

CP violation in charmless Λ_b^0 decays at LHCb

Xinchen Dai on behalf of the LHCb Collaboration

CLHCP 2024 2024年11月14日

Why CPV in baryon decays

CPV is one of the necessary conditions for baryogenesis

CPV is well established in meson decays

 \succ no significant deviation from SM prediction

 \succ not strong enough to account for the baryogenesis

 \square No CPV has been observed in baryon sector yet

 \succ Evidence of CPV in $\Lambda_b^0 \rightarrow p\pi^-\pi^+\pi^-(3.3 \sigma)$ [Nat.Phys.13(2017)391]

- ≻ Updated measurement shows no CPV in $\Lambda_b^0 \rightarrow p\pi^-\pi^+\pi^-(2.9 \sigma)$
- \succ New results from analysis of Λ_b^0 → $\Lambda hh'$ (<u>Chenxu's presentation</u>)

The Standard Model predicts similar CP violation in baryon and meson decays

Unlike mesons, only direct CPV occurs in baryon decays due to baryon number conservation

□ Searching for CPV in baryon decays:

- \succ Test of the SM and the CKM mechanism
- > Explore new physics

Experimental methods & observables

 $\square Asymmetry in the yields of CP-conjugate processes \quad A_{raw} = \frac{N(H \to f) - N(H \to f)}{N(H \to f) + N(\overline{H} \to \overline{f})}$

 $\geq A_{CP} = A_{raw} - A_{prod} - A_{det} - A_{other}$ $\geq \Delta A_{CP} = A_{CP}^{signal} - A_{CP}^{control}$

□ Miranda technique: Measuring CPV on binned phase space

> asymmetry significance: $S_{CP}^i = \frac{n_i - \alpha \bar{n}_i}{\sqrt{\alpha(n_i + \bar{n}_i)}}$

Energy test: A statistical T test to compare the baryon anti-baryon samples

$$\succ T \equiv \frac{1}{2n(n-1)} \sum_{i\neq j}^{n} \psi_{ij} + \frac{1}{2\bar{n}(\bar{n}-1)} \sum_{i\neq j}^{\bar{n}} \psi_{ij} - \frac{1}{n\bar{n}}$$

□ k-nearest neighbour (kNN):

$$\succ T \equiv \frac{1}{n_k(n_+-n_-)} \Sigma_{i=1}^{n_++n_-} \Sigma_k^{n_k} I(i,k)$$

□ Triple product asymmetry:

$$\succ A_{\hat{T}}(C_{\hat{T}}) = \frac{N(C_{\hat{T}} > 0) - N(C_{\hat{T}} < 0)}{N(C_{\hat{T}} > 0) + N(C_{\hat{T}} < 0)}, \ a_{CP}^{\hat{T} - odd} = \frac{1}{2}(A_{\hat{T}} - \bar{A}_{\hat{T}}), A_{CP} \propto cos\Delta\phi cos\Delta\delta$$

Amplitude analysis:

$$\succ A = \Sigma a_i A_i, \bar{A} = \Sigma \bar{a}_i \bar{A}_i, A_{CP} = \frac{|a_i|^2 - |\bar{a}_i|^2}{|a_i|^2 + |\bar{a}_i|^2}$$

