text{ GeV}$	$=0~(e,\mu,\tau)$

Input analysis: ggF channel

- Topology:
 - >=1 photon, <=1 jet, E_T^{miss}
 - Lepton (e, μ, τ) veto
- Main background
 - $Z(\rightarrow \nu\nu)\gamma$, $W(\rightarrow l\nu)\gamma$, $\gamma + jets$ from CRs.
 - *jet* $\rightarrow \gamma$, $e \rightarrow \gamma$ from data-driven.
- Binned maximum likelihood fit to data on MET in SR
 - Including both VBF and ggF processes
- Dominant uncertainty:
 - Data stats., fake photons from jets in syst.

Channels	VBF	ZH	ggF
Trigger	$E_{\mathrm{T}}^{\mathrm{miss}}$	Lepton(s)	Photon
Photons	$= 1, C_{\gamma} > 0.4$	= 1	≥ 1
$E_{\rm T}^{\gamma}$ [GeV]	$\in (15, \max(110, 0.733 \times m_{\rm T}))$	> 25	> 150
$E_{\rm T}^{\rm miss}$ [GeV]	> 150	> 60	> 200
Jets	2 or 3, $m_{i_1,i_2} > 250 \text{ GeV}, \Delta \eta_{i_1,i_2} > 3$	≤ 2	≤ 1
	$\eta_{i_1} \cdot \eta_{i_2} < 0, \Delta \phi_{i_1 i_2} < 2, C_{i_3} < 0.7$		
Leptons	$= 0 \ (e, \mu)$	= 2, SFOC	$=0(e,\mu,\tau)$
		$m_{\ell\ell} \in (76, 116) \text{ GeV}$	

No significant deviation from SM prediction

Input analysis: ggF channel

- Topology:
 - >=1 photon, <=1 jet, E_T^{miss}
 - Lepton (e, μ, τ) veto
- Main background
 - $Z(\rightarrow \nu\nu)\gamma$, $W(\rightarrow l\nu)\gamma$, $\gamma + jets$ from CRs.
 - $jet \rightarrow \gamma$, $e \rightarrow \gamma$ from data-driven.
- Binned maximum likelihood fit to data on MET in SR
 - Including both VBF and ggF processes
- Dominant uncertainty:
 - Data stats., fake photons from jets in syst.

BSM Higgs, massless dark photon Probe H mass: [400, 3000] GeV

Channels	VBF	ZH	ggF
Trigger	$E_{\mathrm{T}}^{\mathrm{miss}}$	Lepton(s)	Photon
Photons	$= 1, C_{\gamma} > 0.4$	= 1	≥ 1
$E_{\rm T}^{\gamma}$ [GeV]	$\in (15, \max(110, 0.733 \times m_{\rm T}))$	> 25	> 150
$E_{\rm T}^{\rm miss}$ [GeV]	> 150	> 60	> 200
Jets	2 or 3, $m_{j_1 j_2} > 250 \text{ GeV}$, $ \Delta \eta_{j_1 j_2} > 3$	≤ 2	≤ 1
	$\eta_{j_1} \cdot \eta_{j_2} < 0, \Delta \phi_{j_1 j_2} < 2, C_{j_3} < 0.7$		
Leptons	$= 0 \ (e, \mu)$	= 2, SFOC	$=0(e,\mu,\tau)$
		$m_{\ell\ell} \in (76, 116) \text{ GeV}$	

Combination strategy

POI rescaling

Input Analysis	Original POI	Combination POI	
ZH channel	signal strength, and scaled with $BR = 5\%$	PP(H12F)	
VBF channel	$BR(H \to \gamma \gamma_d)$	$BR(H123 \to \gamma \gamma_d)$	$\sigma(\text{VBF} + \text{ggF}) \times \text{BR}(H \rightarrow \gamma \gamma_d)$
ggF channel	$\sigma^{VBF+ggF}(m_H) \times BR(H \to \gamma \gamma_d)$		

Systematic correlation:

- Uncertainties related to data-taking conditions are correlated:
 - Luminosity, pile-up modelling...
- Experimental uncertainties: correlated where appropriate, exceptions are:
 - Uncertainties related to same objects but **implemented with different schemes** among input channels
 - Jet-Energy-Resolution...
 - Uncertainties heavily constrained or pulled in original input analyses.
- Background modelling uncertainties
 - Uncorrelated since bkg composition and phase space are different
- Signal modelling uncertainties
 - Stemming from choice of parton distribution functions and QCD calculations:
 - Minor impact on final results uncorrelated

Results -- SM Higgs

- VBF-ZH combined limits at 95% CL on BR($H \rightarrow \gamma \gamma_d$): 1.3 (1.5)%
 - Set the **most stringent limit** on $BR(H \rightarrow \gamma \gamma_d)$ of LHC results to date.
 - Improved by 29%(14%) w.r.t VBF channel.
- Comparable impacts from statistical and systematic uncertainties.
- Leading systematic uncertainties: bkg modelling, jet MET, fake estimation and MC stats.