 $A_{CP} \propto sin\Delta\phi sin\Delta\delta$

Overview of CPV in baryon decays

	Methods	Data	Paper
$\Lambda_b^0 o p K^-/p \pi^-$	A_{CP}	3fb ⁻¹	PLB 787 (2018) 124-133
$\Lambda_b^0 \to p K_s^0 \pi^-$	A_{CP} , ΔA_{CP}	1fb^{-1}	JHEP 04 (2014) 087
$\Lambda_b^0 \to p D^0 K^-$	Miranda S_{CP}^i	9fb ⁻¹	PRD104 (2021) 112008
$\Lambda_b^0 o \Lambda h h'$	A_{CP} , ΔA_{CP}	3fb ⁻¹	JHEP05(2016)081
$\Lambda_b^0 \to p K^- \mu^+ \mu^-$	ΔA_{CP}	3fb ⁻¹	<u>JHEP 06 (2017) 108</u>
$\Lambda_b^0 o \Lambda\gamma$	photon polarization asy.	3fb ⁻¹	PRD105 (2022) L051104
$\Lambda^0_b \to p h^- h^+ h^-$	ΔA_{CP} , TPA, Energy test	$3 \text{fb}^{-1} \& 6.6 \text{fb}^{-1}$	EPJC (2019) 79:745 PRD 102 (2020) 051101
$\Lambda_b^0 \to \Lambda_c^+ h^-$	decay parameters	9fb ⁻¹	arXiv:2409.02759
$\Xi_b^- \to p K^- K^+$	Amplitude analysis	5fb ⁻¹	Phys. Rev. D 104, 052010
$\Lambda_c^+ \to p K^- K^+ / p \pi^- \pi^+$	ΔA_{CP}	3fb^{-1}	<u>JHEP 03 (2018) 182</u>
$\Xi_c^0 \to p K^- \pi^+$	kNN	3fb ⁻¹	EPJC 2020, 80, 986
	C	P Violation in Baryon Do	cave at LHCb

Symmetry 2023, 15(2), 522

Overview of CPV in baryon decays

	Data	Institutions
$\Lambda^0_b \to p h \pi^0$	$9 f b^{-1}$	PKU/WHU/UCAS
$\Lambda_b^0 \to p K_s^0 \pi^-$	$9 f b^{-1}$	PKU/CCNU/UCAS
$\Lambda_b^0 \to \Lambda h h'$	$9 f b^{-1}$	UCAS/CCNU/PKU
$\Lambda_b^0 \to p h^- h^+ h^-$	$9 f b^{-1}$	PKU/CCNU/UCAS/IHEP

LHCb experiment

LHCb experiment

Trigger efficiency for hadron final states increased by factor of 2

□ Run I: ~3/fb @ \sqrt{s} =7-8TeV □ Run II: ~6/fb @ \sqrt{s} =13 TeV □ Run III: ~25/fb @ \sqrt{s} = 13.6 TeV

$$\Box \frac{f_{\Lambda_b^0}}{f_u + f_d} = 0.259 \pm 0.018$$
$$\Box \text{ Average over } P_T \in [4, 25] \text{ GeV}$$
$$\text{and } \eta \in [2, 5] @ \sqrt{s} = 13 \text{ TeV}$$

More charm baryons: Λ_c , Ξ_c ...

Theoretical prediction for b-baryon CPV are at $\sim 1\%$ Current statistics enable us to reduce the uncertainty to $\sim 0.1\%$

CPV in $\Lambda_b^0 \to pK^-/p\pi^-$

Phys.Lett.B 787 (2018) 124-133

Search for *CP* violation in $\Lambda_b^0 \to p K^-$ and $\Lambda_b^0 \to p \pi^-$ decays

Run1 3/fb

LHCb-PAPER-2024-048, Run I+II 9/fb

CPV in $\Lambda_h^0 \to pK^-/p\pi^-$

■ Mediated by the same quark-level transitions contributing to $B^0 \rightarrow hh$, receiving similar contribution from $b \rightarrow u$ (tree) and $b \rightarrow d(s)$ (penguin) diagrams

□ Predicted CPV in $\Lambda_b^0 \rightarrow pK^-/p\pi^-$ up to ~30%

	$\Lambda_b^0 \to p K^-$	$\Lambda_b^0 o p\pi^-$
<u>Yu et al. arXiv:2409.02821</u>	-5.8%	4.1%
<u>Geng et al.</u> PRD 102(2020), 034033	6.7%	-4.4%
<u>Hsiao et al.</u> PRD 95 (2017) 9, 093001	$(5.8 \pm 0.2)\%$	(-3.9 ± 0.2)%
<u>Zhu et al.</u> <u>PRD 99 (2019) 5, 054020</u>	$(10.1^{+1.3}_{-2})\%$	$(-3.37^{+0.29}_{-0.37})\%$
<u>Lu et al.</u> PRD 80, 034011 (2009)	$(-5^{+26}_{-5})\%$	$(-31^{+43}_{-1})\%$
CDF	$(-10 \pm 8 \pm 4)\%$	$(6 \pm 7 \pm 3)\%$

 $A_{CP}(\Lambda_b^0 \to pK^-) = (-2.0 \pm 1.3 \pm 1.9)\%$ $A_{CP}(\Lambda_b^0 \to p\pi^-) = (-3.5 \pm 1.7 \pm 2.0)\%$

 $\Box \ \Delta A_{CP} = A_{CP} \left(\Lambda_b^0 \to p K^- \right) - A_{CP} \left(\Lambda_b^0 \to p \pi^- \right) = 0.014 \pm 0.022 \pm 0.010$

CPV in
$$\Lambda_b^0 \to pK^-/p\pi^-$$
(New)

 \Box Update CP measurement using combined Run I and Run II data (9fb⁻¹)

D For Run I data: $A_{CP}^{pK} = A_{raw} - A_{det}^{p} - A_{det}^{K} - A_{PID}^{pK} - A_{trigger}^{pK} - A_{P}^{\Lambda_{b}^{0}}$

> All the nuisance asymmetries studied using data driven method and existing inputs

> The precision of Run 1 has improved thanks to the updated measurements of $A_P^{\Lambda_b^0}$ and A_{det}^p

■ For Run II data:
$$A_{CP}^{pK} = \Delta A_{raw} - \Delta A_{det}^{p} - \Delta A_{det}^{K} - \Delta A_{PID}^{pK} - \Delta A_{trigger}^{pK} + A_{det}^{\pi^{-}} + A_{det}^{\pi^{+}} + A_{det}^{\Lambda_{c}^{+}\pi^{-}}$$

 $> A_{P}^{\Lambda_{b}^{0}}$ cancelled by control channel $\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+}(pK^{-}\pi^{+})\pi^{-}$
 $>$ reweight over the kinematic of the Λ_{b}^{0} in control samples.

 \square New data driven method developed to correct $A_{trigger}^{pK}$

Better control of uncertainties from PID

2024/11/13

CPV in $\Lambda_b^0 \to pK^-/p\pi^-$ (New)

- □ Simultaneously fit to eight m(*hh*) spectrums > $K^{\pm}\pi^{\mp}, K^{+}K^{-}, \pi^{+}\pi^{-}, pK^{-}, \bar{p}K^{+}, p\pi^{-}, \bar{p}\pi^{+}$
- Signal: Johnson + two gaussian: shape fixed from MC
- Cross-feed bkg: KDE on simulated samples, yields are fixed from signal yields with PID mis-ID efficiency
- Part.reco.bkg: Argus or simulated samples

□ Comb.bkg: exponential

CPV in $\Lambda_h^0 \to pK^-/p\pi^-$ (New)