Uncertainty source	$\Delta \mathcal{B}_{\text{group}} / \Delta \mathcal{B}_{\text{total}} [\%]$
Theory uncertainties	49
Signal modelling	2.2
Background modelling	47
Experimental uncertainties	63
Luminosity, pile-up	< 0.1
Jets, $E_{\rm T}^{\rm miss}$	40
Electrons, muons	11
Fake background	35
MC statistical uncertainty	36
Systematic uncertainties	75
Statistical uncertainty	66
Total uncertainty	100

Results -- Heavy Higgs

- ggF+VBF combination produces combined limits on $\sigma(VBF + ggF) \times BR(H \rightarrow \gamma \gamma_d)$
 - Set the most comprehensive constraints.
 - Sensitivity improved by 33%(14%) w.r.t. ggF channel at $m_H = 1500$ GeV.
- Statistical uncertainty dominant at Higher Higgs mass
- Leading systematic uncertainties: fake estimation, bkg modelling, jet MET, MC stats and lepton reconstruction.

2.8

6.9

2.0

2.3

Physics interpretation

- Physics interpretation of ZH+VBF limits on BR($H125 \rightarrow \gamma \gamma_d$) in Minimal Model
- Minimal simplified model [arXiv:1405.5196].
 - Generic Lagrangian: $L \sim \mu(H^{\dagger}S_{L}S_{R} + h.c.)$
 - μ mass parameter, S_L $SU(2)_L$ doublet, S_R $SU(2)_L$ singlet
 - With $U(1)_D$ and $U(1)_{em}$ interaction, the free kinetic Lagrangian: $L^0 = \partial_\mu \hat{S}^\dagger \partial^\mu \hat{S} \hat{S}^\dagger M_S^2 \hat{S}$
 - 2 scalar messengers allow for $H125 \rightarrow \gamma \gamma_d$ at 1-loop

• BR of $H \to \gamma \gamma_d / \gamma_d \gamma_d / \gamma_\gamma$ can be expressed as $U(1)_D$ fine-structure-constant α_D and mixing parameter ξ :

$$BR_{\gamma\gamma_{D}} = BR_{\gamma\gamma}^{SM} \frac{r_{\gamma\gamma_{D}}}{1 + r_{\gamma_{D}\gamma_{D}}BR_{\gamma\gamma}^{SM}} \qquad r_{\gamma\gamma_{D}} = 2X^{2} \left(\frac{\alpha_{D}}{\alpha}\right)$$

$$BR_{\gamma_{D}\gamma_{D}} = BR_{\gamma\gamma}^{SM} \frac{r_{\gamma_{D}\gamma_{D}}}{1 + r_{\gamma_{D}\gamma_{D}}BR_{\gamma\gamma}^{SM}} \qquad r_{\gamma_{D}\gamma_{D}} = X^{2} \left(\frac{\alpha_{D}}{\alpha}\right)^{2}$$

$$BR_{\gamma\gamma} = BR_{\gamma\gamma}^{SM} \frac{(1 + \chi\sqrt{r_{\gamma\gamma}})^{2}}{1 + r_{\gamma_{D}\gamma_{D}}BR_{\gamma\gamma}^{SM}} \qquad X = \frac{\xi^{2}}{3F(1 - \xi^{2})} \qquad \xi = \frac{\Delta}{\bar{m}^{2}}$$

• ZH+VBF combined limits on BR($H \rightarrow \gamma \gamma_d$) and other results from e.g. $H \rightarrow inv$, $H \rightarrow \gamma \gamma$ can be translated into restrictions on the allowed parameter space in the (ξ, α_D) plan.

2024/11/15

 $\hat{S} = (S_L, S_R)$

Physics interpretation

- 2 baseline scenarios have been studied for our combination effort:
 - **Scenario 1**: VBF+ZH combination for SM Higgs, massless dark photon sets

the most stringent limits on BR($H \rightarrow \gamma \gamma_d$) at $m_H = 125 \text{ GeV}$.

- Scenario 2: VBF+monophoton-recast combination for heavy Higgs, massless dark photon provides a wider Higgs mass range on $\sigma(VBF + ggF) \times BR(H \rightarrow \gamma \gamma_d)$.
- Provide the first physics interpretation of ZH+VBF limits on BR($H125 \rightarrow \gamma \gamma_d$) in Minimal model.
- Paper published by JHEP: <u>JHEP08(2024)153</u>

Backup

Combination: Overlap check

- No overlap expected due to orthogonality from Njet and Nlep definition.
 - No overlap observed with Full run-2 data.
- Little overlap(< 2%) found in VBF signal process on MC.
 - Reason for this overlap: Different jet reconstructions & pileup suppression
- Treated as statistically independent.