400 LHCb 2018 Magnet Down LHCb 2018 Magnet Down Data Data Fit Fit $\Lambda_h^0 \rightarrow pK^ \overline{\Lambda}{}^{0}_{h} \rightarrow K^{+}\overline{p}$ $\frac{2}{350}$ Preliminary $\frac{2}{350}$ Preliminary □ New Run I results: $B_s^0 \rightarrow K^+ K^ B^0_s \rightarrow K^+K^-$ Statistically dominated! $\overline{B^0} \to \pi^+ K^ B^0 \rightarrow K^+ \pi$ 000 Candidate 000 Candidat 220 $\Lambda^0_b \to p\pi^ \overline{\Lambda}{}^{0}_{h} \to \pi^{+}\overline{p}$ $A_{CP}^{pK} = (-0.27 \pm 1.55 \pm 0.57)\%$ ---· Comb. bkg. ---· Comb. bkg. --- Part. reco. bkg. Part. reco. bkg. $A_{CP}^{p\pi} = (-0.59 \pm 1.86 \pm 0.53)\%$ 200 200 150 150 100 100 5.4 5.6 5.8 6.0 6.2 5.2 5.4 5.6 5.8 6.0 5.2 $m(K^+\bar{p})$ [GeV/ c^2] $m(pK^{-})$ [GeV/ c^2] MeV/c² Candidates / 10 MeV/c 005 007 LHCb 2018 Magnet Down LHCb 2018 Data Data Magnet Down - Fit Fit Candidates / 10 N $\Lambda_h^0 \rightarrow p\pi$ $\overline{\Lambda}{}^{0}_{b} \rightarrow \pi^{+}\overline{p}$ $B^0 \rightarrow \pi^+ \pi^ B^0 \rightarrow \pi^+ \pi$ Preliminary Preliminary $\Lambda_{h}^{0} \rightarrow pK^{-}$ $\overline{\Lambda}{}^{0}_{b} \rightarrow K^{+}\overline{p}$ ---· Comb. bkg. ---· Comb. bkg. --- Part. reco. bkg. --- Part. reco. bkg. 150 150 100 100 5.4 5.6 5.8 6.0 6.2 52 5.4 5.6 5.8 6.0 6.2 $m(p\pi^{-})$ [GeV/ c^2] $m(\pi^+\bar{p})$ [GeV/c²]

□ New Run II results:

 $A_{CP}^{pK} = (-1.39 \pm 0.75 \pm 0.41)\%$ $A_{CP}^{p\pi} = (0.42 \pm 0.93 \pm 0.42)\%$

Combined results:

 $A_{CP}^{pK} = (-1.14 \pm 0.67 \pm 0.36)\%$ $A_{CP}^{p\pi} = (0.02 \pm 0.83 \pm 0.37)\%$

No evidence of CP violation!

Theoretical explanation

The cancellation between different partial wave turns in small net direct CPV

■ A partial-wave CPV of similar magnitude to that in *B* mesons is predicted.

	$\Lambda_b o p \pi^-$	$\Lambda_b o p K^-$
Br	$3.3 imes10^{-6}$	$2.9 imes 10^{-6}$
$A_{CP}^{ m dir}$	4.1%	-5.8%
A^S_{CP}	0.15	-0.05
A^P_{CP}	-0.07	-0.23
α	-0.81	0.38
eta	0.26	-0.65
γ	-0.52	0.66
$\overline{A^{lpha}_{CP}}$	0.046	0.20
A^{eta}_{CP}	2.12	-9.34
A_{CP}^{γ}	-0.12	0.10

$$\frac{1}{2} \rightarrow \frac{1}{2} + 0^{-}$$
S wave & P wave
$$0^{-} \rightarrow 0^{-} + 0^{-}$$
S wave only!

$$\alpha \equiv \frac{2Re(S \times P)}{|S|^2 + |P|^2} \qquad \beta \equiv \frac{2Im(S \times P)}{|S|^2 + |P|^2} \qquad \gamma \equiv \frac{|S|^2 - |P|^2}{|S|^2 + |P|^2}$$

2024/11/13

Outlook

The polarization of Λ_b^0 at the LHC is consistent with zero PLB 724 (2013) 27-35

■ A sample of Λ_b^0 decay from heavier *b* baryons can be used to probe the CPV in decay parameters and partial-waves

Signal yields (5.5fb^{-1}) : $N(\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^-) = 85 \pm 13$ $N(\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^+ \pi^+ \pi^-) = 103 \pm 15$

More data expected from HL-LHC

Conclusion

- Search for CPV in b-baryon is a frontier of flavor physics
- More contributions from the LHCb China team
- Best measurement of CPV in $\Lambda_b^0 \rightarrow ph^-$
- Further investigation is needed to understand CPV in baryon decays
- More data in Run3+4 is coming
- Many new analyses coming soon

Backup

CPV in $\Lambda_b^0(\Xi_b^0) \to ph^-h^+h^-$

Eur. Phys. J. C (2019) 79:745

Measurements of CP asymmetries in charmless four-body Λ_b^0 and Ξ_b^0 decays

Run I 3/fb

CPV in $\Lambda_h^0(\Xi_h^0) \to ph^-h^+h^-$

- Follow the path of the observation of CPV in charmless multibody decays of B mesons
- Dominant diagrams with amplitudes of similar magnitude
- □ Contain rich resonance structures, both in the two- or three-body baryonic invariant-mass spectra
- □ Large CPV expected due to the strongphase differences induced by the interference patterns
- □ Six decay modes from 0.5-10K signals

 $\square CP observables: \Delta A_{CP} = A_{CP} - A_{CP}^{con.}$

			1
Charmless decay	Quark transition	Charmed decay	Quark transition
$\Lambda^0_b \to p \pi^- \pi^+ \pi^-$	$b \rightarrow u \overline{u} d (T + P)$	$ \qquad \qquad$	$b \rightarrow c \overline{u} d$ (T)
$\Lambda_b^0 \to p K^- \pi^+ \pi^-$	$b \rightarrow u \overline{u} s \; (T + P)$	$\Lambda^0_b \to (\Lambda^+_c \to p K^- \pi^+) \pi^-$	$b \rightarrow c \overline{u} d$ (T)
$\Lambda_b^0 \to p K^- K^+ \pi^-$	$b \rightarrow d\overline{s}s \ (T + P)$	$\Lambda_b^0 \to (\Lambda_c^+ \to p \pi^- \pi^+) \pi^-$	$b \rightarrow c \overline{u} d$ (T)
$\Lambda^0_b \to p K^- K^+ K^-$	$b \rightarrow s \overline{s} s \ (T + P)$	$\Lambda^0_b \to (\Lambda^+_c \to p K^- \pi^+) \pi^-$	$b \rightarrow c \overline{u} d$ (T)
$\varXi^0_b \to p K^- \pi^+ \pi^-$	$b \rightarrow u \overline{u} d \; (\mathrm{T} + \mathrm{P})$	$\Lambda^0_b \to (\Lambda^+_c \to p K^- \pi^+) \pi^-$	$b \rightarrow c \overline{u} d$ (T)
		$\Xi_b^0 \to (\Xi_c^+ \to p K^- \pi^+) \pi^-$	$b \rightarrow c \overline{u} d$ (T)
$\varXi^0_b \to p K^- \pi^+ K^-$	$b \rightarrow s \overline{d} d / b \rightarrow u \overline{u} s$ (P / T)	$\Lambda^0_b \to (\Lambda^+_c \to p K^- \pi^+) \pi^-$	$b \rightarrow c \overline{u} d$ (T)
		$\Xi_b^0 \to (\Xi_c^+ \to p K^- \pi^+) \pi^-$	$b \rightarrow c \overline{u} d$ (T)
Signal channels		Control channels	
<i>u</i>	→ <i>u</i>	<i>u</i>	
$\Lambda^0 d$ —	→ d	40 V 1	

CPV in
$$\Lambda_b^0(\Xi_b^0) \rightarrow ph^-h^+h^-$$

is simultaneous fit to 6 decay modes
Example: $\Lambda_b^0 \rightarrow pk^-\pi^+\pi^-$

$$\int_{0}^{0} \int_{0}^{0} \int_{0}^{0}$$

CPV in $\Lambda_h^0 \to p\pi^-\pi^+\pi^-$

Nature Physics 13, 391–396 (2017)

Measurement of matter-antimatter differences in beauty baryon decays

Run I 3/fb

Phys. Rev. D 102 (2020) 051101

Search for *CP* violation and observation of *P* violation in $\Lambda_b^0 \rightarrow p \pi^- \pi^+ \pi^-$ decays

Run I+II (2011-2017) 6.6/fb

CPV in
$$\Lambda_b^0 \to p\pi^-\pi^+\pi^-$$

□ Search for CPV with scalar triple-product asymmetries, \hat{T} flips the direction of fir state momenta and spin

$$C_{\widehat{T}} \equiv \vec{p}_p \cdot (\vec{p}_{h_1} \times \vec{p}_{h_2}), \ \overline{C}_{\widehat{T}} \equiv \vec{p}_{\overline{p}} \cdot (\vec{p}_{\overline{h}_1} \times \vec{p}_{\overline{h}_2})$$

D Data divided into 4 subsamples: $C_{\hat{T}} > 0, C_{\hat{T}} < 0, -\overline{C_{\hat{T}}} > 0, -\overline{C_{\hat{T}}} < 0$

$$A_{\widehat{T}}(C_{\widehat{T}}) = \frac{N(C_{\widehat{T}} > 0) - N(C_{\widehat{T}} < 0)}{N(C_{\widehat{T}} > 0) + N(C_{\widehat{T}} < 0)} \qquad \overline{A}_{\widehat{T}}(\overline{C}_{\widehat{T}}) = \frac{\overline{N}(-\overline{C}_{\widehat{T}} > 0) - \overline{N}(-\overline{C}_{\widehat{T}} < 0)}{\overline{N}(-\overline{C}_{\widehat{T}} > 0) + \overline{N}(-\overline{C}_{\widehat{T}} < 0)}$$

 $\square A_{\hat{T}}$ and $\bar{A}_{\hat{T}}$ are not clean CPV observables, FSI effects can introduce fake asymmetries. \square Define the clean CP-violating observable:

Does not require a non-zero strong phase difference!

Both strong phase and weak phase differences are needed

С

Particle, $C_T > 0$

Π

Particle, $C_T < 0$

IV

Anti-Particle, $-C_{T} < 0$

Anti-Particle, $-C_{T}$ >

CPV in $\Lambda_b^0 \to p\pi^-\pi^+\pi^-$

CPV integrated over the whole phase space:

\triangleright	a_{CP}^{T-odd}	= ((-0.7	± 0.7	± 0.2)%
------------------	------------------	-----	-------	-----------	---------

- Asymmetries for different binning scheme:
 - → A: 16 bins of polar and azimuthal angle of proton and $\Delta^{++}(\rightarrow p\pi^+)$
 - > B: asymmetries as a function of $|\Phi|$ angle
 - ► 1: $m(p\pi^{-}\pi^{+}) > 2.8 GeV$, dominated by $a_1(1260)$
 - \succ 2: *m*(*p*π[−]π⁺) < 2.8*GeV*, dominated by *N*^{*+}

CPV in
$$\Lambda_b^0 \to p\pi^-\pi^+\pi^-$$

□ Energy test is a model-independent unbinned test sensitive to local differences between two samples □ Provide superior discriminating power between different samples than traditional χ^2 test

$$T \equiv \frac{1}{2n(n-1)} \sum_{i\neq j}^{n} \psi_{ij} + \frac{1}{2\bar{n}(\bar{n}-1)} \sum_{i\neq j}^{\bar{n}} \psi_{ij} - \frac{1}{n\bar{n}} \qquad \Box \quad \psi_{ij} = e^{-d_{ij}^2/2\delta^2} : d_{ij} \text{ is their Euclidean distance in phase space, } \delta \text{ the distance scale probed using the energy test}$$

□ The p-value is calculated using a permutation method

Distance scale δ	$1.6 \ { m GeV^2}/c^4$	$2.7~{ m GeV^2}/c^4$	$13 \ { m GeV^2}/c^4$	marginally consistent with
p-value (CP conservation, P even)	$3.1 imes 10^{-2}$	$2.7 imes10^{-3}$	$1.3 imes 10^{-2}$	the CP-conserving
p-value (CP conservation, P odd)	$1.5 imes 10^{-1}$	$6.9 imes10^{-2}$	$6.5 imes10^{-2}$	8
p-value (P conservation)	$1.3 imes 10^{-7}$	$4.0 imes 10^{-7}$	$1.6 imes 10^{-1}$	

 \square A new test is statistic is defined as $Q = p_1 p_2 p_3$, significance for CPV < 3σ

CPV in $\Lambda_h^0 \to pD^0[K^+\pi^-]K^-$

Phys. Rev. D104 (2021) 112008

Studies of beauty baryon decays to D^0ph^- and $\Lambda_c^+h^-$ final states

Run I+II 9/fb

$$\operatorname{CPV} \operatorname{in} \Lambda_b^0 \to p D^0 [K^+ \pi^-] K^-$$

 $\Box \Lambda_b^0 \to p D^0 [K^+ \pi^-] K^- \text{ receives contributions from } b \to c \text{ (DCS) and} \\ b \to u \text{ of similar magnitude}$

□ The interference between these two amplitudes is expected to be large

□ Interference is anticipated to be amplified in $\Lambda^*(pK^-)$ region

$$\left| \frac{\mathcal{M}(B^- \to K^- D^0[\to f])}{\mathcal{M}(B^- \to K^- \overline{D}^0[\to f])} \right|^2 \approx \left| \frac{V_{cb} V_{us}^*}{V_{ub} V_{cs}^*} \right|^2 \left| \frac{a_1}{a_2} \right|^2 \frac{Br(D^0 \to f)}{Br(\overline{D}^0 \to f)} \approx \\ \approx \left| \frac{0.22}{0.08} \right|^2 \left| \frac{1}{0.26} \right|^2 0.0077 \sim 1 ,$$

□ Asymmetry in the full PHSP: $A_{CP} = 0.12 \pm 0.09^{+0.02}_{-0.03}$

□ Asymmetry in the low $M(pK^{-})$ region: $A_{CP} = 0.01 \pm 0.16^{+0.03}_{-0.02}$

Consistent with CP conservation!

CPV in $\Lambda_b^0 \to pK^-\mu^+\mu^-$

JHEP 06 (2017) 108

Observation of the decay $\Lambda_b^0 \to p K^- \mu^+ \mu^-$ and a search for CP violation

Run I: 3/fb

CPV in $\Lambda_h^0 \to p K^- \mu^+ \mu^-$

□ Search for CPV in FCNC process

Dominated by loop diagrams

□ new heavy particles could provide additional weak phases

□ sensitive to CPV effects from physics beyond the SM

 $\Box \text{ direct CP asymmetry:} \\ \Delta A_{CP} = A_{CP} (\Lambda_b^0 \to pK^-\mu^+\mu^-) - A_{CP} (\Lambda_b^0 \to pK^-J/\psi)$

CPV in $\Xi_h^- \to pK^-K^+$

Phys. Rev. D 104, 052010

Search for $C\!P$ violation in $\varXi^-_b \to p K^- K^-$ decays

Run I: 3/fb Run II: 2/fb (2015-2016)

CPV in $\Xi_b^- \to pK^-K^-$

- Charmless $b \rightarrow u, b \rightarrow s$ transition
- Study CPV over PHSP using model dependent amplitude analysis

Approximately 685 candidates with a purity of 67% are retained for amplitude analysis

CPV in $\Xi_b^- \to pK^-K^+$

Component	$A^{CP}~(10^{-2})$
$\Sigma(1385)$	$-27 \pm 34 \; (\text{stat}) \pm 73 \; (\text{syst})$
$\Lambda(1405)$	$-1 \pm 24 \; (\text{stat}) \pm 32 \; (\text{syst})$
$\Lambda(1520)$	$-5 \pm 9 \text{ (stat)} \pm 8 \text{ (syst)}$
$\Lambda(1670)$	$3 \pm 14 \text{ (stat)} \pm 10 \text{ (syst)}$
$\Sigma(1775)$	$-47 \pm 26 \; (\text{stat}) \pm 14 \; (\text{syst})$
$\Sigma(1915)$	$11 \pm 26 \text{ (stat)} \pm 22 \text{ (syst)}$

No evidence of CPV, larger samples are needed.

CPV in
$$\Lambda_c^0 \to pK^-K^+/p\pi^-\pi^+$$

JHEP 03 (2018) 182
A measurement of the *CP*
asymmetry difference between

$$\Lambda_c^+ \rightarrow pK^-K^+$$
 and $p\pi^-\pi^+$ decays
Run I: 3/fb

- complementary to measurements in *b*-hadrons
- CPV only occur in SCS decays at the $O(10^{-3})$ level
- FSI, NP and SU(3)F breaking could enhance the CPV

$$\delta_{V_{\rm CKM}} = \begin{pmatrix} -\frac{1}{8}\lambda^4 & 0 & 0\\ \frac{1}{2}A^2\lambda^5(1-2(\rho+i\eta)) & -\frac{1}{8}\lambda^4(1+4A^2) & 0\\ \frac{1}{2}A\lambda^5(\rho+i\eta) & \frac{1}{2}A\lambda^4(1-2(\rho+i\eta)) & -\frac{1}{2}A^2\lambda^4 \end{pmatrix} + \mathcal{O}(\lambda^6)$$

Search for CPV in cabibbo suppress decay $\Lambda_c^0 \rightarrow pK^-K^+/p\pi^-\pi^+$

 $\Delta A_{CP}^{wgt} = A_{CP}(pK^-K^+) - A_{CP}(p\pi^-\pi^+)$ = (0.30 ± 0.91 ± 0.61)%

CPV in $\Xi_c^0 \rightarrow p K^- \pi^+$

Eur. Phys. J. C 2020, 80, 986

Search for *CP* violation in $\Xi_c^+ ightarrow pK^-\pi^+$ decays using model-independent techniques _{Run I: 3/fb}

CPV in
$$\Xi_c^0 \rightarrow pK^-\pi^+$$
 (S_{CP} method)

• Search for CPV using model independent binned/unbinned method

$$S_{CP}^{i} = \frac{n_{+}^{i} - \alpha n_{-}^{i}}{\sqrt{\alpha(n_{+}^{i} + n_{-}^{i})}}$$

 $\alpha = \frac{n_+}{n_-}$ account for production asymmetry

$$\chi^2 \equiv \Sigma (S_{CP}^i)^2$$

The p-values using χ^2 test are larger than 32% consistent with no evidence for CPV

CPV in $\Xi_c^0 \rightarrow p K^- \pi^+$ (kNN method)

no significant deviation from the hypothesis of CP symmetry

CPV in $\Lambda_b^0 \to \Lambda \gamma$

Phys. Rev. D105 (2022) L051104

Measurement of the photon polarization in $\Lambda^0_b\to\Lambda\gamma$ decays

Run II: 6/fb

CPV in $\Lambda_h^0 \to \Lambda \gamma$

- FCNC decay is sensitive to new heavy particles in the loop
- Due to the chirality of the electroweak interaction, the photons produced in $b(\overline{b})$ quark are predominantly left(right) handed polarized
 - $\alpha_{\gamma} = \frac{\gamma_L \gamma_R}{\gamma_L + \gamma_R}$
- A discrepancy in the absolute value of the photon polarization in b and \overline{b} decays would be a hint of CP asymmetry

Distribution of $cos\theta_p$ for $\Lambda_b^0 \to \Lambda\gamma$ and $\overline{\Lambda}_b^0 \to \overline{\Lambda}\gamma$ decays

 $\alpha_{\gamma} = 0.82 \pm 0.23 \pm 0.13$ $\alpha_{\gamma}(\Lambda_b^0) = 0.55 \pm 0.32 \pm 0.10$ $\alpha_{\gamma}(\overline{\Lambda}_b^0) = 1.26 \pm 0.42 \pm 0.20$

consistent with CP symmetry